Search results for: pulp and paper waste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26655

Search results for: pulp and paper waste

1755 Removal of Total Petroleum Hydrocarbons from Contaminated Soils by Electrochemical Method

Authors: D. M. Cocârță, I. A. Istrate, C. Streche, D. M. Dumitru

Abstract:

Soil contamination phenomena are a wide world issue that has received the important attention in the last decades. The main pollutants that have affected soils are especially those resulted from the oil extraction, transport and processing. This paper presents results obtained in the framework of a research project focused on the management of contaminated sites with petroleum products/ REMPET. One of the specific objectives of the REMPET project was to assess the electrochemical treatment (improved with polarity change respect to the typical approach) as a treatment option for the remediation of total petroleum hydrocarbons (TPHs) from contaminated soils. Petroleum hydrocarbon compounds attach to soil components and are difficult to remove and degrade. Electrochemical treatment is a physicochemical treatment that has gained acceptance as an alternative method, for the remediation of organic contaminated soils comparing with the traditional methods as bioremediation and chemical oxidation. This type of treatment need short time and have high removal efficiency, being usually applied in heterogeneous soils with low permeability. During the experimental tests, the following parameters were monitored: pH, redox potential, humidity, current intensity, energy consumption. The electrochemical method was applied in an experimental setup with the next dimensions: 450 mm x 150 mm x 150 mm (L x l x h). The setup length was devised in three electrochemical cells that were connected at two power supplies. The power supplies configuration was provided in such manner that each cell has a cathode and an anode without overlapping. The initial value of TPH concentration in soil was of 1420.28 mg/kgdw. The remediation method has been applied for only 21 days, when it was already noticed an average removal efficiency of 31 %, with better results in the anode area respect to the cathode one (33% respect to 27%). The energy consumption registered after the development of the experiment was 10.6 kWh for exterior power supply and 16.1 kWh for the interior one. Taking into account that at national level, the most used methods for soil remediation are bioremediation (which needs too much time to be implemented and depends on many factors) and thermal desorption (which involves high costs in order to be implemented), the study of electrochemical treatment will give an alternative to these two methods (and their limitations).

Keywords: electrochemical remediation, pollution, total petroleum hydrocarbons, soil contamination

Procedia PDF Downloads 227
1754 The Role of Place-making in Promoting Planning for Diversity for a Livable Neighborhood and an Inclusive City: Reassembling the Splintered City

Authors: Samia Dahmani

Abstract:

The research investigated the process and outcomes of an ongoing project, “Den Grønne Rute”: a network of recreational rooms to be implemented throughout a former vulnerable neighborhood: Trekanten, in the city of Holstebro in Denmark. The aim of the project is to better integrate Trekanten in the city and which initiated reflections upon the (dis)connection and the integration in relation to urban planning and city management, as well as the extent to which the project considers diversity since Holstebro is a growing multicultural city. With this research, it was first verified if Trekanten is splintered from Holstebro city, and secondly if planning for diversity, by engaging people in the process via place-making approaches, can help redress the disconnection between the neighborhood and the rest of the city. More specifically, the paper aims at exploring the role of place-making “Den Grønne Rute” in Trekanten in promoting planning for diversity and reassembling the splintering in the city. The theoretical and conceptual framework served to analyze the relationship between the splintering urbanism concept and the community involvement’s role for an inclusive process. The field study examines the detachment between Trekanten and Holstebro and the extent to which the project can overcome the disconnection. Methodologically a mix-methods approach was adopted where two semi-structured interviews, a focus group, and an online survey were conducted. Contrary to prior assumptions, the results showed that not only is Trekanten splintered from the city, but also the city is greatly disconnected from Trekanten, and hence Holstebro is a splintered city. The surprise was that Trekanten is moreover inner-splintered. The splintering urbanism accordingly has different dimensions. Even though the project’s design seemed to incorporate diverse ages and groups of people, its process lacks an understanding of the diversity’s relevance in promoting inclusiveness. In fact, the analysis revealed socio-cultural and psychological splintering. Since place-making, as a collaborative approach in planning, is itself an expression of diversity (since it brings differences into play), reconsidering diversity within the process by engaging people at the early sages of planning was recommended. Another suggestion was not to limit the project to a destination but more as an experience to remember and a story to tell. Only by bringing people together in re-imagining the place, can Trekanten reassemble with Holstebro and vice versa. The aim with the research was to add a new perspective to the splintering urbanism and planning for diversity so to advance place-making as an approach in promoting the latter and redressing the former.

Keywords: the splintering urbanism, placemaking, planning for diversity, den grønne rute, trekanten, holstebro

Procedia PDF Downloads 91
1753 A Simulated Evaluation of Model Predictive Control

Authors: Ahmed AlNouss, Salim Ahmed

Abstract:

Process control refers to the techniques to control the variables in a process in order to maintain them at their desired values. Advanced process control (APC) is a broad term within the domain of control where it refers to different kinds of process control and control related tools, for example, model predictive control (MPC), statistical process control (SPC), fault detection and classification (FDC) and performance assessment. APC is often used for solving multivariable control problems and model predictive control (MPC) is one of only a few advanced control methods used successfully in industrial control applications. Advanced control is expected to bring many benefits to the plant operation; however, the extent of the benefits is plant specific and the application needs a large investment. This requires an analysis of the expected benefits before the implementation of the control. In a real plant simulation studies are carried out along with some experimentation to determine the improvement in the performance of the plant due to advanced control. In this research, such an exercise is undertaken to realize the needs of APC application. The main objectives of the paper are as follows: (1) To apply MPC to a number of simulations set up to realize the need of MPC by comparing its performance with that of proportional integral derivatives (PID) controllers. (2) To study the effect of controller parameters on control performance. (3) To develop appropriate performance index (PI) to compare the performance of different controller and develop novel idea to present tuning map of a controller. These objectives were achieved by applying PID controller and a special type of MPC which is dynamic matrix control (DMC) on the multi-tanks process simulated in loop-pro. Then the controller performance has been evaluated by changing the controller parameters. This performance was based on special indices related to the difference between set point and process variable in order to compare the both controllers. The same principle was applied for continuous stirred tank heater (CSTH) and continuous stirred tank reactor (CSTR) processes simulated in Matlab. However, in these processes some developed programs were written to evaluate the performance of the PID and MPC controllers. Finally these performance indices along with their controller parameters were plotted using special program called Sigmaplot. As a result, the improvement in the performance of the control loops was quantified using relevant indices to justify the need and importance of advanced process control. Also, it has been approved that, by using appropriate indices, predictive controller can improve the performance of the control loop significantly.

