Search results for: poverty prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3034

Search results for: poverty prediction

604 CSR Health Programs: A Supplementary Tool of a Government’s Role in a Developing Nation

Authors: Kristine Demilou Santiago

Abstract:

In a context of a developing nation, how important is the role of Corporate Social Responsibility health programs? Is there a possibility that this will render a large impact in a society where health benefits are insufficient? The Philippine government has been in an unceasing battle to provide its citizens competitive health benefits through launching various health programs. As the efforts are being claimed by the government, the numbers just show that all the health benefits being offered such as PhilHealth health cards, medical missions and other subsidized government health benefits are not effective and sufficient at the minimum level. This is a major characteristic of a developing nation which the Philippine government is focusing on addressing as it becomes a national concern under the effects of poverty. Industrial companies, through Corporate Social Responsibility, are playing an important role in the aspiration to resolve this problem on health programs as supposed to be basic services to citizens of the Philippine government. The rise of commitment by these industrial companies to render health programs to communities as part of their corporate citizenship has covered a large portion of the basic health services that the Filipino citizens are supposed to be receiving. This is the most salient subject that a developing nation should focus on determining the important contribution of industrial companies present in their country as part of the citizens’ access to basic health services. The use of survey forms containing quantitative and qualitative questions which aim to give numerical figures and support answers as to the role of CSR Health programs in helping the communities receive the basic health services they need was the methodological procedure followed in this research. A sample population in a community where the largest industrial company in a province of the Philippines was taken through simple random sampling. The assumption is that this sample population which represents the whole of the community has the highest opportunities to access both the government health services and the CSR health program services of the industrial company located in their community. Results of the research have shown a significant level of participation by industrial companies through their CSR health programs in the attainment of basic health services that should be rendered by the Philippine government to its citizens as part of the state’s health benefits. In a context of a developing nation such as the Philippines, the role of Corporate Social Responsibility is beyond the expectation of initiating to resolve environmental and social issues. It is moving deeper in the concept of the corporate industries being a pillar of the government in catering the support needed by the individuals in the community for its development. As such, the concept of the presence of an industrial company in a community is said to be a parallel progress: by which when an industrial company expands because it is becoming more profitable, so is the community gaining the same step of progress in terms of socioeconomic development.

Keywords: basic health services, CSR health program, health services in a developing nation, Philippines health benefits

Procedia PDF Downloads 207
603 Predicting Foreign Direct Investment of IC Design Firms from Taiwan to East and South China Using Lotka-Volterra Model

Authors: Bi-Huei Tsai

Abstract:

This work explores the inter-region investment behaviors of integrated circuit (IC) design industry from Taiwan to China using the amount of foreign direct investment (FDI). According to the mutual dependence among different IC design industrial locations, Lotka-Volterra model is utilized to explore the FDI interactions between South and East China. Effects of inter-regional collaborations on FDI flows into China are considered. Evolutions of FDIs into South China for IC design industry significantly inspire the subsequent FDIs into East China, while FDIs into East China for Taiwan’s IC design industry significantly hinder the subsequent FDIs into South China. The supply chain along IC industry includes IC design, manufacturing, packing and testing enterprises. I C manufacturing, packaging and testing industries depend on IC design industry to gain advanced business benefits. The FDI amount from Taiwan’s IC design industry into East China is the greatest among the four regions: North, East, Mid-West and South China. The FDI amount from Taiwan’s IC design industry into South China is the second largest. If IC design houses buy more equipment and bring more capitals in South China, those in East China will have pressure to undertake more FDIs into East China to maintain the leading position advantages of the supply chain in East China. On the other hand, as the FDIs in East China rise, the FDIs in South China will successively decline since capitals have concentrated in East China. Prediction of Lotka-Volterra model in FDI trends is accurate because the industrial interactions between the two regions are included. Finally, this work confirms that the FDI flows cannot reach a stable equilibrium point, so the FDI inflows into East and South China will expand in the future.

