Search results for: automatic classification of tremor types
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8064

Search results for: automatic classification of tremor types

5604 The Study of Hydro Physical Complex Characteristic of Clay Soil-Ground of Colchis Lowland

Authors: Paata Sitchinava

Abstract:

It has been studied phenomena subjected on the water physical (hydrophysical, mineralogy containing, specific hydrophysical) class of heavy clay soils of the Colchis lowland, according to various categories and forms of the porous water, which will be the base of the distributed used methods of the engineering practice and reclamation effectiveness evaluation. According to of clay grounds data, it has been chosen three research bases section in the central part of lowland, where has implemented investigation works by using a special program. It has been established, that three of cuts are somewhat identical, and by morphological grounds separated layers are the difference by Gallic quality. It has been implemented suitable laboratory experimental research at the samples taken from the cuts, at the base of these created classification mark of physical-technical characteristic, which is the base of suitable calculation of hydrophysical researches.

Keywords: Colchis lowland, drainage, water, soil-ground

Procedia PDF Downloads 180
5603 Investigating the Relationship Between the Auditor’s Personality Type and the Quality of Financial Reporting in Companies Listed on the Tehran Stock Exchange

Authors: Seyedmohsen Mortazavi

Abstract:

The purpose of this research is to investigate the personality types of internal auditors on the quality of financial reporting in companies admitted to the Tehran Stock Exchange. Personality type is one of the issues that emphasizes the field of auditors' behavior, and this field has attracted the attention of shareholders and stock companies today, because the auditors' personality can affect the type of financial reporting and its quality. The research is applied in terms of purpose and descriptive and correlational in terms of method, and a researcher-made questionnaire was used to check the research hypotheses. The statistical population of the research is all the auditors, accountants and financial managers of the companies admitted to the Tehran Stock Exchange, and due to their large number and the uncertainty of their exact number, 384 people have been considered as a statistical sample using Morgan's table. The researcher-made questionnaire was approved by experts in the field, and then its validity and reliability were obtained using software. For the validity of the questionnaire, confirmatory factor analysis was first examined, and then using divergent and convergent validity; Fornell-Larker and cross-sectional load test of the validity of the questionnaire were confirmed; Then, the reliability of the questionnaire was examined using Cronbach's alpha and composite reliability, and the results of these two tests showed the appropriate reliability of the questionnaire. After checking the validity and reliability of the research hypotheses, PLS software was used to check the hypotheses. The results of the research showed that the personalities of internal auditors can affect the quality of financial reporting; The personalities investigated in this research include neuroticism, extroversion, flexibility, agreeableness and conscientiousness, all of these personality types can affect the quality of financial reporting.

Keywords: flexibility, quality of financial reporting, agreeableness, conscientiousness

Procedia PDF Downloads 102
5602 Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering

Authors: Ekaterina S. Marchenko, Gulsharat A. Baigonakova, Kirill M. Dubovikov, Igor A. Khlusov

Abstract:

NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure.

Keywords: calcium phosphate coating, cytotoxicity, NiTi alloy, two-layer coating

Procedia PDF Downloads 66
5601 An Approach Based on Statistics and Multi-Resolution Representation to Classify Mammograms

Authors: Nebi Gedik

Abstract:

One of the significant and continual public health problems in the world is breast cancer. Early detection is very important to fight the disease, and mammography has been one of the most common and reliable methods to detect the disease in the early stages. However, it is a difficult task, and computer-aided diagnosis (CAD) systems are needed to assist radiologists in providing both accurate and uniform evaluation for mass in mammograms. In this study, a multiresolution statistical method to classify mammograms as normal and abnormal in digitized mammograms is used to construct a CAD system. The mammogram images are represented by wave atom transform, and this representation is made by certain groups of coefficients, independently. The CAD system is designed by calculating some statistical features using each group of coefficients. The classification is performed by using support vector machine (SVM).

Keywords: wave atom transform, statistical features, multi-resolution representation, mammogram

Procedia PDF Downloads 222
5600 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks

Authors: Adrien Marque, Daniel Delahaye, Pierre Maréchal, Isabelle Berry

Abstract:

Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and a specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.