Keywords: advanced process control (APC), control loop, model predictive control (MPC), proportional integral derivatives (PID), performance indices (PI)

Procedia PDF Downloads 393
1752 False Assumptions Made in Cybersecurity Curriculum: K-12

Authors: Nathaniel Evans, Jessica Boersma, Kenneth Kass

Abstract:

With technology and STEM fields growing every day, there is a significant projected shortfall in qualified cybersecurity workers. As such, it is essential to develop a cybersecurity curriculum that builds skills and cultivates interest in cybersecurity early on. With new jobs being created every day and an already significant gap in the job market, it is vital that educators are pro-active in introducing a cybersecurity curriculum where students are able to learn new skills and engage in an age-appropriate cyber curriculum. Within this growing world of cybersecurity, students should engage in age-appropriate technology and cybersecurity curriculum, starting with elementary school (k-5), extending through high school, and ultimately into college. Such practice will provide students with the confidence, skills, and, ultimately, the opportunity to work in the burgeoning information security field. This paper examines educational methods, pedagogical practices, current cybersecurity curricula, and other educational resources and conducts analysis for false assumptions and developmental appropriateness. It also examines and identifies common mistakes with current cyber curriculum and lessons and discuss strategies for improvement. Throughout the lessons that were reviewed, many common mistakes continued to pop up. These mistakes included age appropriateness, technology resources that were available, and consistency of student’s skill levels. Many of these lessons were written for the wrong grade levels. The ones written for the elementary level all had activities that assumed that every student in the class could read at grade level and also had background knowledge of the cyber activity at hand, which is not always the case. Another major mistake was that these lessons assumed that all schools had any kind of technology resource available to them. Some schools are 1:1, and others are only allotted three computers in their classroom where the students have to share. While coming up with a cyber-curriculum, it has to be kept in mind that not all schools are the same, not every classroom is the same. There are many students who are not reading at their grade level or have not had exposure to the digital world. We need to start slow and ease children into the cyber world. Once they have a better understanding, it will be easier to move forward with these lessons and get the students engaged. With a better understanding of common mistakes that are being made, a more robust curriculum and lessons can be created that no only spark a student’s interest in this much-needed career field but encourage learning while keeping our students safe from cyber-attacks.

Keywords: assumptions, cybersecurity, k-12, teacher

Procedia PDF Downloads 150
1751 Economic Policy to Stimulate Industrial Development in Georgia

Authors: Gulnaz Erkomaishvili

Abstract:

The article analyzes the modern level of industrial production in Georgia, shows the export-import of industrial products and evaluates the results of the activities of institutions implementing industrial policy. The research showed us that the level of development of industry in the country and its export potential are quite low. The article concludes that in the modern phase of industrial development, the country should choose a model focused on technological development and maximum growth of export potential. Objectives. The aim of the research is to develop an economic policy that promotes the development of industry and to look for ways to implement it effectively. Methodologies This paper uses general and specific methods, in particular, analysis, synthesis, induction, deduction, scientific abstraction, comparative and statistical methods, as well as experts’ evaluation. In-depth interviews with experts were conducted to determine quantitative and qualitative indicators; Publications of the National Statistics Office of Georgia are used to determine the regularity between analytical and statistical estimations. Also, theoretical and applied research of international organizations and scientist-economists are used. Contributions Based on the identified challenges in the area of industry, recommendations for the implementation of an active industrial policy in short and long term periods were developed. In particular: the government's priority orientation of industrial development; paying special attention to the processing industry sectors that Georgia has the potential to produce; supporting the development of scientific fields; Determination of certain benefits for those investors who invest money in industrial production; State partnership with the private sector, manifested in the fight against bureaucracy, corruption and crime, creating favorable business conditions for entrepreneurs; Coordination between education - science - production should be implemented in the country. Much attention should be paid to basic scientific research, which does not require purely commercial returns in the short term, science should become a real productive force; Special importance should be given to the creation of an environment that will support the expansion of export-oriented production; Overcoming barriers to entry into export markets.

Keywords: industry, sectoral structure of industry, exsport-import of industrial products, industrial policy

Procedia PDF Downloads 86
1750 The Spatial Classification of China near Sea for Marine Biodiversity Conservation Based on Bio-Geographical Factors

Authors: Huang Hao, Li Weiwen

Abstract:

Global biodiversity continues to decline as a result of global climate change and various human activities, such as habitat destruction, pollution, introduction of alien species and overfishing. Although there are connections between global marine organisms more or less, it is better to have clear geographical boundaries in order to facilitate the assessment and management of different biogeographical zones. And so area based management tools (ABMT) are considered as the most effective means for the conservation and sustainable use of marine biodiversity. On a large scale, the geographical gap (or barrier) is the main factor to influence the connectivity, diffusion, ecological and evolutionary process of marine organisms, which results in different distribution patterns. On a small scale, these factors include geographical location, geology, and geomorphology, water depth, current, temperature, salinity, etc. Therefore, the analysis on geographic and environmental factors is of great significance in the study of biodiversity characteristics. This paper summarizes the marine spatial classification and ABMTs used in coastal area, open oceans and deep sea. And analysis principles and methods of marine spatial classification based on biogeographic related factors, and take China Near Sea (CNS) area as case study, and select key biogeographic related factors, carry out marine spatial classification at biological region scale, ecological regionals scale and biogeographical scale. The research shows that CNS is divided into 5 biological regions by climate and geographical differences, the Yellow Sea, the Bohai Sea, the East China Sea, the Taiwan Straits, and the South China Sea. And the bioregions are then divided into 12 ecological regions according to the typical ecological and administrative factors, and finally the eco-regions are divided into 98 biogeographical units according to the benthic substrate types, depth, coastal types, water temperature, and salinity, given the integrity of biological and ecological process, the area of the biogeographical units is not less than 1,000 km². This research is of great use to the coastal management and biodiversity conservation for local and central government, and provide important scientific support for future spatial planning and management of coastal waters and sustainable use of marine biodiversity.

Keywords: spatial classification, marine biodiversity, bio-geographical, conservation

Procedia PDF Downloads 142
1749 A Risk-Based Approach to Construction Management

Authors: Chloe E. Edwards, Yasaman Shahtaheri

Abstract:

Risk management plays a fundamental role in project planning and delivery. The purpose of incorporating risk management into project management practices is to identify and address uncertainties related to key project-related activities. The uncertainties, known as risk events, can relate to project deliverables that are quantifiable and are often measured by impact to project schedule, cost, or environmental impact. Risk management should be incorporated as an iterative practice throughout the planning, execution, and commissioning phases of a project. This paper specifically examines how risk management contributes to effective project planning and delivery through a case study of a transportation project. This case study focused solely on impacts to project schedule regarding three milestones: readiness for delivery, readiness for testing and commissioning, and completion of the facility. The case study followed the ISO 31000: Risk Management – Guidelines. The key factors that are outlined by these guidelines include understanding the scope and context of the project, conducting a risk assessment including identification, analysis, and evaluation, and lastly, risk treatment through mitigation measures. This process requires continuous consultation with subject matter experts and monitoring to iteratively update the risks accordingly. The risk identification process led to a total of fourteen risks related to design, permitting, construction, and commissioning. The analysis involved running 1,000 Monte Carlo simulations through @RISK 8.0 Industrial software to determine potential milestone completion dates based on the project baseline schedule. These dates include the best case, most likely case, and worst case to provide an estimated delay for each milestone. Evaluation of these results provided insight into which risks were the highest contributors to the projected milestone completion dates. Based on the analysis results, the risk management team was able to provide recommendations for mitigation measures to reduce the likelihood of risks occurring. The risk management team also provided recommendations for managing the identified risks and project activities moving forward to meet the most likely or best-case milestone completion dates.

