Search results for: thermal gradients
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3683

Search results for: thermal gradients

1223 Performance Evaluation of Vermiculite as Adsorbent Material for Solar-Assisted Air-Conditioning in Tropical Climate

Authors: Norhayati Mat Wajid, Abdul Murad Zainal Abidin, Hasila Jarimi, Kamaruzaman Sopian, Adnan Ibrahim, Ahmad Fazlizan, Afif Safwan

Abstract:

Solar-adsorption air-conditioning system (SADCS) is an alternative to the conventional vapor compression system (VCS). SADCS have advantages over VCS system, such as 1) a green cooling technology which utilizes solar energy to drive the adsorption/desorption cycle, 2) can be operated using green refrigerant HFC free pure water, 3) mechanically simpler, and 4) lower operating noise level since it has no moving parts other than the magnetic valves. Several advancements have been achieved in these fields in the last decade, but further research is still needed to escalate this technology to a practical level. Hence, this paper presents a literature survey and a review that add insights into the current state-of-the-art of SADCS technologies with emphasis on the practical researches that were conducted at the laboratory scale and commercial level. In this paper, the performance evaluation of vermiculite as adsorbent material for SADCS in tropical climate discussed in comparison to other adsorbent material such as silica gel.

Keywords: adsorption cooling, solar-assisted cooling, HVAC, tropical climate, solar thermal

Procedia PDF Downloads 157
1222 Model Evaluation of Nanosecond, High-Intensity Electric Pulses Induced Cellular Apoptosis

Authors: Jiahui Song, Ravindra Joshi

Abstract:

High-intensity, nanosecond, pulsed electric fields have been shown to be useful non-thermal tools capable of producing a variety of specific cellular responses. While reversible and temporary changes are often desired based on electromanipulation, irreversible effects can also be important objectives. These include elimination of tumor cells and bacterial decontamination. A simple model-based rate-equation treatment of the various cellular biochemical processes was used to qualitatively predict the pulse number-dependent caspase activation and cell survival trends. The model incorporated the caspase-8 associated extrinsic pathway, the delay inherent in its activation, cytochrome c release, and the internal feedback mechanism between caspase-3 and Bid. Results were roughly in keeping with the experimental cell-survival data. A pulse-number threshold was predicted followed by a near-exponential fall-off. The intrinsic pathway was shown to be much weaker as compared to the extrinsic mechanism for electric pulse induced cell apoptosis. Also, delays of about an hour are predicted for detectable molecular concentration increases following electrical pulsing.

Keywords: apoptosis, cell survival, model, pathway

Procedia PDF Downloads 240
1221 Two Coordination Polymers Synthesized from Various N-Donor Clusters Spaced by Terephtalic Acid for Efficient Photocatalytic Degradation of Ibuprofen in Water under Solar and Artificial Irradiation

Authors: Amina Adala, Nadra Debbache, Tahar Sehili

Abstract:

Coordination polymers and uniformly {[Zn(II)(BIPY)(Pht)]n} (1), {[Zn (HYD)(Pht)]n} (2) (BIPY = 4,4’ bipyridine, Pht = terephtalic acid, HYD = 8-hydroxyquinoline) have been successfully synthesized by a hydrothermal process using aqueous zinc solution. The as-prepared compounds phases were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy, UV-visible spectroscopy, thermogravimetric analysis (TGA), and the electrochemistry study by the voltammetry cyclic. The results showed a crystalline phase for CP1 however, CP2 requires recrystallization; the FTIR showed the presence of characteristic bands of all ligands; besides that, TGA shows thermal stability up to 300°C. The electrochemistry study showed a good charge transfer between the ligands and Zn metal for the two components. UV-Vis measurement showed strong absorption in a wide range from UV to visible light with a band gap of 2.69 eV for CP1 and 2.56 eV for CP2, smaller than that of ZnO. This represents an alternative to using ZnO. The Ibuprofen IBP decomposition kinetics of 5.10⁻⁵ mol.L⁻¹ under solar and artificial light were studied for different irradiation conditions. Good photocatalytic properties were observed due to their high surface area.

Keywords: metal-organic frameworks, photocatalysis, photodegradation, organic pollutant, ibuprofen

Procedia PDF Downloads 89
1220 Properties of Modified Dry Masonry Mixtures for Effective Masonry Units

Authors: Vyacheslav S. Semenov, Tamara A. Rozovskaya

Abstract:

The paper is devoted to the problem of the development of dry light-weight mixtures with hollow ceramics microspheres (CMS) for masonry works. For the one-layer fencing structures including effective masonry units, the use of “warm” masonry mortars is necessary. The used light-weight masonry mortars do not provide the brand strength and thermal uniformity of the fencing structures because of high average density. The CMS are effective light-weight aggregate for such mortars. The influence of the dosage of CMS on the physics-and-mechanics parameters and the technological properties of the masonry mortars were studied. The optimal mixture compositions have been obtained and their main properties have been determined. The influence of an air-entraining admixture and redispersible polymer powders on the average density and physics-and-mechanics parameters of the masonry mortars were studied. The optimal compositions of light-weight dry masonry mixtures with CMS have been suggested.