Keywords: wind direction, uncertainty level, unmanned aerial vehicle, convolution neural network, SPD matrices

Procedia PDF Downloads 50
5599 Perceptions and Experiences of Students and Their Instructors on Online versus Face-To-Face Classrooms

Authors: Rahime Filiz Kiremit

Abstract:

This study involves investigating the comparisons of both online and face-to-face classes, along with providing their respective differences. The research project contains information pertaining to the two courses, provided with testimony from students and instructors alike. There were a total of 37 participants involved within the study from San Jacinto College; 35 students and the two instructors of their respective courses. The online instructor has a total of four years of teaching experience, while the face-to-face instructor has accrued 11 years of instructional education. The both instructors were interviewed and the samples were collected from three different classes - TECA 1311-702 (Educating Young Children 13 week distance learning), TECA 1311-705 (Educating Young Children 13 week distance learning) and TECA 1354 (Child Growth and Development). Among all three classes, 13 of the 29 students enrolled in either of the online courses considered participation within the survey, while 22 of the 28 students enrolled in the face-to-face course elected to do the same thing. With regards to the students’ prior class enrollment, 25 students had taken online classes previously, 9 students had taken early-childhood courses, 4 students had taken general classes, 11 students had taken both types of classes, 10 students had not yet taken online classes, and only 1 of them had taken a hybrid course. 10 of the participants professed that they like face-to-face classes, because they find that they can interact with their classmates and teachers. They find that online classes have more work to do, because they need to read the chapters and instructions on their own time. They said that during the face-to-face instruction, they could take notes and converse concerns with professors and fellow peers. They can have hands-on activities during face-to-face classes, and, as a result, improve their abilities to retain what they have learned within that particular time. Some of the students even mentioned that they are supposed to discipline themselves, because the online classes require more work. According to the remaining six students, online classes are easier than face-to-face classes. Most of them believe that the easiness of a course is dependent on the types of classes, the instructors, and the respective subjects of which they teach. With considerations of all 35 students, almost 63% of the students agreed that they interact more with their classmates in face-to-face classes.

Keywords: distance education, face-to-face education, online classroom, students' perceptions

Procedia PDF Downloads 280
5598 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing

Authors: Yehjune Heo

Abstract:

As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.

Keywords: anti-spoofing, CNN, fingerprint recognition, loss function, optimizer

Procedia PDF Downloads 136
5597 Nutritional Advantages of Millet (Panucum Miliaceum L) and Opportunities for Its Processing as Value Added Foods

Authors: Fatima Majeed Almonajim

Abstract:

Panucum miliaceum L is a plant from the genus Gramineae, In the world, millets are regarded as a significant grain, however, they are very little exploited. Millet grain is abundant in nutrients and health-beneficial phenolic compounds, making it suitable as food and feed. The plant has received considerable attention for its high content of phenolic compounds, low glycemic index, the presence of unsaturated fats and lack of gluten which are beneficial to human health, and thus, have made the plant being effective in treating celiac disease, diabetes, lowering blood lipids (cholesterol) and preventing tumors. Moreover, the plant requires little water to grow, a property that is worth considering. This study provides an overview of the nutritional and health benefits provided by millet types grown in 2 areas Iraq and Iran, aiming to compare the effect of climate on the components of millet. In this research, millet samples collected from the both Babylon (Iraqi) and Isfahan (Iranian) types were extracted and after HPTLC, the resulted pattern of the two samples were compared. As a result, the Iranian millet showed more terpenoid compounds than Iraqi millet, and therefore, Iranian millet has a higher priority than Iraqi millet in increasing the human body's immunity. On the other hand, in view of the number of essential amino acids, the Iraqi millet contains more nutritional value compared to the Iranian millet. Also, due to the higher amount of histidine in the Iranian millet, compiled to the lack of gluten found from previous studies, we came to the conclusion that the addition of millet in the diet of children, more specifically those children with irritable bowel syndrome, can be considered beneficial. Therefore, as a component of dairy products, millet can be used in preparing food for children such as dry milk.

Keywords: HPTLC, phytochemicals, specialty foods, Panucum miliaceum L, nutrition

Procedia PDF Downloads 95
5596 Performance Prediction Methodology of Slow Aging Assets

Authors: M. Ben Slimene, M.-S. Ouali

Abstract:

Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.

Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation

Procedia PDF Downloads 112
5595 An Automated Optimal Robotic Assembly Sequence Planning Using Artificial Bee Colony Algorithm

Authors: Balamurali Gunji, B. B. V. L. Deepak, B. B. Biswal, Amrutha Rout, Golak Bihari Mohanta

Abstract:

Robots play an important role in the operations like pick and place, assembly, spot welding and much more in manufacturing industries. Out of those, assembly is a very important process in manufacturing, where 20% of manufacturing cost is wholly occupied by the assembly process. To do the assembly task effectively, Assembly Sequences Planning (ASP) is required. ASP is one of the multi-objective non-deterministic optimization problems, achieving the optimal assembly sequence involves huge search space and highly complex in nature. Many researchers have followed different algorithms to solve ASP problem, which they have several limitations like the local optimal solution, huge search space, and execution time is more, complexity in applying the algorithm, etc. By keeping the above limitations in mind, in this paper, a new automated optimal robotic assembly sequence planning using Artificial Bee Colony (ABC) Algorithm is proposed. In this algorithm, automatic extraction of assembly predicates is done using Computer Aided Design (CAD) interface instead of extracting the assembly predicates manually. Due to this, the time of extraction of assembly predicates to obtain the feasible assembly sequence is reduced. The fitness evaluation of the obtained feasible sequence is carried out using ABC algorithm to generate the optimal assembly sequence. The proposed methodology is applied to different industrial products and compared the results with past literature.

Keywords: assembly sequence planning, CAD, artificial Bee colony algorithm, assembly predicates

Procedia PDF Downloads 237
5594 Random Access in IoT Using Naïve Bayes Classification

Authors: Alhusein Almahjoub, Dongyu Qiu

Abstract:

This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.

Keywords: random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation

Procedia PDF Downloads 145
5593 Different Types of Bismuth Selenide Nanostructures for Targeted Applications: Synthesis and Properties

Authors: Jana Andzane, Gunta Kunakova, Margarita Baitimirova, Mikelis Marnauza, Floriana Lombardi, Donats Erts

Abstract:

Bismuth selenide (Bi₂Se₃) is known as a narrow band gap semiconductor with pronounced thermoelectric (TE) and topological insulator (TI) properties. Unique TI properties offer exciting possibilities for fundamental research as observing the exciton condensate and Majorana fermions, as well as practical application in spintronic and quantum information. In turn, TE properties of this material can be applied for wide range of thermoelectric applications, as well as for broadband photodetectors and near-infrared sensors. Nanostructuring of this material results in improvement of TI properties due to suppression of the bulk conductivity, and enhancement of TE properties because of increased phonon scattering at the nanoscale grains and interfaces. Regarding TE properties, crystallographic growth direction, as well as orientation of the nanostructures relative to the growth substrate, play significant role in improvement of TE performance of nanostructured material. For instance, Bi₂Se₃ layers consisting of randomly oriented nanostructures and/or of combination of them with planar nanostructures show significantly enhanced in comparison with bulk and only planar Bi₂Se₃ nanostructures TE properties. In this work, a catalyst-free vapour-solid deposition technique was applied for controlled obtaining of different types of Bi₂Se₃ nanostructures and continuous nanostructured layers for targeted applications. For example, separated Bi₂Se₃ nanoplates, nanobelts and nanowires can be used for investigations of TI properties; consisting from merged planar and/or randomly oriented nanostructures Bi₂Se₃ layers are useful for applications in heat-to-power conversion devices and infrared detectors. The vapour-solid deposition was carried out using quartz tube furnace (MTI Corp), equipped with an inert gas supply and pressure/temperature control system. Bi₂Se₃ nanostructures/nanostructured layers of desired type were obtained by adjustment of synthesis parameters (process temperature, deposition time, pressure, carrier gas flow) and selection of deposition substrate (glass, quartz, mica, indium-tin-oxide, graphene and carbon nanotubes). Morphology, structure and composition of obtained Bi₂Se₃ nanostructures and nanostructured layers were inspected using SEM, AFM, EDX and HRTEM techniques, as well as home-build experimental setup for thermoelectric measurements. It was found that introducing of temporary carrier gas flow into the process tube during the synthesis and deposition substrate choice significantly influence nanostructures formation mechanism. Electrical, thermoelectric, and topological insulator properties of different types of deposited Bi₂Se₃ nanostructures and nanostructured coatings are characterized as a function of thickness and discussed.