Keywords: construction management, monte carlo simulation, project delivery, risk assessment, transportation engineering

Procedia PDF Downloads 95
1748 Effective Use of X-Box Kinect in Rehabilitation Centers of Riyadh

Authors: Reem Alshiha, Tanzila Saba

Abstract:

Physical rehabilitation is the process of helping people to recover and be able to go back to their former activities that have been delayed due to external factors such as car accidents, old age and victims of strokes (chronic diseases and accidents, and those related to sport activities).The cost of hiring a personal nurse or driving the patient to and from the hospital could be costly and time-consuming. Also, there are other factors to take into account such as forgetfulness, boredom and lack of motivation. In order to solve this dilemma, some experts came up with rehabilitation software to be used with Microsoft Kinect to help the patients and their families for in-home rehabilitation. In home rehabilitation software is becoming more and more popular, since it is more convenient for all parties affiliated with the patient. In contrast to the other costly market-based systems that have no portability, Microsoft’s Kinect is a portable motion sensor that reads body movements and interprets it. New software development has made rehabilitation games available to be used at home for the convenience of the patient. The game will benefit its users (rehabilitation patients) in saving time and money. There are many software's that are used with the Kinect for rehabilitation, but the software that is chosen in this research is Kinectotherapy. Kinectotherapy software is used for rehabilitation patients in Riyadh clinics to test its acceptance by patients and their physicians. In this study, we used Kinect because it was affordable, portable and easy to access in contrast to expensive market-based motion sensors. This paper explores the importance of in-home rehabilitation by using Kinect with Kinectotherapy software. The software targets both upper and lower limbs, but in this research, the main focus is on upper-limb functionality. However, the in-home rehabilitation is applicable to be used by all patients with motor disability, since the patient must have some self-reliance. The targeted subjects are patients with minor motor impairment that are somewhat independent in their mobility. The presented work is the first to consider the implementation of in-home rehabilitation with real-time feedback to the patient and physician. This research proposes the implementation of in-home rehabilitation in Riyadh, Saudi Arabia. The findings show that most of the patients are interested and motivated in using the in-home rehabilitation system in the future. The main value of the software application is due to these factors: improve patient engagement through stimulating rehabilitation, be a low cost rehabilitation tool and reduce the need for expensive one-to-one clinical contact. Rehabilitation is a crucial treatment that can improve the quality of life and confidence of the patient as well as their self-esteem.

Keywords: x-box, rehabilitation, physical therapy, rehabilitation software, kinect

Procedia PDF Downloads 325
1747 Perceived Barriers and Benefits of Technology-Based Progress Monitoring for Non-Academic Individual Education Program Goals

Authors: A. Drelick, T. Sondergeld, M. Decarlo-Tecce, K. McGinley

Abstract:

In 1975, a free, appropriate public education (FAPE) was granted for all students in the United States regardless of their disabilities. As a result, the special education landscape has been reshaped through new policies and legislation. Progress monitoring, a specific component of an Individual Education Program (IEP) calls, for the use of data collection to determine the appropriateness of services provided to students with disabilities. The recent US Supreme Court ruling in Endrew F. v. Douglas County warrants giving increased attention to student progress, specifically pertaining to improving functional, or non-academic, skills that are addressed outside the general education curriculum. While using technology to enhance data collection has become a common practice for measuring academic growth, its application for non-academic IEP goals is uncertain. A mixed-methods study examined current practices and rationales for implementing technology-based progress monitoring focused on non-academic IEP goals. Fifty-seven participants responded to an online survey regarding their progress monitoring programs for non-academic goals. After isolated analysis and interpretation of quantitative and qualitative results, data were synthesized to produce meta-inferences that drew broader conclusions on the topic. For the purpose of this paper, specific focus will be placed on the perceived barriers and benefits of implementing technology-based progress monitoring protocols for non-academic IEP goals. The findings of this study highlight facts impacting the use of technology-based progress monitoring. Perceived barriers to implementation include: (1) lack of training, (2) access to technology, (3) outdated or inoperable technology, (4) reluctance to change, (5) cost, (6) lack of individualization within technology-based programs, and (7) legal issues in special education; while perceived benefits include: (1) overall ease of use, (2) accessibility, (3) organization, (4) potential for improved presentation of data, (5) streamlining the progress-monitoring process, and (6) legal issues in special education. Based on these conclusions, recommendations are made to IEP teams, school districts, and software developers to improve the progress-monitoring process for functional skills.

Keywords: special education, progress monitoring, functional skills, technology

Procedia PDF Downloads 227
1746 Orthopedic Trauma in Newborn Babies

Authors: Joanna Maj, Awais Hussain, Lyndsey Vu, Catherine Roxas

Abstract:

Background: Bone injuries in babies are common conditions that arise during delivery. Fractures of the clavicle, humerus, femur, and skull are the most common neonatal bone injuries sustained from labor and delivery. During operative deliveries, zealous tractions, ineffective delivery techniques, improper uterine incision, and inadequate relaxation of the uterus can lead to bone fractures in the newborn. Neonatal anatomy is unique. Just as children are not mini-adults, newborns are not mini children. A newborn’s anatomy and physiology are significantly different from a pediatric patient's. In this paper, we describe common orthopedic trauma in newborn babies. We provide a comprehensive overview of the different types of bone injuries in newborns. We hypothesize that the rate of bone fractures sustained at birth is higher in cases of operative deliveries. Methods: Relevant literature was selected by using the PubMed database. Search terms included orthopedic conditions in newborns, neonatal anatomy, and bone fractures in neonates during operative deliveries. Inclusion criteria included age, gender, race, type of bone injury and progression of bone injury. Exclusion criteria were limited in the medical history of cases reviewed and comorbidities. Results: This review finds that a clavicle fracture is the most common type of neonatal orthopedic injury sustained at birth in both operative and non-operative deliveries. We confirm the hypothesis that infants born via operative deliveries have a significantly higher rate of bone fractures than non-cesarean section deliveries. Conclusion: Newborn babies born via operative deliveries have a higher rate of bone fractures of the clavicle, humerus, and femur. A clavicle bone fracture in newborns is most common during emergency operative deliveries in new mothers. We conclude that infants born via an operative delivery sustained more bone injuries than infants born via non-cesarean section deliveries.

Keywords: clavicle fracture, humerus fracture, neonates, newborn orthopedics, orthopedic surgery, pediatrics, orthopedic trauma, orthopedic trauma during delivery, cesarean section, obstetrics, neonatal anatomy, neonatal fractures, operative deliveries, labor and delivery, bone injuries in neonates

Procedia PDF Downloads 86
1745 A Case Study of Low Head Hydropower Opportunities at Existing Infrastructure in South Africa

Authors: Ione Loots, Marco van Dijk, Jay Bhagwan

Abstract:

Historically, South Africa had various small-scale hydropower installations in remote areas that were not incorporated in the national electricity grid. Unfortunately, in the 1960s most of these plants were decommissioned when Eskom, the national power utility, rapidly expanded its grid and capability to produce cheap, reliable, coal-fired electricity. This situation persisted until 2008, when rolling power cuts started to affect all citizens. This, together with the rising monetary and environmental cost of coal-based power generation, has sparked new interest in small-scale hydropower development, especially in remote areas or at locations (like wastewater treatment works) that could not afford to be without electricity for long periods at a time. Even though South Africa does not have the same, large-scale, hydropower potential as some other African countries, significant potential for micro- and small-scale hydropower is hidden in various places. As an example, large quantities of raw and potable water are conveyed daily under either pressurized or gravity conditions over large distances and elevations. Due to the relative water scarcity in the country, South Africa also has more than 4900 registered dams of varying capacities. However, institutional capacity and skills have not been maintained in recent years and therefore the identification of hydropower potential, as well as the development of micro- and small-scale hydropower plants has not gained significant momentum. An assessment model and decision support system for low head hydropower development has been developed to assist designers and decision makers with first-order potential analysis. As a result, various potential sites were identified and many of these sites were situated at existing infrastructure like weirs, barrages or pipelines. One reason for the specific interest in existing infrastructure is the fact that capital expenditure could be minimized and another is the reduced negative environmental impact compared to greenfield sites. This paper will explore the case study of retrofitting an unconventional and innovative hydropower plant to the outlet of a wastewater treatment works in South Africa.