Keywords: dry mortar mixtures, light-weight dry mixtures, hollow ceramics microspheres, masonry mortars, “warm” mortars, air-entraining admixture, redispersible polymer powders

Procedia PDF Downloads 508
1219 Crystal Nucleation in 3D Printed Polymer Scaffolds in Tissue Engineering

Authors: Amani Alotaibi

Abstract:

3D printing has emerged as a pivotal technique for scaffold development, particularly in the field of bone tissue regeneration, due to its ability to customize scaffolds to fit complex geometries of bone defects. Among the various methods available, fused deposition modeling (FDM) is particularly promising as it avoids the use of solvents or toxic chemicals during fabrication. This study investigates the effects of three key parameters, extrusion temperature, screw rotational speed, and deposition speed, on the crystallization and mechanical properties of polycaprolactone (PCL) scaffolds. Three extrusion temperatures (70°C, 80°C, and 90°C), three screw speeds (10 RPM, 15 RPM, and 20 RPM), and three deposition speeds (8 mm/s, 10 mm/s, and 12 mm/s) were evaluated. The scaffolds were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and tensile testing to assess changes in crystallinity and mechanical properties. Additionally, the scaffolds were analyzed for crystal size and biocompatibility. The results demonstrated that increasing the extrusion temperature to 80°C, combined with a screw speed of 15 RPM and a deposition speed of 10 mm/s, significantly improved the crystallinity, compressive modulus, and thermal resistance of the PCL scaffolds. These findings suggest that by fine-tuning basic 3D printing parameters, it is possible to modulate the structural and mechanical properties of the scaffold, thereby enhancing its suitability for bone tissue regeneration.

Keywords: 3D printing, polymer, scaffolds, tissue engineering, crystallization

Procedia PDF Downloads 19
1218 Mechanical and Barrier Properties of Cellulose Fibers/HNT Reinforced Epoxy Nanocomposites

Authors: H. Alamri

Abstract:

Natural fiber reinforced composites have attracted researchers for their desirable properties of toughness, high modulus, low density, recyclability, and renewability. In fact, the use of natural fibers in polymer composites has the potential to produce materials with higher specific strength and specific modulus due of their low density. Likewise, polymer-nano-filler composites have been widely investigated for their unique and significant improvement in strength, modulus, impact strength, barrier properties, heat resistance and thermal stability. In this paper, The addition of halloysite nanotubes (HNTs) with three different weight percentages (1%, 3% and 5%) on enhancing barrier and flexural strength and modulus of cellulose-fiber (CF) /epoxy composites after water treatment for six months was studied. Results indicated that water uptake decreased as HNT content increased. The presence of HNT improved flexural strength and flexural modulus of CF/epoxy composites. SEM results showed damages in fiber-matrix interfacial bonding due to water absorption. The addition of HNTs was found to enhance to adhesion between fibers and matrix.

Keywords: mechanical properties, epoxy, nanocomposites, halloysite nanotubes

Procedia PDF Downloads 330
1217 Experimental Investigation on Utilization of Waste Materials in Fly Ash Brick

Authors: S. Southamirajan, D. Dhavashankaran

Abstract:

Fly ash is one of the major residues generated during combustion of coal in thermal power plants. Fly ash brick technology is the process of converting industrial waste materials into quality building material. Another issue in earth is dumping of the Bagasse ash, rice husk ash and copper slag waste. In a growing country like India a huge amount of fly ash waste materials are polluting the environment. The necessity of recycling the materials play a big role in the development of the safe and non- polluted earth. Fly ash, lime, gypsum and quarry dust are used as a replacement material for fly ash. The fly ash was replaced by the Bagasse ash and rice husk ash in the proportion of 2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 20%, 22.5%, 25%27.5% and 30%. Two types of fly ash bricks were casted. One type is Bagasse ash replaced fly ash and another type is rice husk ash replaced fly ash bricks then copper slag are partially replaced in quarry dust. The prepared bricks are cured for 7 days and 28 days and dried in regular temperature. The mechanical and durability properties of optimum percentages of Bagasse ash and rice husk ash replaced fly ash bricks. The use of Bagasse ash and rice husk ash provides for considerable value – added utilization of Bagasse and rice husk in bricks and significant reductions in the production of greenhouse gases by the cement industry.

Keywords: Bagasse Ash, Fly ash, bricks, mechanical & durability properties, Rice husk ash

Procedia PDF Downloads 195
1216 Vulnerability Analysis for Risk Zones Boundary Definition to Support a Decision Making Process at CBRNE Operations

Authors: Aliaksei Patsekha, Michael Hohenberger, Harald Raupenstrauch

Abstract:

An effective emergency response to accidents with chemical, biological, radiological, nuclear, or explosive materials (CBRNE) that represent highly dynamic situations needs immediate actions within limited time, information and resources. The aim of the study is to provide the foundation for division of unsafe area into risk zones according to the impact of hazardous parameters (heat radiation, thermal dose, overpressure, chemical concentrations). A decision on the boundary values for three risk zones is based on the vulnerability analysis that covered a variety of accident scenarios containing the release of a toxic or flammable substance which either evaporates, ignites and/or explodes. Critical values are selected for the boundary definition of the Red, Orange and Yellow risk zones upon the examination of harmful effects that are likely to cause injuries of varying severity to people and different levels of damage to structures. The obtained results provide the basis for creating a comprehensive real-time risk map for a decision support at CBRNE operations.