Keywords: bismuth seleinde, nanostructures, topological insulator, vapour-solid deposition

Procedia PDF Downloads 231
5592 An Assessment of Floodplain Vegetation Response to Groundwater Changes Using the Soil & Water Assessment Tool Hydrological Model, Geographic Information System, and Machine Learning in the Southeast Australian River Basin

Authors: Newton Muhury, Armando A. Apan, Tek N. Marasani, Gebiaw T. Ayele

Abstract:

The changing climate has degraded freshwater availability in Australia that influencing vegetation growth to a great extent. This study assessed the vegetation responses to groundwater using Terra’s moderate resolution imaging spectroradiometer (MODIS), Normalised Difference Vegetation Index (NDVI), and soil water content (SWC). A hydrological model, SWAT, has been set up in a southeast Australian river catchment for groundwater analysis. The model was calibrated and validated against monthly streamflow from 2001 to 2006 and 2007 to 2010, respectively. The SWAT simulated soil water content for 43 sub-basins and monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) were applied in the machine learning tool, Waikato Environment for Knowledge Analysis (WEKA), using two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The assessment shows that different types of vegetation response and soil water content vary in the dry and wet seasons. The WEKA model generated high positive relationships (r = 0.76, 0.73, and 0.81) between NDVI values of all vegetation in the sub-basins against soil water content (SWC), the groundwater flow (GW), and the combination of these two variables, respectively, during the dry season. However, these responses were reduced by 36.8% (r = 0.48) and 13.6% (r = 0.63) against GW and SWC, respectively, in the wet season. Although the rainfall pattern is highly variable in the study area, the summer rainfall is very effective for the growth of the grass vegetation type. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.

Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater

Procedia PDF Downloads 101
5591 Evaluation of Oligocene-Miocene Clay from the Northern Part of Palmyra Region (Syria) for Industrial Ceramic Applications

Authors: Abdul Salam Turkmani

Abstract:

Clay of the northern Palmyra region is one of the most important raw materials used in the Syrian ceramics industry. This study is focused on the evaluation of various laboratory analyses such as chemical analysis (XRF), mineral X-ray diffraction analysis (XRD), differential thermal analysis (DTA), and semi-industrial tests carried out on samples collected on two representative locations of the upper Oligocene in AlMkamen valley (MK) and lower Miocene in AlZukara valley (ZR) of the northern part of Palmyra, Syria. Chemical results classify the (MK) and (ZR) clays as semi-plastic red clay slightly carbonate and (eliminate probable) illite-chlorite clays with a very fine particle size distribution. Content of SiO₂ between 46.28-57.66%, Al2O3 13.81-25.2%, Fe₂O₃ 3.47-11.58%, CaO 1.15-7.19%, Na₂O+K₂O varied between 3.34-3.71%. Based on clay chemical composition and iron and carbonate content, these deposits can be considered as red firing clays. Their mineralogical composition is mainly represented by illite, kaolinite and quartz, and accessories minerals such as calcite, feldspar, phillipsite, and goethite. The results of the DTA test confirm the presence of gypsum and quartz phases in (MK) clay. Ceramic testing shows good green and dry bending strength values, which varied between 9-14 kg/cm², at 1160°C to 1180°C. Water absorption moves from 14.6 % at 1120°C to 2.2% at 1180°C to 1.6% at 1200°C. Breaking load after firing changes from 400 to 590 kg/cm². At 1200°C (MK), clay reaches perfect vitrification. After firing, the color of the clay changes from orange-hazel to red-brown at 1180°C. Technological results confirmed the suitability of the studied clays to produce floor and wall ceramic tiles. Using one of the two types of clay into the ceramic body or both types together gave satisfactory industrial results.