Keywords: low head hydropower, retrofitting, small-scale hydropower, wastewater treatment works

Procedia PDF Downloads 230
1744 Netnography Research in Leisure, Tourism, and Hospitality: Lessons from Research and Education

Authors: Marisa P. De Brito

Abstract:

The internet is affecting the way the industry operates and communicates. It is also becoming a customary means for leisure, tourism, and hospitality consumers to seek and exchange information and views on hotels, destinations events and attractions, or to develop social ties with other users. On the one hand, the internet is a rich field to conduct leisure, tourism, and hospitality research; on the other hand, however, there are few researchers formally embracing online methods of research, such as netnography. Within social sciences, netnography falls under the interpretative/ethnographic research methods umbrella. It is an adaptation of anthropological techniques such as participant and non-participant observation, used to study online interactions happening on social media platforms, such as Facebook. It is, therefore, a research method applied to the study of online communities, being the term itself a contraction of the words network (as on internet), and ethnography. It was developed in the context of marketing research in the nineties, and in the last twenty years, it has spread to other contexts such as education, psychology, or urban studies. Since netnography is not universally known, it may discourage researchers and educators from using it. This work offers guidelines for researchers wanting to apply this method in the field of leisure, tourism, and hospitality or for educators wanting to teach about it. This is done by means of a double approach: a content analysis of the literature side-by-side with educational data, on the use of netnography. The content analysis is of the incidental research using netnography in leisure, tourism, and hospitality in the last twenty years. The educational data is the author and her colleagues’ experience in coaching students throughout the process of writing a paper using primary netnographic data - from identifying the phenomenon to be studied, selecting an online community, collecting and analyzing data to writing their findings. In the end, this work puts forward, on the one hand, a research agenda, and on the other hand, an educational roadmap for those wanting to apply netnography in the field or the classroom. The educator’s roadmap will summarise what can be expected from mini-netnographies conducted by students and how to set it up. The research agenda will highlight for which issues and research questions the method is most suitable; what are the most common bottlenecks and drawbacks of the method and of its application, but also where most knowledge opportunities lay.

Keywords: netnography, online research, research agenda, educator's roadmap

Procedia PDF Downloads 163
1743 Optical Properties of TlInSe₂<AU> Si̇ngle Crystals

Authors: Gulshan Mammadova

Abstract:

This paper presents the results of studying the surface microrelief in 2D and 3D models and analyzing the spectroscopy of a three-junction TlInSe₂ crystal. Analysis of the results obtained showed that with a change in the composition of the TlInSe₂ crystal, sharp changes occur in the microrelief of its surface. An X-ray optical diffraction analysis of the TlInSe₂ crystal was experimentally carried out. Based on ellipsometric data, optical functions were determined - the real and imaginary parts of the dielectric permittivity of crystals, the coefficients of optical absorption and reflection, the dependence of energy losses and electric field power on the effective density, the spectral dependences of the real (σᵣ) and imaginary (σᵢ) parts, optical electrical conductivity were experimentally studied. The fluorescence spectra of the ternary compound TlInSe₂ were isolated and analyzed when excited by light with a wavelength of 532 nm. X-ray studies of TlInSe₂ showed that this phase crystallizes into tetragonal systems. Ellipsometric measurements showed that the real (ε₁) and imaginary (ε₂) parts of the dielectric constant are components of the dielectric constant tensor of the uniaxial joints under consideration and do not depend on the angle. Analysis of the dependence of the real and imaginary parts of the refractive index of the TlInSe₂ crystal on photon energy showed that the nature of the change in the real and imaginary parts of the dielectric constant does not differ significantly. When analyzing the spectral dependences of the real (σr) and imaginary (σi) parts of the optical electrical conductivity, it was noticed that the real part of the optical electrical conductivity increases exponentially in the energy range 0.894-3.505 eV. In the energy range of 0.654-2.91 eV, the imaginary part of the optical electrical conductivity increases linearly, reaches a maximum value, and decreases at an energy of 2.91 eV. At 3.6 eV, an inversion of the imaginary part of the optical electrical conductivity of the TlInSe₂ compound is observed. From the graphs of the effective power density versus electric field energy losses, it is known that the effective power density increases significantly in the energy range of 0.805–3.52 eV. The fluorescence spectrum of the ternary compound TlInSe₂ upon excitation with light with a wavelength of 532 nm has been studied and it has been established that this phase has luminescent properties.

Keywords: optical properties, dielectric permittivity, real and imaginary dielectric permittivity, optical electrical conductivity

Procedia PDF Downloads 52
1742 Multiscale Modeling of Damage in Textile Composites

Authors: Jaan-Willem Simon, Bertram Stier, Brett Bednarcyk, Evan Pineda, Stefanie Reese

Abstract:

Textile composites, in which the reinforcing fibers are woven or braided, have become very popular in numerous applications in aerospace, automotive, and maritime industry. These textile composites are advantageous due to their ease of manufacture, damage tolerance, and relatively low cost. However, physics-based modeling of the mechanical behavior of textile composites is challenging. Compared to their unidirectional counterparts, textile composites introduce additional geometric complexities, which cause significant local stress and strain concentrations. Since these internal concentrations are primary drivers of nonlinearity, damage, and failure within textile composites, they must be taken into account in order for the models to be predictive. The macro-scale approach to modeling textile-reinforced composites treats the whole composite as an effective, homogenized material. This approach is very computationally efficient, but it cannot be considered predictive beyond the elastic regime because the complex microstructural geometry is not considered. Further, this approach can, at best, offer a phenomenological treatment of nonlinear deformation and failure. In contrast, the mesoscale approach to modeling textile composites explicitly considers the internal geometry of the reinforcing tows, and thus, their interaction, and the effects of their curved paths can be modeled. The tows are treated as effective (homogenized) materials, requiring the use of anisotropic material models to capture their behavior. Finally, the micro-scale approach goes one level lower, modeling the individual filaments that constitute the tows. This paper will compare meso- and micro-scale approaches to modeling the deformation, damage, and failure of textile-reinforced polymer matrix composites. For the mesoscale approach, the woven composite architecture will be modeled using the finite element method, and an anisotropic damage model for the tows will be employed to capture the local nonlinear behavior. For the micro-scale, two different models will be used, the one being based on the finite element method, whereas the other one makes use of an embedded semi-analytical approach. The goal will be the comparison and evaluation of these approaches to modeling textile-reinforced composites in terms of accuracy, efficiency, and utility.

Keywords: multiscale modeling, continuum damage model, damage interaction, textile composites

Procedia PDF Downloads 333
1741 Estimating CO₂ Storage Capacity under Geological Uncertainty Using 3D Geological Modeling of Unconventional Reservoir Rocks in Block nv32, Shenvsi Oilfield, China

Authors: Ayman Mutahar Alrassas, Shaoran Ren, Renyuan Ren, Hung Vo Thanh, Mohammed Hail Hakimi, Zhenliang Guan

Abstract:

The significant effect of CO₂ on global climate and the environment has gained more concern worldwide. Enhance oil recovery (EOR) associated with sequestration of CO₂ particularly into the depleted oil reservoir is considered the viable approach under financial limitations since it improves the oil recovery from the existing oil reservoir and boosts the relation between global-scale of CO₂ capture and geological sequestration. Consequently, practical measurements are required to attain large-scale CO₂ emission reduction. This paper presents an integrated modeling workflow to construct an accurate 3D reservoir geological model to estimate the storage capacity of CO₂ under geological uncertainty in an unconventional oil reservoir of the Paleogene Shahejie Formation (Es1) in the block Nv32, Shenvsi oilfield, China. In this regard, geophysical data, including well logs of twenty-two well locations and seismic data, were combined with geological and engineering data and used to construct a 3D reservoir geological modeling. The geological modeling focused on four tight reservoir units of the Shahejie Formation (Es1-x1, Es1-x2, Es1-x3, and Es1-x4). The validated 3D reservoir models were subsequently used to calculate the theoretical CO₂ storage capacity in the block Nv32, Shenvsi oilfield. Well logs were utilized to predict petrophysical properties such as porosity and permeability, and lithofacies and indicate that the Es1 reservoir units are mainly sandstone, shale, and limestone with a proportion of 38.09%, 32.42%, and 29.49, respectively. Well log-based petrophysical results also show that the Es1 reservoir units generally exhibit 2–36% porosity, 0.017 mD to 974.8 mD permeability, and moderate to good net to gross ratios. These estimated values of porosity, permeability, lithofacies, and net to gross were up-scaled and distributed laterally using Sequential Gaussian Simulation (SGS) and Simulation Sequential Indicator (SIS) methods to generate 3D reservoir geological models. The reservoir geological models show there are lateral heterogeneities of the reservoir properties and lithofacies, and the best reservoir rocks exist in the Es1-x4, Es1-x3, and Es1-x2 units, respectively. In addition, the reservoir volumetric of the Es1 units in block Nv32 was also estimated based on the petrophysical property models and fund to be between 0.554368

Keywords: CO₂ storage capacity, 3D geological model, geological uncertainty, unconventional oil reservoir, block Nv32

Procedia PDF Downloads 157
1740 Treatment of High Concentration Cutting Fluid Wastewater by Ceramic Membrane Bioreactor

Authors: Kai-Shiang Chang, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu

Abstract:

In recent years, membrane bioreactors (MBR) have been widely utilized as it can effectively replace conventional activated sludge process (CAS). Membrane bioreactor (MBR) is found to be more effective technology compared to other conventional activated sludge process and advanced membrane separation technique. Additionally, as far as the MBR is concerned, it is having excellent control of sludge retention time (SRT) and hydraulic retention time (HRT) and conducive to the retention of high concentration of sludge biomass. The membrane bioreactor (MBR) can effectively reduce footprint in terms of area and omit the secondary processing procedures in the conventional activated sludge process (CAS). Currently, as per the membrane technology, the ceramic membrane is found to have highly strong anti-acid-base properties, and it is more suitable than polymeric membrane while using for backwash and chemical cleaning. This study is based upon the treatment of Cutting Fluid wastewater, as the Cutting Fluid is widely used in the cutting equipment. However, the Cutting Fluid wastewater is very difficult to treat. In this study, the ceramic membrane was used and combine with of MBR system to treat the Cutting Fluid wastewater. In this present study, different kind of chemical coagulants have been utilized for pretreatment purpose in order to get the supernatant and simultaneously this wastewater (supernatant) was treated by MBR process. Nevertheless, ceramic membrane has three advantages such as high mechanical strength, drug resistance and reuse. During the experiment, the backwash technique was used for every interval of 10 minutes in order to avoid fouling of the membrane. In this study, during pretreatment the Chemical Oxygen Demand (COD) removal efficiency was found to be 71-86% and oil removal efficiency was analyzed to be 83-92%. This pretreatment study suggests that it is quiet effective methodology to reduce COD and oil concentration. Finally, In the MBR system when the HRT is more than 7.5 hour, the COD removal efficiency was found to be 87-93% and could achieve 100% oil removal efficiency. Coagulation test series were seen in Refs coagulants for the treatment of wastewater containing cutting oil with better oil and COD removal efficiency. The results also showed that the oil removal efficiency in the MBR system could reduce the oil content to less than 1 mg / L when the oil quality was 126 mg / L. Therefore, in this paper, the performance of membrane bioreactor by utilizing ceramic membrane has been demonstrated for treatment of Cutting Fluid wastewater.

Keywords: membrane bioreactor, cutting fluid, oil, chemical oxygen demand

Procedia PDF Downloads 297
1739 The Effects of Globalization on Health: A Case of Kenyatta National Hospital Healthcare Services

Authors: S. Ithai, A. Oloo

Abstract:

The emergence of globalization has cultivated an international consensus that without economic development; it is very unlikely that a country may realize social or political development. It is equally important to note that the economic effect on social development automatically influence the country healthcare services as healthcare systems are improved and adopted. For decades and before 1980's, the colonial and the Governments of Kenya had pursued a goal to provide free healthcare services to its citizen with minimal success; but as population increased, this endeavor became almost a mirage. The challenge called for a change of strategy with introduction of cost sharing which also could not guarantee sustainability of healthcare services in the country due to increased number of poor people and poverty. An involvement of multisectral approach to provision of health individual, collaboration and adoption of all dimensions through globalization provides a ray of hope to not only economic, political and social development but also guaranteed equitable and reliable healthcare systems in Kenya and specifically referral healthcare services at KNH. With the advent of globalization, KNH has made positive strides that have guaranteed patients with reliable healthcare services. These include increased donor funding, collaboration levels, training and research as well as enhanced the hospital relations with international partners. During this period, the hospital has increased number of local doctors and nurses, enhanced transfer of skills, innovations and technologies which are driving forces to quality and efficient healthcare services. The period has also brought in challenges for the hospital which include increased competition, attraction of qualified nurses and doctors to international are some the issues that have made the hospital to spend more resources in research and development in order to stay afloat. This paper reveals the link between globalization and healthcare and its influence on institution policy choice. However, the process is not expected to take place automatically without institutional initiatives if KNH is to reap the benefits of globalization. KNH need to make use of the existing infrastructure, human resources and donor confidence, the opportunities that are indeed important in propelling KNH toward Vision 2030 and achieving the desired Millennium Development Goals (MDGs).

Keywords: globalization, Kenyatta National Hospital, native, healthcare

Procedia PDF Downloads 326
1738 Modelling and Control of Milk Fermentation Process in Biochemical Reactor

Authors: Jožef Ritonja

Abstract:

The biochemical industry is one of the most important modern industries. Biochemical reactors are crucial devices of the biochemical industry. The essential bioprocess carried out in bioreactors is the fermentation process. A thorough insight into the fermentation process and the knowledge how to control it are essential for effective use of bioreactors to produce high quality and quantitatively enough products. The development of the control system starts with the determination of a mathematical model that describes the steady state and dynamic properties of the controlled plant satisfactorily, and is suitable for the development of the control system. The paper analyses the fermentation process in bioreactors thoroughly, using existing mathematical models. Most existing mathematical models do not allow the design of a control system for controlling the fermentation process in batch bioreactors. Due to this, a mathematical model was developed and presented that allows the development of a control system for batch bioreactors. Based on the developed mathematical model, a control system was designed to ensure optimal response of the biochemical quantities in the fermentation process. Due to the time-varying and non-linear nature of the controlled plant, the conventional control system with a proportional-integral-differential controller with constant parameters does not provide the desired transient response. The improved adaptive control system was proposed to improve the dynamics of the fermentation. The use of the adaptive control is suggested because the parameters’ variations of the fermentation process are very slow. The developed control system was tested to produce dairy products in the laboratory bioreactor. A carbon dioxide concentration was chosen as the controlled variable. The carbon dioxide concentration correlates well with the other, for the quality of the fermentation process in significant quantities. The level of the carbon dioxide concentration gives important information about the fermentation process. The obtained results showed that the designed control system provides minimum error between reference and actual values of carbon dioxide concentration during a transient response and in a steady state. The recommended control system makes reference signal tracking much more efficient than the currently used conventional control systems which are based on linear control theory. The proposed control system represents a very effective solution for the improvement of the milk fermentation process.