Keywords: boundary values, CBRNE threats, decision making process, hazardous effects, vulnerability analysis, risk zones

Procedia PDF Downloads 213
1215 Efficient Energy Management: A Novel Technique for Prolonged and Persistent Automotive Engine

Authors: Chakshu Baweja, Ishaan Prakash, Deepak Giri, Prithwish Mukherjee, Herambraj Ashok Nalawade

Abstract:

The need to prevent and control rampant and indiscriminate usage of energy in present-day realm on earth has motivated active research efforts aimed at understanding of controlling mechanisms leading to sustained energy. Although much has been done but complexity of the problem has prevented a complete understanding due to nonlinear interaction between flow, heat and mass transfer in terrestrial environment. Therefore, there is need for a systematic study to clearly understand mechanisms controlling energy-spreading phenomena to increase a system’s efficiency. The present work addresses the issue of sustaining energy and proposes a devoted technique of optimizing energy in the automotive domain. The proposed method focus on utilization of the mechanical and thermal energy of an automobile IC engine by converting and storing energy due to motion of a piston in form of electrical energy. The suggested technique utilizes piston motion of the engine to generate high potential difference capable of working as a secondary power source. This is achieved by the use of a gear mechanism and a flywheel.

Keywords: internal combustion engine, energy, electromagnetic induction, efficiency, gear ratio, hybrid vehicle, engine shaft

Procedia PDF Downloads 480
1214 Numerical Design and Characterization of MOVPE Grown Nitride Based Semiconductors

Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski

Abstract:

In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S are addressed. The aim of this study was to design the optimal fluid flow and thermal conditions for obtaining the most homogeneous product. Since there are many agents influencing reactions on the crystal growth area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. Variations of process pressure and hydrogen mass flow rates have been considered. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, detailed 3D modeling has been used to get an insight of the process conditions. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in the numerical model allows to calculate the growth rate of the substrate. The present approach has been applied to enhance the performance of AIX-200/4RF-S reactor.

Keywords: computational fluid dynamics, finite volume method, epitaxial growth, gallium nitride

Procedia PDF Downloads 458
1213 Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou

Authors: Hankun Lin, Yiqiang Xiao, Qiaosheng Zhan

Abstract:

Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building façade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building façade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs’ effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the façade on 2nd-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the façade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs.

Keywords: outdoor shading devices, hot-humid area, temperature, ventilation, measurement, CFD

Procedia PDF Downloads 450
1212 Computational Analysis of the Scaling Effects on the Performance of an Axial Compressor

Authors: Junting Xiang, Jörg Uwe Schlüter, Fei Duan

Abstract:

The miniaturization of gas turbines promises many advantages. Miniature gas turbines can be used for local power generation or the propulsion of small aircraft, such as UAV and MAV. However, experience shows that the miniaturization of conventional gas turbines, which are optimized at their current large size, leads to a substantial loss of efficiency and performance at smaller scales. This may be due to a number of factors, such as the Reynolds-number effect, the increased heat transfer, and manufacturing tolerances. In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its size change. The NASA stage 35 compressors are selected as the configuration in this study and Computational Fluid Dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study.

Keywords: axial compressor, CFD, heat transfer, miniature gas turbines, Reynolds number

Procedia PDF Downloads 420
1211 Improved Hydrogen Sorption Kinetics of Compacted LiNH₂-LiH Based Small Hydrogen Storage Tank by Doping with TiF₄ and MWCNTs

Authors: Chongsutthamani Sitthiwet, Praphatsorn Plerdsranoy, Palmarin Dansirima, Priew Eiamlamai, Oliver Utke, Rapee Utke

Abstract:

Hydrogen storage tank containing compacted LiNH2-LiH is developed by doping with TiF₄ and multi-walled nanotubes (MWCNTs) to study kinetic properties. Transition metal-based catalyst (TiF₄) provides the catalytic effect on hydrogen dissociation/recombination, while MWCNTs benefit thermal conductivity and hydrogen permeability during de/rehydrogenation process. The Enhancement of dehydrogenation kinetics is observed from the single-step reaction at a narrower and lower temperature range of 150-350 ºC (100 ºC lower than the compacted LiNH₂-LiH without additives) as well as long plateau temperature and constant hydrogen flow rate (50 SCCM) up to 30 min during desorption. Besides, Hydrogen contents de/absorbed during 5-6 cycles increase from 1.90-2.40 to 3.10-4.70 wt. % H₂ (from 29 to up to 80 % of theoretical capacity). In the process, Li₅TiN₃ is detected upon cycling probably absorbs NH₃ to form Li₅TiN₃(NH₃)x, which is favoring hydrogen sorption properties of the LiNH₂-LiH system. Importantly, the homogeneous reaction mechanisms and performances are found at all positions inside the tank of compacted LiNH₂-LiH doped with TiF₄ and MWCNTs.

Keywords: carbon, hydride, kinetics, dehydrogenation

Procedia PDF Downloads 149
1210 The Impact of β Nucleating Agents and Carbon-Based Nanomaterials on Water Vapor Permeability of Polypropylene Composite Films

Authors: Glykeria A. Visvini, George Ν. Mathioudakis, Amaia Soto Beobide, George A. Voyiatzis

Abstract:

Polymer nanocomposites are materials in which a polymer matrix is reinforced with nanoscale inclusions, such as nanoparticles, nanoplates, or nanofibers. These nanoscale inclusions can significantly enhance the mechanical, thermal, electrical, and other properties of the polymer matrix, making them attractive for a wide range of industrial applications. These properties can be tailored by adjusting the type and the concentration of the nanoinclusions, which provides a high degree of flexibility in their design and development. An important property that polymeric membranes can exhibit is water vapor permeability (WVP). This can be accomplished by various methods, including the incorporation of micro/nano-fillers into the polymer matrix. In this way, a micro/nano-pore network can be formed, allowing water vapor to permeate through the membrane. At the same time, the membrane can be stretched uni- or bi-axially, creating aligned or cross-linked micropores in the composite, respectively, which can also increase the WVP. Nowadays, in industry, stretched films reinforced with CaCO3 develop micro-porosity sufficient to give them breathability characteristics. Carbon-based nanomaterials, such as graphene oxide (GO), are tentatively expected to be able to effectively improve the WVP of corresponding composite polymer films. The presence in the GO structure of various functional oxidizing groups enhances its ability to attract and channel water molecules, exploiting the unique large surface area of graphene that allows the rapid transport of water molecules. Polypropylene (PP) is widely used in various industrial applications due to its desirable properties, including good chemical resistance, excellent thermal stability, low cost, and easy processability. The specific properties of PP are highly influenced by its crystalline behavior, which is determined by its processing conditions. The development of the β-crystalline phase in PP, in combination with stretching, is anticipating improving the microporosity of the polymer matrix, thereby enhancing its WVP. The aim of present study is to create breathable PP composite membranes using carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNPs). Unlike traditional methods that rely on the drawing process to enhance the WVP of PP, this study intents to develop a low-cost approach using melt mixing with β-nucleating agents and carbon fillers to create highly breathable PP composite membranes. The study aims to investigate how the concentration of these additives affects the water vapor transport properties of the resulting PP films/membranes. The presence of β-nucleating agents and carbon fillers is expected to enhance β-phase growth in PP, while an alternation between β- and α-phase is expected to lead to improved microporosity and WVP. Our ambition is to develop highly breathable PP composite films with superior performance and at a lower cost compared to the benchmark. Acknowledgment: This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call «Special Actions "AQUACULTURE"-"INDUSTRIAL MATERIALS"-"OPEN INNOVATION IN CULTURE"» (project code: Τ6YBP-00337)

Keywords: carbon based nanomaterials, nanocomposites, nucleating agent, polypropylene, water vapor permeability

Procedia PDF Downloads 90
1209 Central Solar Tower Model

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

It is presented a model of two subsystems of Central Solar Tower to produce steam in applications to help in energy consumption. The first subsystem consists of 24 heliostats constructed of adaptive and mobile metal structures to track the apparent movement of the sun on its focus and covered by 96 layers of mirror of 150 mm at width and 220 mm at length, totaling an area of concentration of 3.2 m². Thereby obtaining optical parameters essential to reflection of sunlight by the reflector surface and absorption of this light by focus located in the light receiver, which is inserted in the second subsystem, which is at the top of a tower. The tower was built in galvanized iron able to support the absorber, and a gas cylinder to cool the equipment. The area illuminated by the sun was 9 x 10-2m2, yielding a concentration factor of 35.22. It will be shown the processes of manufacture and assembly of the Mini-Central Tower proposal, which has as main characteristics the construction and assembly facilities, in addition to reduced cost. Data of tests to produce water vapor parameters are presented and determined to diagnose the efficiency of the mini-solar central tower. It will be demonstrated the thermal, economic and material viability of the proposed system.

Keywords: solar oven, solar cooker, composite material, low cost, sustainable development

Procedia PDF Downloads 420
1208 Electrokinetics and Stability of Solder Powders in Aqueous Media

Authors: Terence Lucero F. Menor, Manolo G. Mena, Herman D. Mendoza

Abstract:

Solder pastes are widely used in creating mechanical, thermal and electrical connection between electronic components. Continued miniaturization of consumer electronics drives manufacturers to achieve smaller, lighter, and faster electronic packages at low cost. This faces them to the difficult challenge of dispensing solder pastes in extremely precise and repeatable manner. The most common problem in solder paste dispensing is the clogging of dispensers which results from agglomeration and settling of solder powders leading to increase on the effective particle size and uneven distribution of particles in the mixture. In this work, microelectrophoresis was employed to investigate the effect of pH and KNO₃ concentration on the electrokinetic behavior and stability of SAC305, PbSn5Ag2.5 and Sn powders in aqueous media. Results revealed that the electrokinetic behavior of the three types of solder powders are similar, which was attributed to high SnO₂ content on the surface of the particles. Electrokinetic measurements showed that the zeta potentials of the solder powders are highly dependent on pH and KNO₃ concentration with isoelectric points ranging from 3.5 to 5.5. Results were verified using stability tests.

Keywords: electrokinetic behavior, isoelectric point, solder powder, stability, surface analysis

Procedia PDF Downloads 233
1207 Development of Low-Cost Vibro-Acoustic, and Fire-Resistant, Insulation Material from Natural and Sustainable Sources

Authors: K. Nasir, S. Ahmad, A. Khan, H. Benkreira

Abstract:

The topic of the research is to develop sustainable fire-resistant materials for vibration and acoustic damping of structure and airborne noises from sustainable recycled materials and biodegradable binders. The paper reports, methods and techniques of enhancing fire resistive, vibration and acoustic properties of building insulation materials made from natural resources like wood and recycled materials like rubber and textile waste. The structures are designed to optimize the number, size and stratification of closed (heat insulating) and open (noise insulating) pores. The samples produced are tested for their heat and noise insulating properties, including vibration damping and their structural properties (airflow resistivity, porosity, tortuosity and elastic modulus). The structural properties are then used in theoretical models to check the acoustic insulation measurements. Initial data indicate that one layer of such material can yield as much as 18 times more damping, increasing the loss factor by 18%.