Keywords: Lotka-Volterra model, foreign direct investment, competitive, Equilibrium analysis

Procedia PDF Downloads 363
602 Frequency of Alloimmunization in Sickle Cell Disease Patients in Africa: A Systematic Review with Meta-analysis

Authors: Theresa Ukamaka Nwagha, Angela Ogechukwu Ugwu, Martins Nweke

Abstract:

Background and Objectives: Blood transfusion is an effective and proven treatment for some severe complications of sickle cell disease. Recurrent transfusions have put patients with sickle cell disease at risk of developing antibodies against the various antigens they were exposed to. This study aims to investigate the frequency of red blood cell alloimmunization in patients with sickle disease in Africa. Materials and Methods: This is a systematic review of peer-reviewed literature published in English. The review was conducted consistent with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist. Data sources for the review include MEDLINE, PubMed, CINAHL, and Academic Search Complete. Included in this review are articles that reported the frequency/prevalence of red blood cell alloimmunization in sickle cell disease patients in Africa. Eligible studies were subjected to independent full-text screening and data extraction. Risk of bias assessment was conducted with the aid of the mixed method appraisal tool. We employed a random-effects model of meta-analysis to estimate the pooled prevalence. We computed Cochrane’s Q statistics and I2 and prediction interval to quantify heterogeneity in effect size. Results: The prevalence estimates range from 2.6% to 29%. Pooled prevalence was estimated to be 10.4% (CI 7.7.–13.8); PI = 3.0 – 34.0%), with significant heterogeneity (I2 = 84.62; PI = 2.0-32.0%) and publication bias (Egger’s t-test = 1.744, p = 0.0965). Conclusion: The frequency of red cell alloantibody varies considerably in Africa. The alloantibodies appeared frequent in this order: the Rhesus, Kell, Lewis, Duffy, MNS, and Lutheran

Keywords: frequency, red blood cell, alloimmunization, sickle cell disease, Africa

Procedia PDF Downloads 99
601 Impact of Economic Globalization on Ecological Footprint in India: Evidenced with Dynamic ARDL Simulations

Authors: Muhammed Ashiq Villanthenkodath, Shreya Pal

Abstract:

Purpose: This study scrutinizes the impact of economic globalization on ecological footprint while endogenizing economic growth and energy consumption from 1990 to 2018 in India. Design/methodology/approach: The standard unit root test has been employed for time series analysis to unveil the integration order. Then, the cointegration was confirmed using autoregressive distributed lag (ARDL) analysis. Further, the study executed the dynamic ARDL simulation model to estimate long-run and short-run results along with simulation and robotic prediction. Findings: The cointegration analysis confirms the existence of a long-run association among variables. Further, economic globalization reduces the ecological footprint in the long run. Similarly, energy consumption decreases the ecological footprint. In contrast, economic growth spurs the ecological footprint in India. Originality/value: This study contributes to the literature in many ways. First, unlike studies that employ CO2 emissions and globalization nexus, this study employs ecological footprint for measuring environmental quality; since it is the broader measure of environmental quality, it can offer a wide range of climate change mitigation policies for India. Second, the study executes a multivariate framework with updated series from 1990 to 2018 in India to explore the link between EF, economic globalization, energy consumption, and economic growth. Third, the dynamic autoregressive distributed lag (ARDL) model has been used to explore the short and long-run association between the series. Finally, to our limited knowledge, this is the first study that uses economic globalization in the EF function of India amid facing a trade-off between sustainable economic growth and the environment in the era of globalization.

Keywords: economic globalization, ecological footprint, India, dynamic ARDL simulation model

Procedia PDF Downloads 124
600 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals

Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou

Abstract:

In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.