Keywords: ceramic, clay, industry , Palmyra

Procedia PDF Downloads 196
5590 Curriculum for the Manufacturing and Engineering Course Programs in Industries

Authors: Muhammad Yasir Latif

Abstract:

Industrial Engineering and Management (IEM) is a continuous, adaptable, and dynamic branch of engineering. The purpose of this study is to use a knowledge-based course classification method to investigate four IEM educational programs in Europe. Furthermore, the relative weight of each sector was determined using the credit value of the courses. IEM-specific locations and pooled areas were the two related kinds of areas that were used. The results show that, among the four program curricula, Production Management is the specific area with the largest weight, while the specialism field of IEM has a similar weight. This method has proved to be useful for curriculum analysis. The results show that one characteristic of IEM curriculum programs is diversity in the knowledge domains related to IEM specialism. The research also highlights the importance of an organized structure for defining IEM applications, allowing benchmarking efforts, and promoting communication between academics and the IEM community.

Keywords: industrial engineering and management, knowledge areas, curriculum analysis, community

Procedia PDF Downloads 19
5589 Improved Regression Relations Between Different Magnitude Types and the Moment Magnitude in the Western Balkan Earthquake Catalogue

Authors: Anila Xhahysa, Migena Ceyhan, Neki Kuka, Klajdi Qoshi, Damiano Koxhaj

Abstract:

The seismic event catalog has been updated in the framework of a bilateral project supported by the Central European Investment Fund and with the extensive support of Global Earthquake Model Foundation to update Albania's national seismic hazard model. The earthquake catalogue prepared within this project covers the Western Balkan area limited by 38.0° - 48°N, 12.5° - 24.5°E and includes 41,806 earthquakes that occurred in the region between 510 BC and 2022. Since the moment magnitude characterizes the earthquake size accurately and the selected ground motion prediction equations for the seismic hazard assessment employ this scale, it was chosen as the uniform magnitude scale for the catalogue. Therefore, proxy values of moment magnitude had to be obtained by using new magnitude conversion equations between the local and other magnitude types to this unified scale. The Global Centroid Moment Tensor Catalogue was considered the most authoritative for moderate to large earthquakes for moment magnitude reports; hence it was used as a reference for calibrating other sources. The best fit was observed when compared to some regional agencies, whereas, with reports of moment magnitudes from Italy, Greece and Turkey, differences were observed in all magnitude ranges. For teleseismic magnitudes, to account for the non-linearity of the relationships, we used the exponential model for the derivation of the regression equations. The obtained regressions for the surface wave magnitude and short-period body-wave magnitude show considerable differences with Global Earthquake Model regression curves, especially for low magnitude ranges. Moreover, a conversion relation was obtained between the local magnitude of Albania and the corresponding moment magnitude as reported by the global and regional agencies. As errors were present in both variables, the Deming regression was used.

Keywords: regression, seismic catalogue, local magnitude, tele-seismic magnitude, moment magnitude

Procedia PDF Downloads 70
5588 Design and Development of Multi-Functional Intelligent Robot Arm Gripper

Authors: W. T. Asheber, L. Chyi-Yeu

Abstract:

An intelligent robot arm is expected to recognize the desired object, grasp it with appropriate force without dropping or damaging it, and also manipulate and deliver the object to the desired destination safely. This paper presents an intelligent multi-finger robot arm gripper design along with vision, proximity, and tactile sensor for efficient grasping and manipulation tasks. The generic design of the gripper makes it convenient for improved parts manipulation, multi-tasking and ease for components assembly. The proposed design emulates the human’s hand fingers structure using linkages and direct drive through power screw like transmission. The actuation and transmission mechanism is designed in such a way that it has non-back-drivable capability, which makes the fingers hold their position when even unpowered. The structural elements are optimized for a finest performance in motion and force transmissivity of the gripper fingers. The actuation mechanisms is designed specially to drive each finger and also rotate two of the fingers about the palm to form appropriate configuration to grasp various size and shape objects. The gripper has an automatic tool set fixture incorporated into its palm, which will reduce time wastage and do assembling in one go. It is equipped with camera-in-hand integrated into its palm; subsequently an image based visual-servoing control scheme is employed.