Keywords: fire resistant, vibration damping, acoustic material, vibro-acoustic, thermal insulation, sustainable material, low cost materials, recycled materials, construction material

Procedia PDF Downloads 139
1206 Algorithmic Generation of Carbon Nanochimneys

Authors: Sorin Muraru

Abstract:

Computational generation of carbon nanostructures is still a very demanding process. This work provides an alternative to manual molecular modeling through an algorithm meant to automate the design of such structures. Specifically, carbon nanochimneys are obtained through the bonding of a carbon nanotube with the smaller edge of an open carbon nanocone. The methods of connection rely on mathematical, geometrical and chemical properties. Non-hexagonal rings are used in order to perform the correct bonding of dangling bonds. Once obtained, they are useful for thermal transport, gas storage or other applications such as gas separation. The carbon nanochimneys are meant to produce a less steep connection between structures such as the carbon nanotube and graphene sheet, as in the pillared graphene, but can also provide functionality on its own. The method relies on connecting dangling bonds at the edges of the two carbon nanostructures, employing the use of two different types of auxiliary structures on a case-by-case basis. The code is implemented in Python 3.7 and generates an output file in the .pdb format containing all the system’s coordinates. Acknowledgment: This work was supported by a grant of the Executive Agency for Higher Education, Research, Development and innovation funding (UEFISCDI), project number PN-III-P1-1.1-TE-2016-24-2, contract TE 122/2018.

Keywords: carbon nanochimneys, computational, carbon nanotube, carbon nanocone, molecular modeling, carbon nanostructures

Procedia PDF Downloads 174
1205 Heavy Metals of Natural Phosphate Ore and the Way They Affect the Various Mineralurgic Modes of Treatment

Authors: Bezzi Nacer

Abstract:

The study focused on the qualitative and quantitative study of Trace elements contained in the natural phosphate ore of Djebel Onk layer and their behaviour to the various mineralurgic modes of treatment. The main objective is to locate the importance of these contents according to granulometry and their association with the existing mineralogical species and to define how the most appropriate treatment. The raw ore is in first submitted to a prior mechanical treatment consisting of homogenization operations, of grinding and of sifting, in order to separate it into three particle-size classes: fine <100 µm (F); medium 100-500 µm (I) and coarse > 500 µm (G), and then treated by calcination, washing and floatation. The identification of the different mineralogical phases, the chemical composition and the thermal behaviour of these samples were realized by various techniques: MEB, DRX, ATG-ATD, etc. The study of Trace elements, carried out by ICP-MS, identified thirty items, consisting mainly of rare earths and of transition metals. A close relation between trace elements and various minerals phases (apatite, dolomite and silicates), through operations of substitution. These elements are distributed between several mineralogical phases, in particular apatite (strontium, uranium, chrome, barium, cadmium) and silicates (strontium, sodium, nickel, zinc and copper).

Keywords: valorization of natural phosphate ore, heavy metals, qualitative and quantitative analysis, various mineralurgic

Procedia PDF Downloads 339
1204 Study of Behavior Tribological Cutting Tools Based on Coating

Authors: A. Achour L. Chekour, A. Mekroud

Abstract:

Tribology, the science of lubrication, friction and wear, plays an important role in science "crossroads" initiated by the recent developments in the industry. Its multidisciplinary nature reinforces its scientific interest. It covers all the sciences that deal with the contact between two solids loaded and relative motion. It is thus one of the many intersections more clearly established disciplines such as solid mechanics and the fluids, rheological, thermal, materials science and chemistry. As for his experimental approach, it is based on the physical and processing signals and images. The optimization of operating conditions by cutting tool must contribute significantly to the development and productivity of advanced automation of machining techniques because their implementation requires sufficient knowledge of how the process and in particular the evolution of tool wear. In addition, technological advances have developed the use of very hard materials, refractory difficult machinability, requiring highly resistant materials tools. In this study, we present the behavior wear a machining tool during the roughing operation according to the cutting parameters. The interpretation of the experimental results is based mainly on observations and analyzes of sharp edges e tool using the latest techniques: scanning electron microscopy (SEM) and optical rugosimetry laser beam.

Keywords: friction, wear, tool, cutting

Procedia PDF Downloads 334
1203 Indoor Environment Quality and Occupant Resilience Toward Climate Change: A Case Study from Gold Coast, Australia

Authors: Soheil Roumi, Fan Zhang, Rodney Stewart

Abstract:

Indoor environmental quality (IEQ) indexes represented the suitability of a place to study, work, and live. Many indexes have been introduced based on the physical measurement or occupant surveys in commercial buildings. The earlier studies did not elaborate on the relationship between energy consumption and IEQ in office buildings. Such a relationship can provide a comprehensive overview of the building's performance. Also, it would find the potential of already constructed buildings under the upcoming climate change. A commercial building in southeast Queensland, Australia, was evaluated in this study. Physical measurements of IEQ and Energy areconducted, and their relationship will be determined using statistical analysis. The case study building is modelled in TRNSys software, and it will be validatedusingthe actual building's BMS data. Then, the modelled buildingwill be simulated by predicted weather data developed by the commonwealth scientific and industrial research organisation of Australia to investigate the occupant resilience and energy consumption. Finally, recommendations will be presented to consume less energy while providinga proper indoor environment for office occupants.