Keywords: biochemical reactor, fermentation process, modelling, adaptive control

Procedia PDF Downloads 114
1737 Structural Development and Multiscale Design Optimization of Additively Manufactured Unmanned Aerial Vehicle with Blended Wing Body Configuration

Authors: Malcolm Dinovitzer, Calvin Miller, Adam Hacker, Gabriel Wong, Zach Annen, Padmassun Rajakareyar, Jordan Mulvihill, Mostafa S.A. ElSayed

Abstract:

The research work presented in this paper is developed by the Blended Wing Body (BWB) Unmanned Aerial Vehicle (UAV) team, a fourth-year capstone project at Carleton University Department of Mechanical and Aerospace Engineering. Here, a clean sheet UAV with BWB configuration is designed and optimized using Multiscale Design Optimization (MSDO) approach employing lattice materials taking into consideration design for additive manufacturing constraints. The BWB-UAV is being developed with a mission profile designed for surveillance purposes with a minimum payload of 1000 grams. To demonstrate the design methodology, a single design loop of a sample rib from the airframe is shown in details. This includes presentation of the conceptual design, materials selection, experimental characterization and residual thermal stress distribution analysis of additively manufactured materials, manufacturing constraint identification, critical loads computations, stress analysis and design optimization. A dynamic turbulent critical load case was identified composed of a 1-g static maneuver with an incremental Power Spectral Density (PSD) gust which was used as a deterministic design load case for the design optimization. 2D flat plate Doublet Lattice Method (DLM) was used to simulate aerodynamics in the aeroelastic analysis. The aerodynamic results were verified versus a 3D CFD analysis applying Spalart-Allmaras and SST k-omega turbulence to the rigid UAV and vortex lattice method applied in the OpenVSP environment. Design optimization of a single rib was conducted using topology optimization as well as MSDO. Compared to a solid rib, weight savings of 36.44% and 59.65% were obtained for the topology optimization and the MSDO, respectively. These results suggest that MSDO is an acceptable alternative to topology optimization in weight critical applications while preserving the functional requirements.

Keywords: blended wing body, multiscale design optimization, additive manufacturing, unmanned aerial vehicle

Procedia PDF Downloads 345
1736 An Experiment with Science Popularization in Rural Schools of Sehore District in Madhya Pradesh, India

Authors: Peeyush Verma, Anil Kumar, Anju Rawlley, Chanchal Mehra

Abstract:

India's school-going population is largely served by an educational system that is, in most rural parts, stuck with methods that emphasize rote learning, endless examinations, and monotonous classroom activities. Rural government schools are generally seen as having poor infrastructure, poor support system and low motivation for teaching as well as learning. It was experienced during the survey of this project that there is lesser motivation of rural boys and girls to attend their schools and still less likely chances to study science, tabooed as “difficult”. An experiment was conducted with the help of Rural Knowledge Network Project through Department of Science and Technology, Govt of India in five remote villages of Sehore District in Madhya Pradesh (India) during 2012-2015. These schools are located about 50-70 Km away from Bhopal, the capital of Madhya Pradesh and can distinctively qualify as average rural schools. Three tier methodology was adapted to unfold the experiment. In first tier randomly selected boys and girls from these schools were taken to a daylong visit to the Regional Science Centre located in Bhopal. In second tier, randomly selected half of those who visited earlier were again taken to the Science Centre to make models of Science. And in third tier, all the boys and girls studying science were exposed to video lectures and study material through web. The results have shown an interesting face towards learning science among youths in rural schools through peer learning or incremental learning. The students who had little or no interest in learning science became good learners and queries started pouring in from the neighbourhood village as well as a few parents requested to take their wards in the project to learn science. The paper presented is a case study of the experiment conducted in five rural schools of Sehore District. It reflects upon the methodology of developing awareness and interest among students and finally engaging them in popularising science through peer-to-peer learning using incremental learning elements. The students, who had a poor perception about science initially, had changed their attitude towards learning science during the project period. The results of this case, however, cannot be generalised unless replicated in the same setting elsewhere.

Keywords: popularisation of science, science temper, incremental learning, peer-to-peer learning

Procedia PDF Downloads 296
1735 The Enhancement of Target Localization Using Ship-Borne Electro-Optical Stabilized Platform

Authors: Jaehoon Ha, Byungmo Kang, Kilho Hong, Jungsoo Park

Abstract:

Electro-optical (EO) stabilized platforms have been widely used for surveillance and reconnaissance on various types of vehicles, from surface ships to unmanned air vehicles (UAVs). EO stabilized platforms usually consist of an assembly of structure, bearings, and motors called gimbals in which a gyroscope is installed. EO elements such as a CCD camera and IR camera, are mounted to a gimbal, which has a range of motion in elevation and azimuth and can designate and track a target. In addition, a laser range finder (LRF) can be added to the gimbal in order to acquire the precise slant range from the platform to the target. Recently, a versatile functionality of target localization is needed in order to cooperate with the weapon systems that are mounted on the same platform. The target information, such as its location or velocity, needed to be more accurate. The accuracy of the target information depends on diverse component errors and alignment errors of each component. Specially, the type of moving platform can affect the accuracy of the target information. In the case of flying platforms, or UAVs, the target location error can be increased with altitude so it is important to measure altitude as precisely as possible. In the case of surface ships, target location error can be increased with obliqueness of the elevation angle of the gimbal since the altitude of the EO stabilized platform is supposed to be relatively low. The farther the slant ranges from the surface ship to the target, the more extreme the obliqueness of the elevation angle. This can hamper the precise acquisition of the target information. So far, there have been many studies on EO stabilized platforms of flying vehicles. However, few researchers have focused on ship-borne EO stabilized platforms of the surface ship. In this paper, we deal with a target localization method when an EO stabilized platform is located on the mast of a surface ship. Especially, we need to overcome the limitation caused by the obliqueness of the elevation angle of the gimbal. We introduce a well-known approach for target localization using Unscented Kalman Filter (UKF) and present the problem definition showing the above-mentioned limitation. Finally, we want to show the effectiveness of the approach that will be demonstrated through computer simulations.

Keywords: target localization, ship-borne electro-optical stabilized platform, unscented kalman filter

Procedia PDF Downloads 500
1734 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data

Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene

Abstract:

Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.

Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging

Procedia PDF Downloads 257
1733 Best-Performing Color Space for Land-Sea Segmentation Using Wavelet Transform Color-Texture Features and Fusion of over Segmentation

Authors: Seynabou Toure, Oumar Diop, Kidiyo Kpalma, Amadou S. Maiga

Abstract:

Color and texture are the two most determinant elements for perception and recognition of the objects in an image. For this reason, color and texture analysis find a large field of application, for example in image classification and segmentation. But, the pioneering work in texture analysis was conducted on grayscale images, thus discarding color information. Many grey-level texture descriptors have been proposed and successfully used in numerous domains for image classification: face recognition, industrial inspections, food science medical imaging among others. Taking into account color in the definition of these descriptors makes it possible to better characterize images. Color texture is thus the subject of recent work, and the analysis of color texture images is increasingly attracting interest in the scientific community. In optical remote sensing systems, sensors measure separately different parts of the electromagnetic spectrum; the visible ones and even those that are invisible to the human eye. The amounts of light reflected by the earth in spectral bands are then transformed into grayscale images. The primary natural colors Red (R) Green (G) and Blue (B) are then used in mixtures of different spectral bands in order to produce RGB images. Thus, good color texture discrimination can be achieved using RGB under controlled illumination conditions. Some previous works investigate the effect of using different color space for color texture classification. However, the selection of the best performing color space in land-sea segmentation is an open question. Its resolution may bring considerable improvements in certain applications like coastline detection, where the detection result is strongly dependent on the performance of the land-sea segmentation. The aim of this paper is to present the results of a study conducted on different color spaces in order to show the best-performing color space for land-sea segmentation. In this sense, an experimental analysis is carried out using five different color spaces (RGB, XYZ, Lab, HSV, YCbCr). For each color space, the Haar wavelet decomposition is used to extract different color texture features. These color texture features are then used for Fusion of Over Segmentation (FOOS) based classification; this allows segmentation of the land part from the sea one. By analyzing the different results of this study, the HSV color space is found as the best classification performance while using color and texture features; which is perfectly coherent with the results presented in the literature.