Keywords: gripper, intelligent gripper, transmissivity, vision sensor

Procedia PDF Downloads 355
5587 The Interconnection between Curriculum Development and ICT

Authors: Hanane Sarnou, Sabri Koç

Abstract:

In this paper, the interconnection between curriculum development for basic education and the use of information and communication technologies (ICTs) in the classroom referring to the Licence, Master's and Doctorate (LMD) benefits under such link will be presented and analysed. This study seeks to achieve to what extent LMD, competency-based approach (CBA) and ICTs use are interrelated. Likewise, the data collected from the responses of our teachers and learners who are concerned with LMD impact on their learning and teaching through interviews will be discussed, analysed, and classified. This paper is divided into two sections. The first section is about the curriculum development for basic education and its relation with higher education under the LMD and its link with ICTs in the university while the second section is about the classification of learners’ and teachers’ positive/negative responses concerning their positive or negative attitudes towards the ICT integration. The focus will be on the positive aspects of students’ expectations, opinions and assumptions regarding the integration of ICTs into the classroom under LMD and CBA.

Keywords: LMD system, CBA approach, curriculum development, ICT

Procedia PDF Downloads 418
5586 An Experimental Study on the Variability of Nonnative and Native Inference of Word Meanings in Timed and Untimed Conditions

Authors: Swathi M. Vanniarajan

Abstract:

Reading research suggests that online contextual vocabulary comprehension while reading is an interactive and integrative process. One’s success in it depends on a variety of factors including the amount and the nature of available linguistic and nonlinguistic cues, his/her analytical and integrative skills, schema memory (content familiarity), and processing speed characterized along the continuum of controlled to automatic processing. The experiment reported here, conducted with 30 native speakers as one group and 30 nonnative speakers as another group (all graduate students), hypothesized that while working on (24) tasks which required them to comprehend an unfamiliar word in real time without backtracking, due to the differences in the nature of their respective reading processes, the nonnative subjects would be less able to construct the meanings of the unknown words by integrating the multiple but sufficient contextual cues provided in the text but the native subjects would be able to. The results indicated that there were significant inter-group as well as intra-group differences in terms of the quality of definitions given. However, when given additional time, while the nonnative speakers could significantly improve the quality of their definitions, the native speakers in general would not, suggesting that all things being equal, time is a significant factor for success in nonnative vocabulary and reading comprehension processes and that accuracy precedes automaticity in the development of nonnative reading processes also.

Keywords: reading, second language processing, vocabulary comprehension

Procedia PDF Downloads 166
5585 Development of Automated Quality Management System for the Management of Heat Networks

Authors: Nigina Toktasynova, Sholpan Sagyndykova, Zhanat Kenzhebayeva, Maksat Kalimoldayev, Mariya Ishimova, Irbulat Utepbergenov

Abstract:

Any business needs a stable operation and continuous improvement, therefore it is necessary to constantly interact with the environment, to analyze the work of the enterprise in terms of employees, executives and consumers, as well as to correct any inconsistencies of certain types of processes and their aggregate. In the case of heat supply organizations, in addition to suppliers, local legislation must be considered which often is the main regulator of pricing of services. In this case, the process approach used to build a functional organizational structure in these types of businesses in Kazakhstan is a challenge not only in the implementation, but also in ways of analyzing the employee's salary. To solve these problems, we investigated the management system of heating enterprise, including strategic planning based on the balanced scorecard (BSC), quality management in accordance with the standards of the Quality Management System (QMS) ISO 9001 and analysis of the system based on expert judgment using fuzzy inference. To carry out our work we used the theory of fuzzy sets, the QMS in accordance with ISO 9001, BSC according to the method of Kaplan and Norton, method of construction of business processes according to the notation IDEF0, theory of modeling using Matlab software simulation tools and graphical programming LabVIEW. The results of the work are as follows: We determined possibilities of improving the management of heat-supply plant-based on QMS; after the justification and adaptation of software tool it has been used to automate a series of functions for the management and reduction of resources and for the maintenance of the system up to date; an application for the analysis of the QMS based on fuzzy inference has been created with novel organization of communication software with the application enabling the analysis of relevant data of enterprise management system.

Keywords: balanced scorecard, heat supply, quality management system, the theory of fuzzy sets

Procedia PDF Downloads 367
5584 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning

Procedia PDF Downloads 297
5583 Rule Insertion Technique for Dynamic Cell Structure Neural Network

Authors: Osama Elsarrar, Marjorie Darrah, Richard Devin

Abstract:

This paper discusses the idea of capturing an expert’s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.