Keywords: IEQ, office buildings, thermal comfort, occupant resilience

Procedia PDF Downloads 113
1202 Potentiostatic Electrodeposition of Cu₂O Films as P-Type Electrode at Room Temperature

Authors: M. M. Moharam, E. M. Elsayed, M. M. Rashad

Abstract:

Single phase Cu₂O films have been prepared via an electrodeposition technique onto ITO glass substrates at room temperature. Likewise, Cu₂O films were deposited using a potentiostatic process from an alkaline electrolyte containing copper (II) nitrate and 1M sodium citrate. Single phase Cu₂O films were electrodeposited at a cathodic deposition potential of 500mV for a reaction period of 90 min, and pH of 12 to yield a film thickness of 0.49 µm. The mechanism for nucleation of Cu₂O films was found to vary with deposition potential. Applying the Scharifker and Hills model at -500 and -600 mV to describe the mechanism of nucleation for the electrochemical reaction, the nucleation mechanism consisted of a mix between instantaneous and progressive growth mechanisms at -500 mV, while above -600 mV the growth mechanism was instantaneous. Using deposition times from 30 to 90 min at -500 mV deposition potential, pure Cu2O films with different microstructures were electrodeposited. Changing the deposition time from 30 to 90 min varied the microstructure from cubic to more complex polyhedra. The transmittance of electrodeposited Cu₂O films ranged from 20-70% in visible range, and samples exhibited a 2.4 eV band gap. The electrical resistivity for electrodeposited Cu₂O films was found to decrease with increasing deposition time from 0.854 x 105 Ω-cm at 30 min to 0.221 x 105 Ω-cm at 90 min without any thermal treatment following the electrodeposition process.

Keywords: Cu₂O, electrodeposition, film thickness, characterization, optical properties

Procedia PDF Downloads 216
1201 Study on Carbon Nanostructures Influence on Changes in Static Friction Forces

Authors: Rafał Urbaniak, Robert Kłosowiak, Michał Ciałkowski, Jarosław Bartoszewicz

Abstract:

The Chair of Thermal Engineering at Poznan University of Technology has been conducted research works on the possibilities of using carbon nanostructures in energy and mechanics applications for a couple of years. Those studies have provided results in a form of co-operation with foreign research centres, numerous publications and patent applications. Authors of this paper have studied the influence of multi-walled carbon nanostructures on changes in static friction arising when steel surfaces were moved. Tests were made using the original test stand consisting of automatically controlled inclined plane driven by precise stepper motors. Computer program created in the LabView environment was responsible for monitoring of the stand operation, accuracy of measurements and archiving the obtained results. Such a solution enabled to obtain high accuracy and repeatability of all conducted experiments. Tests and analysis of the obtained results allowed us to determine how additional layers of carbon nanostructures influenced on changes of static friction coefficients. At the same time, we analyzed the potential possibilities of applying nanostructures under consideration in mechanics.

Keywords: carbon nanotubes, static friction, dynamic friction

Procedia PDF Downloads 317
1200 Thermomechanical Simulation of Equipment Subjected to an Oxygen Pressure and Heated Locally by the Ignition of Small Particles

Authors: Khaled Ayfi

Abstract:

In industrial oxygen systems at high temperature and high pressure, contamination by solid particles is one of the principal causes of ignition hazards. Indeed, gas can sweep away particles, generated by corrosion inside the pipes or during maintenance operations (welding residues, careless disassembly, etc.) and produce accumulations at places where the gas velocity decrease. Moreover, in such an environment rich in oxygen (oxidant), particles are highly reactive and can ignite system walls more actively and at higher temperatures. Oxidation based thermal effects are responsible for mechanical properties lost, leading to the destruction of the pressure equipment wall. To deal with this problem, a numerical analysis is done regarding a sample representative of a wall subjected to pressure and temperature. The validation and analysis are done comparing the numerical simulations results to experimental measurements. More precisely, in this work, we propose a numerical model that describes the thermomechanical behavior of thin metal disks under pressure and subjected to laser heating. This model takes into account the geometric and material nonlinearity and has been validated by the comparison of simulation results with experimental measurements.

Keywords: ignition, oxygen, numerical simulation, thermomechanical behavior

Procedia PDF Downloads 110
1199 Development and Characterization of Castor Oil-Based Biopolyurethanes for High-Performance Coatings and Waterproofing Applications

Authors: Julie Anne Braun, Leonardo D. da Fonseca, Gerson C. Parreira, Ricardo J. E. Andrade

Abstract:

Polyurethanes (PU) are multifunctional polymers used across various industries. In construction, thermosetting polyurethanes are applied as coatings for flooring, paints, and waterproofing. They are widely specified in Brazil for waterproofing concrete structures like roof slabs and parking decks. Applied to concrete, they form a fully adhered membrane, providing a protective barrier with low water absorption, high chemical resistance, impermeability to liquids, and low vapor permeability. Their mechanical properties, including tensile strength (1 to 35 MPa) and Shore A hardness (83 to 88), depend on resin molecular weight and functionality, often using Methylene diphenyl diisocyanate. PU production, reliant on fossil-derived isocyanates and polyols, contributes significantly to carbon emissions. Sustainable alternatives, such as biopolyurethanes from renewable sources, are needed. Castor oil is a viable option for synthesizing sustainable polyurethanes. As a bio-based feedstock, castor oil is extensively cultivated in Brazil, making it a feasible option for the national market and ranking third internationally. This study aims to develop and characterize castor oil-based biopolyurethane for high-performance waterproofing and coating applications. A comparative analysis between castor oil-based PU and polyether polyol-based PU was conducted. Mechanical tests (tensile strength, Shore A hardness, abrasion resistance) and surface properties (contact angle, water absorption) were evaluated. Thermal, chemical, and morphological properties were assessed using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The results demonstrated that both polyurethanes exhibited high mechanical strength. Specifically, the tensile strength for castor oil-based PU was 19.18 MPa, compared to 12.94 MPa for polyether polyol-based PU. Similarly, the elongation values were 146.90% for castor oil-based PU and 135.50% for polyether polyol-based PU. Both materials exhibited satisfactory performance in terms of abrasion resistance, with mass loss of 0.067% for castor oil PU and 0.043% for polyether polyol PU and Shore A hardness values of 89 and 86, respectively, indicating high surface hardness. The results of the water absorption and contact angle tests confirmed the hydrophilic nature of polyether polyol PU, with a contact angle of 58.73° and water absorption of 2.53%. Conversely, the castor oil-based PU exhibited hydrophobic properties, with a contact angle of 81.05° and water absorption of 0.45%. The results of the FTIR analysis indicated the absence of a peak around 2275 cm-1, which suggests that all of the NCO groups were consumed in the stoichiometric reaction. This conclusion is supported by the high mechanical test results. The TGA results indicated that polyether polyol PU demonstrated superior thermal stability, exhibiting a mass loss of 13% at the initial transition (around 310°C), in comparison to castor oil-based PU, which experienced a higher initial mass loss of 25% at 335°C. In summary, castor oil-based PU demonstrated mechanical properties comparable to polyether polyol PU, making it suitable for applications such as trafficable coatings. However, its higher hydrophobicity makes it more promising for watertightness. Increasing environmental concerns necessitate reducing reliance on non-renewable resources and mitigating the environmental impacts of polyurethane production. Castor oil is a viable option for sustainable polyurethanes, aligning with emission reduction goals and responsible use of natural resources.

Keywords: polyurethane, castor oil, sustainable, waterproofing, construction industry

Procedia PDF Downloads 49
1198 Comparative Performance and Emission Analysis of Diesel Engine Fueled with Diesel and Bitter Apricot Kernal Oil Biodiesel Blends

Authors: Virender Singh Gurau, Akash Deep, Sarbjot S. Sandhu

Abstract:

Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. In the present research work Bitter Apricot kernel oil was employed as a feedstock for the production of biodiesel. The physicochemical properties of the Bitter Apricot kernel oil methyl ester were investigated as per ASTM D6751. From the series of engine testing, it is concluded that the brake thermal efficiency (BTE) with biodiesel blend was little lower than that of diesel. BSEC is slightly higher for Bitter apricot kernel oil methyl ester blends than neat diesel. For biodiesel blends, CO emission was lower than diesel fuel as B 20 reduced CO emissions by 18.75%. Approximately 11% increase in NOx emission was observed with 20% biodiesel blend. It is observed that HC emissions tend to decrease for biodiesel based fuels and Smoke opacity was found lower for biodiesel blends in comparison to diesel fuel.

Keywords: biodiesel, transesterification, bitter apricot kernel oil, performance and emission testing

Procedia PDF Downloads 341
1197 Characterization of Coal Fly Ash with Potential Use in the Manufacture Geopolymers to Solidify/Stabilize Heavy Metal Ions

Authors: P. M. Fonseca Alfonso, E. A. Murillo Ruiz, M. Diaz Lagos

Abstract:

Understanding the physicochemical properties and mineralogy of fly ash from a particular source is essential for to protect the environment and considering its possible applications, specifically, in the production of geopolymeric materials that solidify/stabilize heavy metals ions. The results of the characterization of three fly ash samples are shown in this paper. The samples were produced in the TERMOPAIPA IV thermal power plant in the State of Boyaca, Colombia. The particle size distribution, chemical composition, mineralogy, and molecular structure of three samples were analyzed using laser diffraction, X-ray fluorescence, inductively coupled plasma mass spectrometry, X-ray diffraction, and infrared spectroscopy respectively. The particle size distribution of the three samples probably ranges from 0.128 to 211 μm. Approximately 59 elements have been identified in the three samples. It is noticeable that the ashes are made up of aluminum and silicon compounds. Besides, the iron phase in low content was also found. According to the results found in this study, the fly ash samples type F has a great potential to be used as raw material for the manufacture of geopolymers with potential use in the stabilization/solidification of heavy metals; mainly due to the presence of amorphous aluminosilicates typical of this type of ash, which react effectively with alkali-activator.

Keywords: fly ash, geopolymers, molecular structure, physicochemical properties.

Procedia PDF Downloads 123
1196 Stationary Methanol Steam Reforming to Hydrogen Fuel for Fuel-Cell Filling Stations

Authors: Athanasios A. Tountas, Geoffrey A. Ozin, Mohini M. Sain

Abstract:

Renewable hydrogen (H₂) carriers such as methanol (MeOH), dimethyl ether (DME), oxymethylene dimethyl ethers (OMEs), and conceivably ammonia (NH₃) can be reformed back into H₂ and are fundamental chemical conversions for the long-term viability of the H₂ economy due to their higher densities and ease of transportability compared to H₂. MeOH is an especially important carrier as it is a simple C1 chemical that can be produced from green solar-PV-generated H₂ and direct-air-captured CO₂ with a current commercially practical solar-to-fuel efficiency of 10% from renewable solar energy. MeOH steam reforming (MSR) in stationary systems next to H₂ fuel-cell filling stations can eliminate the need for onboard mobile reformers, and the former systems can be more robust in terms of attaining strict H₂ product specifications, and MeOH is a safe, lossless, and compact medium for long-term H₂ storage. Both thermal- and photo-catalysts are viable options for achieving the stable, long-term performance of stationary MSR systems.