Keywords: classification, coastline, color, sea-land segmentation

Procedia PDF Downloads 230
1732 Microscale observations of a gas cell wall rupture in bread dough during baking and confrontation to 2/3D Finite Element simulations of stress concentration

Authors: Kossigan Bernard Dedey, David Grenier, Tiphaine Lucas

Abstract:

Bread dough is often described as a dispersion of gas cells in a continuous gluten/starch matrix. The final bread crumb structure is strongly related to gas cell walls (GCWs) rupture during baking. At the end of proofing and during baking, part of the thinnest GCWs between expanding gas cells is reduced to a gluten film of about the size of a starch granule. When such size is reached gluten and starch granules must be considered as interacting phases in order to account for heterogeneities and appropriately describe GCW rupture. Among experimental investigations carried out to assess GCW rupture, no experimental work was performed to observe the GCW rupture in the baking conditions at GCW scale. In addition, attempts to numerically understand GCW rupture are usually not performed at the GCW scale and often considered GCWs as continuous. The most relevant paper that accounted for heterogeneities dealt with the gluten/starch interactions and their impact on the mechanical behavior of dough film. However, stress concentration in GCW was not discussed. In this study, both experimental and numerical approaches were used to better understand GCW rupture in bread dough during baking. Experimentally, a macro-scope placed in front of a two-chamber device was used to observe the rupture of a real GCW of 200 micrometers in thickness. Special attention was paid in order to mimic baking conditions as far as possible (temperature, gas pressure and moisture). Various differences in pressure between both sides of GCW were applied and different modes of fracture initiation and propagation in GCWs were observed. Numerically, the impact of gluten/starch interactions (cohesion or non-cohesion) and rheological moduli ratio on the mechanical behavior of GCW under unidirectional extension was assessed in 2D/3D. A non-linear viscoelastic and hyperelastic approach was performed to match the finite strain involved in GCW during baking. Stress concentration within GCW was identified. Simulated stresses concentration was discussed at the light of GCW failure observed in the device. The gluten/starch granule interactions and rheological modulus ratio were found to have a great effect on the amount of stress possibly reached in the GCW.

Keywords: dough, experimental, numerical, rupture

Procedia PDF Downloads 108
1731 Machine Learning in Gravity Models: An Application to International Recycling Trade Flow

Authors: Shan Zhang, Peter Suechting

Abstract:

Predicting trade patterns is critical to decision-making in public and private domains, especially in the current context of trade disputes among major economies. In the past, U.S. recycling has relied heavily on strong demand for recyclable materials overseas. However, starting in 2017, a series of new recycling policies (bans and higher inspection standards) was enacted by multiple countries that were the primary importers of recyclables from the U.S. prior to that point. As the global trade flow of recycling shifts, some new importers, mostly developing countries in South and Southeast Asia, have been overwhelmed by the sheer quantities of scrap materials they have received. As the leading exporter of recyclable materials, the U.S. now has a pressing need to build its recycling industry domestically. With respect to the global trade in scrap materials used for recycling, the interest in this paper is (1) predicting how the export of recyclable materials from the U.S. might vary over time, and (2) predicting how international trade flows for recyclables might change in the future. Focusing on three major recyclable materials with a history of trade, this study uses data-driven and machine learning (ML) algorithms---supervised (shrinkage and tree methods) and unsupervised (neural network method)---to decipher the international trade pattern of recycling. Forecasting the potential trade values of recyclables in the future could help importing countries, to which those materials will shift next, to prepare related trade policies. Such policies can assist policymakers in minimizing negative environmental externalities and in finding the optimal amount of recyclables needed by each country. Such forecasts can also help exporting countries, like the U.S understand the importance of healthy domestic recycling industry. The preliminary result suggests that gravity models---in addition to particular selection macroeconomic predictor variables--are appropriate predictors of the total export value of recyclables. With the inclusion of variables measuring aspects of the political conditions (trade tariffs and bans), predictions show that recyclable materials are shifting from more policy-restricted countries to less policy-restricted countries in international recycling trade. Those countries also tend to have high manufacturing activities as a percentage of their GDP.

Keywords: environmental economics, machine learning, recycling, international trade

Procedia PDF Downloads 153
1730 Comparative Analysis of Fused Deposition Modeling and Binding-Jet 3D Printing Technologies

Authors: Mohd Javaid, Shahbaz Khan, Abid Haleem

Abstract:

Purpose: Large numbers of 3D printing technologies are now available for sophisticated applications in different fields. Additive manufacturing has established its dominance in design, development, and customisation of the product. In the era of developing technologies, there is a need to identify the appropriate technology for different application. In order to fulfil this need, two widely used printing technologies such as Fused Deposition Modeling (FDM), and Binding-Jet 3D Printing are compared for effective utilisation in the current scenario for different applications. Methodology: Systematic literature review conducted for both technologies with applications and associated factors enabling for the same. Appropriate MCDM tool is used to compare critical factors for both the technologies. Findings: Both technologies have their potential and capabilities to provide better direction to the industry. Additionally, this paper is helpful to develop a decision support system for the proper selection of technologies according to their continuum of applications and associated research and development capability. The vital issue is raw materials, and research-based material development is key to the sustainability of the developed technologies. FDM is a low-cost technology which provides high strength product as compared to binding jet technology. Researcher and companies can take benefits of this study to achieve the required applications in lesser resources. Limitations: Study has undertaken the comparison with the opinion of experts, which may not always be free from bias, and some own limitations of each technology. Originality: Comparison between these technologies will help to identify best-suited technology as per the customer requirements. It also provides development in this different field as per their extensive capability where these technologies can be successfully adopted. Conclusion: FDM and binding jet technology play an active role in industrial development. These help to assist the customisation and production of personalised parts cost-effectively. So, there is a need to understand how these technologies can provide these developments rapidly. These technologies help in easy changes or in making revised versions of the product, which is not easily possible in the conventional manufacturing system. High machine cost, the requirement of skilled human resources, low surface finish, and mechanical strength of product and material changing option is the main limitation of this technology. However, these limitations vary from technology to technology. In the future, these technologies are to be commercially viable for efficient usage in direct manufacturing of varied parts.