Keywords: neural network, self-organizing map, rule extraction, rule insertion

Procedia PDF Downloads 172
5582 Numerical Simulation of Flexural Strength of Steel Fiber Reinforced High Volume Fly Ash Concrete by Finite Element Analysis

Authors: Mahzabin Afroz, Indubhushan Patnaikuni, Srikanth Venkatesan

Abstract:

It is well-known that fly ash can be used in high volume as a partial replacement of cement to get beneficial effects on concrete. High volume fly ash (HVFA) concrete is currently emerging as a popular option to strengthen by fiber. Although studies have supported the use of fibers with fly ash, a unified model along with the incorporation into finite element software package to estimate the maximum flexural loads need to be developed. In this study, nonlinear finite element analysis of steel fiber reinforced high strength HVFA concrete beam under static loadings was conducted to investigate their failure modes in terms of ultimate load. First of all, the experimental investigation of mechanical properties of high strength HVFA concrete was done and validates with developed numerical model with the appropriate modeling of element size and mesh by ANSYS 16.2. To model the fiber within the concrete, three-dimensional random fiber distribution was simulated by spherical coordinate system. Three types of high strength HVFA concrete beams were analyzed reinforced with 0.5, 1 and 1.5% volume fractions of steel fibers with specific mechanical and physical properties. The result reveals that the use of nonlinear finite element analysis technique and three-dimensional random fiber orientation exhibited fairly good agreement with the experimental results of flexural strength, load deflection and crack propagation mechanism. By utilizing this improved model, it is possible to determine the flexural behavior of different types and proportions of steel fiber reinforced HVFA concrete beam under static load. So, this paper has the originality to predict the flexural properties of steel fiber reinforced high strength HVFA concrete by numerical simulations.

Keywords: finite element analysis, high volume fly ash, steel fibers, spherical coordinate system

Procedia PDF Downloads 138
5581 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy

Procedia PDF Downloads 441
5580 Effects of Medication Reminder Innovation on Adherence and the Quality of Medicine

Authors: Suparpit von Bormann, Winai Sayorwan, Sirichai Channim, Sararat Rungruangkhanarak, Premchai Suksamran, Piyaporn Srisuk, Piyatida Phosri

Abstract:

The best medicine will not work if the patient does not take them. There are several methods developed to help patients to be adherent to medicine. However, non-adherent rate still high: 24% in physically ill and 42% in mentally ill patients. Moreover, patients might feel less confident when carrying medicine around. Normal medicine box has no alarm; whereas the one with alarm is not handy and might be left at home. Therefore, Medication Reminder (MR) was invented. MR is a medicine pocket that has an alarm clock to remind the patient when it is the time to take medicine. It also has a small light indicating the medicine the patient has to take. This pocket is attached within a purse or wallet because most people forget medicine but do not forget to take their money. This research was conducted to develop innovation assisting patients to take their medicine on time. Samples were 24 volunteers who went out to work every day. Uncoated tablets, coated tablets, and capsules were filled in three types of containers: MR, plastic bag with ziplock, and normal plastic box. Each volunteer carried three types of containers everywhere during day time. After three days, medicines were tested for physical quality (appearance, odor, color, hardness, and weight) in laboratory. Medication adherence and satisfaction questionnaires were completed by participants. The results showed that MR showed significant improvement in participants’ adherence than plastic bag with ziplock, and normal plastic box at p < .001 (x̄(SD) = 11.16(0.75), 7.83(0.98), 8.83(1.32), respectively). Based on the quality test, MR and normal plastic box significantly better protected medicine than plastic bag with zip lock at p < .001 (x̄(SD) = 4(0.00), 4(0.00), 2.5(0.54), respectively). Most participants were satisfied with the innovation in highest level (4.50 out of 5). MR has a potential to improve adherent rates of participants and therefore to be an innovation that helps reducing the cost of treatment due to non-adherence. MR also has a potential in commercial aspect due to its effects in preserving quality of medicine. MR can be integrated with local products such as silk purse that can increase income for local people.