Keywords: fuel-cell vehicle filling stations, methanol steam reforming, hydrogen transport and storage, stationary reformer, liquid hydrogen carriers

Procedia PDF Downloads 106
1195 Simple and Scalable Thermal-Assisted Bar-Coating Process for Perovskite Solar Cell Fabrication in Open Atmosphere

Authors: Gizachew Belay Adugna

Abstract:

Perovskite solar cells (PSCs) shows rapid development as an emerging photovoltaic material; however, the fast device degradation due to the organic nature, mainly hole transporting material (HTM) and lack of robust and reliable upscaling process for photovoltaic module hindered its commercialization. Herein, HTM molecules with/without fluorine-substituted cyclopenta[2,1-b;3,4-b’]dithiophene derivatives (HYC-oF, HYC-mF, and HYC-H) were developed for PSCs application. The fluorinated HTM molecules exhibited better hole mobility and overall charge extraction in the devices mainly due to strong molecular interaction and packing in the film. Thus, the highest power conversion efficiency (PCE) of 19.64% with improved long stability was achieved for PSCs based on HYC-oF HTM. Moreover, the fluorinated HYC-oF demonstrated excellent film processability in a larger-area substrate (10 cm×10 cm) prepared sequentially with the absorption perovskite underlayer via a scalable bar coating process in ambient air and owned a higher PCE of 18.49% compared to the conventional spiro-OMeTAD (17.51%). The result demonstrates a facile development of HTM towards stable and efficient PSCs for future industrial-scale PV modules.

Keywords: perovskite solar cells, upscaling film coating, power conversion efficiency, solution processing

Procedia PDF Downloads 78
1194 Moths of Indian Himalayas: Data Digging for Climate Change Monitoring

Authors: Angshuman Raha, Abesh Kumar Sanyal, Uttaran Bandyopadhyay, Kaushik Mallick, Kamalika Bhattacharyya, Subrata Gayen, Gaurab Nandi Das, Mohd. Ali, Kailash Chandra

Abstract:

Indian Himalayan Region (IHR), due to its sheer latitudinal and altitudinal expanse, acts as a mixing ground for different zoogeographic faunal elements. The innumerable unique and distributional restricted rare species of IHR are constantly being threatened with extinction by the ongoing climate change scenario. Many of which might have faced extinction without even being noticed or discovered. Monitoring the community dynamics of a suitable taxon is indispensable to assess the effect of this global perturbation at micro-habitat level. Lepidoptera, particularly moths are suitable for this purpose due to their huge diversity and strict herbivorous nature. The present study aimed to collate scattered historical records of moths from IHR and spatially disseminate the same in Geographic Information System (GIS) domain. The study also intended to identify moth species with significant altitudinal shifts which could be prioritised for monitoring programme to assess the effect of climate change on biodiversity. A robust database on moths recorded from IHR was prepared from voluminous secondary literature and museum collections. Historical sampling points were transformed into richness grids which were spatially overlaid on altitude, annual precipitation and vegetation layers separately to show moth richness patterns along major environmental gradients. Primary samplings were done by setting standard light traps at 11 Protected Areas representing five Indian Himalayan biogeographic provinces. To identify significant altitudinal shifts, past and present altitudinal records of the identified species from primary samplings were compared. A consolidated list of 4107 species belonging to 1726 genera of 62 families of moths was prepared from a total of 10,685 historical records from IHR. Family-wise assemblage revealed Erebidae to be the most speciose family with 913 species under 348 genera, followed by Geometridae with 879 species under 309 genera and Noctuidae with 525 species under 207 genera. Among biogeographic provinces, Central Himalaya represented maximum records with 2248 species, followed by Western and North-western Himalaya with 1799 and 877 species, respectively. Spatial analysis revealed species richness was more or less uniform (up to 150 species record per cell) across IHR. Throughout IHR, the middle elevation zones between 1000-2000m encompassed high species richness. Temperate coniferous forest associated with 1500-2000mm rainfall zone showed maximum species richness. Total 752 species of moths were identified representing 23 families from the present sampling. 13 genera were identified which were restricted to specialized habitats of alpine meadows over 3500m. Five historical localities with high richness of >150 species were selected which could be considered for repeat sampling to assess climate change influence on moth assemblage. Of the 7 species exhibiting significant altitudinal ascend of >2000m, Trachea auriplena, Diphtherocome fasciata (Noctuidae) and Actias winbrechlini (Saturniidae) showed maximum range shift of >2500m, indicating intensive monitoring of these species. Great Himalayan National Park harbours most diverse assemblage of high-altitude restricted species and should be a priority site for habitat conservation. Among the 13 range restricted genera, Arichanna, Opisthograptis, Photoscotosia (Geometridae), Phlogophora, Anaplectoides and Paraxestia (Noctuidae) were dominant and require rigorous monitoring, as they are most susceptible to climatic perturbations.

Keywords: altitudinal shifts, climate change, historical records, Indian Himalayan region, Lepidoptera

Procedia PDF Downloads 175