Keywords: 3D printing, comparison, fused deposition modeling, FDM, binding jet technology

Procedia PDF Downloads 93
1729 The Influence of Alvar Aalto on the Early Work of Álvaro Siza

Authors: Eduardo Jorge Cabral dos Santos Fernandes

Abstract:

The expression ‘Porto School’, usually associated with an educational institution, the School of Fine Arts of Porto, is applied for the first time with the sense of an architectural trend by Nuno Portas in a text published in 1983. The expression is used to characterize a set of works by Porto architects, in which common elements are found, namely the desire to reuse languages and forms of the German and Dutch rationalism of the twenties, using the work of Alvar Aalto as a mediation for the reinterpretation of these models. In the same year, Álvaro Siza classifies the Finnish architect as a miscegenation agent who transforms experienced models and introduces them to different realities in a text published in Jornal de Letras, Artes e Ideias. The influence of foreign models and their adaptation to the context has been a recurrent theme in Portuguese architecture, which finds important contributions in the writings of Alexandre Alves Costa, at this time. However, the identification of these characteristics in Siza’s work is not limited to the Portuguese theoretical production: it is the recognition of this attitude towards the context that leads Kenneth Frampton to include Siza in the restricted group of architects who embody Critical Regionalism (in his book Modern architecture: a critical history). For Frampton, his work focuses on the territory and on the consequences of the intervention in the context, viewing architecture as a tectonic fact rather than a series of scenographic episodes and emphasizing site-specific aspects (topography, light, climate). Therefore, the motto of this paper is the dichotomous opposition between foreign influences and adaptation to the context in the early work of Álvaro Siza (designed in the sixties) in which the influence (theoretical, methodological, and formal) of Alvar Aalto manifests itself in the form and the language: the pool at Quinta da Conceição, the Seaside Pools and the Tea House (three works in Leça da Palmeira) and the Lordelo Cooperative (in Porto). This work is part of a more comprehensive project, which considers several case studies throughout the Portuguese architect's vast career, built in Portugal and abroad, in order to obtain a holistic view.

Keywords: Alvar Aalto, Álvaro Siza, foreign influences, adaptation to the context

Procedia PDF Downloads 1
1728 Analysing the Applicability of a Participatory Approach to Life Cycle Sustainability Assessment: Case Study of a Housing Estate Regeneration in London

Authors: Sahar Navabakhsh, Rokia Raslan, Yair Schwartz

Abstract:

Decision-making on regeneration of housing estates, whether to refurbish or re-build, has been mostly triggered by economic factors. To enable sustainable growth, it is vital that environmental and social impacts of different scenarios are also taken into account. The methodology used to include all the three sustainable development pillars is called Life Cycle Sustainability Assessment (LCSA), which comprises of Life Cycle Assessment (LCA) for the assessment of environmental impacts of buildings. Current practice of LCA is regularly conducted post design stage and by sustainability experts. Not only is undertaking an LCA at this stage less effective, but issues such as the limited scope for the definition and assessment of environmental impacts, the implication of changes in the system boundary and the alteration of each of the variable metrics, employment of different Life Cycle Impact Assessment Methods and use of various inventory data for Life Cycle Inventory Analysis can result in considerably contrasting results. Given the niche nature and scarce specialist domain of LCA of buildings, the majority of the stakeholders do not contribute to the generation or interpretation of the impact assessment, and the results can be generated and interpreted subjectively due to the mentioned uncertainties. For an effective and democratic assessment of environmental impacts, different stakeholders, and in particular the community and design team should collaborate in the process of data collection, assessment and analysis. This paper examines and evaluates a participatory approach to LCSA through the analysis of a case study of a housing estate in South West London. The study has been conducted throughout tier-based collaborative methods to collect and share data through surveys and co-design workshops with the community members and the design team as the main stakeholders. The assessment of lifecycle impacts is conducted throughout the process and has influenced the decision-making on the design of the Community Plan. The evaluation concludes better assessment transparency and outcome, alongside other socio-economic benefits of identifying and engaging the most contributive stakeholders in the process of conducting LCSA.

Keywords: life cycle assessment, participatory LCA, life cycle sustainability assessment, participatory processes, decision-making, housing estate regeneration

Procedia PDF Downloads 131
1727 Identifying Environmental Adaptive Genetic Loci in Caloteropis Procera (Estabragh): Population Genetics and Landscape Genetic Analyses

Authors: Masoud Sheidaei, Mohammad-Reza Kordasti, Fahimeh Koohdar

Abstract:

Calotropis procera (Aiton) W.T.Aiton, (Apocynaceae), is an economically and medicinally important plant species which is an evergreen, perennial shrub growing in arid and semi-arid climates, and can tolerate very low annual rainfall (150 mm) and a dry season. The plant can also tolerate temperature ran off 20 to30°C and is not frost tolerant. This plant species prefers free-draining sandy soils but can grow also in alkaline and saline soils.It is found at a range of altitudes from exposed coastal sites to medium elevations up to 1300 m. Due to morpho-physiological adaptations of C. procera and its ability to tolerate various abiotic stresses. This taxa can compete with desirable pasture species and forms dense thickets that interfere with stock management, particularly mustering activities. Caloteropis procera grows only in southern part of Iran where in comprises a limited number of geographical populations. We used different population genetics and r landscape analysis to produce data on geographical populations of C. procera based on molecular genetic study using SCoT molecular markers. First, we used spatial principal components (sPCA), as it can analyze data in a reduced space and can be used for co-dominant markers as well as presence / absence data as is the case in SCoT molecular markers. This method also carries out Moran I and Mantel tests to reveal spatial autocorrelation and test for the occurrence of Isolation by distance (IBD). We also performed Random Forest analysis to identify the importance of spatial and geographical variables on genetic diversity. Moreover, we used both RDA (Redundency analysis), and LFMM (Latent factor mixed model), to identify the genetic loci significantly associated with geographical variables. A niche modellng analysis was carried our to predict present potential area for distribution of these plants and also the area present by the year 2050. The results obtained will be discussed in this paper.

Keywords: population genetics, landscape genetic, Calotreropis procera, niche modeling, SCoT markers

Procedia PDF Downloads 77
1726 An Object-Oriented Modelica Model of the Water Level Swell during Depressurization of the Reactor Pressure Vessel of the Boiling Water Reactor

Authors: Rafal Bryk, Holger Schmidt, Thomas Mull, Ingo Ganzmann, Oliver Herbst

Abstract:

Prediction of the two-phase water mixture level during fast depressurization of the Reactor Pressure Vessel (RPV) resulting from an accident scenario is an important issue from the view point of the reactor safety. Since the level swell may influence the behavior of some passive safety systems, it has been recognized that an assumption which at the beginning may be considered as a conservative one, not necessary leads to a conservative result. This paper discusses outcomes obtained during simulations of the water dynamics and heat transfer during sudden depressurization of a vessel filled up to a certain level with liquid water under saturation conditions and with the rest of the vessel occupied by saturated steam. In case of the pressure decrease e.g. due to the main steam line break, the liquid water evaporates abruptly, being a reason thereby, of strong transients in the vessel. These transients and the sudden emergence of void in the region occupied at the beginning by liquid, cause elevation of the two-phase mixture. In this work, several models calculating the water collapse and swell levels are presented and validated against experimental data. Each of the models uses different approach to calculate void fraction. The object-oriented models were developed with the Modelica modelling language and the OpenModelica environment. The models represent the RPV of the Integral Test Facility Karlstein (INKA) – a dedicated test rig for simulation of KERENA – a new Boiling Water Reactor design of Framatome. The models are based on dynamic mass and energy equations. They are divided into several dynamic volumes in each of which, the fluid may be single-phase liquid, steam or a two-phase mixture. The heat transfer between the wall of the vessel and the fluid is taken into account. Additional heat flow rate may be applied to the first volume of the vessel in order to simulate the decay heat of the reactor core in a similar manner as it is simulated at INKA. The comparison of the simulations results against the reference data shows a good agreement.

Keywords: boiling water reactor, level swell, Modelica, RPV depressurization, thermal-hydraulics

Procedia PDF Downloads 192