Keywords: medication, reminder, adherence, satisfaction

Procedia PDF Downloads 437
5579 Adaptive Online Object Tracking via Positive and Negative Models Matching

Authors: Shaomei Li, Yawen Wang, Chao Gao

Abstract:

To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as a binary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm cannot only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences.

Keywords: object tracking, tracking drift, partial least squares analysis, positive and negative models matching

Procedia PDF Downloads 529
5578 Groundwater Investigation Using Resistivity Method and Drilling for Irrigation during the Dry Season in Lwantonde District, Uganda

Authors: Tamale Vincent

Abstract:

Groundwater investigation is the investigation of underground formations to understand the hydrologic cycle, known groundwater occurrences, and identify the nature and types of aquifers. There are different groundwater investigation methods and surface geophysical method is one of the groundwater investigation more especially the Geoelectrical resistivity Schlumberger configuration method which provides valuable information regarding the lateral and vertical successions of subsurface geomaterials in terms of their individual thickness and corresponding resistivity values besides using surface geophysical method, hydrogeological and geological investigation methods are also incorporated to aid in preliminary groundwater investigation. Investigation for groundwater in lwantonde district has been implemented. The area project is located cattle corridor and the dry seasonal troubles the communities in lwantonde district of which 99% of people living there are farmers, thus making agriculture difficult and local government to provide social services to its people. The investigation was done using the Geoelectrical resistivity Schlumberger configuration method. The measurement point is located in the three sub-counties, with a total of 17 measurement points. The study location is at 0025S, 3110E, and covers an area of 160 square kilometers. Based on the results of the Geoelectrical information data, it was found two types of aquifers, which are open aquifers in depth ranging from six meters to twenty-two meters and a confined aquifer in depth ranging from forty-five meters to eighty meters. In addition to the Geoelectrical information data, drilling was done at an accessible point by heavy equipment in the Lwakagura village, Kabura sub-county. At the drilling point, artesian wells were obtained at a depth of eighty meters and can rise to two meters above the soil surface. The discovery of artesian well is then used by residents to meet the needs of clean water and for irrigation considering that in this area most wells contain iron content.

Keywords: artesian well, geoelectrical, lwantonde, Schlumberger

Procedia PDF Downloads 124
5577 A Family of Distributions on Learnable Problems without Uniform Convergence

Authors: César Garza

Abstract:

In supervised binary classification and regression problems, it is well-known that learnability is equivalent to a uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.

Keywords: statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization

Procedia PDF Downloads 129
5576 Morphological Characteristics and Pollination Requirement in Red Pitaya (Hylocereus Spp.)

Authors: Dinh Ha, Tran, Chung-Ruey Yen

Abstract:

This study explored the morphological characteristics and effects of pollination methods on fruit set and characteristics in four red pitaya (Hylocereus spp.) clones. The distinctive morphological recognition and classification among pitaya clones were confirmed by the stem, flower and fruit features. The fruit production season was indicated from the beginning of May to the end of August, the beginning of September with 6-7 flowering cycles per year. The floral stage took from 15-19 days and fruit duration spent 30–32 days. VN White, fully self-compatible, obtained high fruit set rates (80.0-90.5 %) in all pollination treatments and the maximum fruit weight (402.6 g) in hand self- and (403.4 g) in open-pollination. Chaozhou 5 was partially self-compatible while Orejona and F11 were completely self-incompatible. Hand cross-pollination increased significantly fruit set (95.8; 88.4 and 90.2 %) and fruit weight (374.2; 281.8 and 416.3 g) in Chaozhou 5, Orejona, and F11, respectively. TSS contents were not much influenced by pollination methods.

Keywords: Hylocereus spp., morphology, floral phenology, pollination requirement

Procedia PDF Downloads 304
5575 Spectral Properties of Fiber Bragg Gratings

Authors: Y. Hamaizi, H. Triki, A. El-Akrmi

Abstract:

In this paper, the reflection spectra, group delay and dispersion of a uniform fiber Bragg grating (FBG) are obtained. FBGs with two types of apodized variations of the refractive index were modeled to show how the side-lobes can be suppressed. Apodization techniques are used to get optimized reflection spectra. The simulation is based on solving coupled mode equations together with the transfer matrix method.

Keywords: fiber bragg gratings, coupled-mode theory, reflectivity, apodization

Procedia PDF Downloads 704