Keywords: continuous wavelet transform, convolution neural net-work, gated recurrent unit, health indicators, remaining useful life

Procedia PDF Downloads 133
599 Childhood Adversity and Delinquency in Youth: Self-Esteem and Depression as Mediators

Authors: Yuhui Liu, Lydia Speyer, Jasmin Wertz, Ingrid Obsuth

Abstract:

Childhood adversities refer to situations where a child's basic needs for safety and support are compromised, leading to substantial disruptions in their emotional, cognitive, social, or neurobiological development. Given the prevalence of adversities (8%-39%), their impact on developmental outcomes is challenging to completely avoid. Delinquency is an important consequence of childhood adversities, given its potential causing violence and other forms of victimisation, influencing victims, delinquents, their families, and the whole of society. Studying mediators helps explain the link between childhood adversity and delinquency, which aids in designing effective intervention programs that target explanatory variables to disrupt the path and mitigate the effects of childhood adversities on delinquency. The Dimensional Model of Adversity and Psychopathology suggests that threat-based adversities influence outcomes through emotion processing, while deprivation-based adversities do so through cognitive mechanisms. Thus, considering a wide range of threat-based and deprivation-based adversities and their co-occurrence and their associations with delinquency through cognitive and emotional mechanisms is essential. This study employs the Millennium Cohort Study, tracking the development of approximately 19,000 individuals born across England, Scotland, Wales and Northern Ireland, representing a nationally representative sample. Parallel mediation models compare the mediating roles of self-esteem (cognitive) and depression (affective) in the associations between childhood adversities and delinquency. Eleven types of childhood adversities were assessed both individually and through latent class analysis, considering adversity experiences from birth to early adolescence. This approach aimed to capture how threat-based, deprived-based, or combined threat and deprived-based adversities are associated with delinquency. Eight latent classes were identified: three classes (low adversity, especially direct and indirect violence; low childhood and moderate adolescent adversities; and persistent poverty with declining bullying victimisation) were negatively associated with delinquency. In contrast, three classes (high parental alcohol misuse, overall high adversities, especially regarding household instability, and high adversity) were positively associated with delinquency. When mediators were included, all classes showed a significant association with delinquency through depression, but not through self-esteem. Among the eleven single adversities, seven were positively associated with delinquency, with five linked through depression and none through self-esteem. The results imply the importance of affective variables, not just for threat-based but also deprivation-based adversities. Academically, this suggests exploring other mechanisms linking adversities and delinquency since some adversities are linked through neither depression nor self-esteem. Clinically, intervention programs should focus on affective variables like depression to mitigate the effects of childhood adversities on delinquency.

Keywords: childhood adversity, delinquency, depression, self-esteem

Procedia PDF Downloads 32
598 Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks

Authors: Tugba Bayoglu

Abstract:

Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated.

Keywords: air to air missile, artificial neural networks, open loop simulation, parameter identification

Procedia PDF Downloads 279
597 Numerical Tools for Designing Multilayer Viscoelastic Damping Devices

Authors: Mohammed Saleh Rezk, Reza Kashani

Abstract:

Auxiliary damping has gained popularity in recent years, especially in structures such as mid- and high-rise buildings. Distributed damping systems (typically viscous and viscoelastic) or reactive damping systems (such as tuned mass dampers) are the two types of damping choices for such structures. Distributed VE dampers are normally configured as braces or damping panels, which are engaged through relatively small movements between the structural members when the structure sways under wind or earthquake loading. In addition to being used as stand-alone dampers in distributed damping applications, VE dampers can also be incorporated into the suspension element of tuned mass dampers (TMDs). In this study, analytical and numerical tools for modeling and design of multilayer viscoelastic damping devices to be used in dampening the vibration of large structures are developed. Considering the limitations of analytical models for the synthesis and analysis of realistic, large, multilayer VE dampers, the emphasis of the study has been on numerical modeling using the finite element method. To verify the finite element models, a two-layer VE damper using ½ inch synthetic viscoelastic urethane polymer was built, tested, and the measured parameters were compared with the numerically predicted ones. The numerical model prediction and experimentally evaluated damping and stiffness of the test VE damper were in very good agreement. The effectiveness of VE dampers in adding auxiliary damping to larger structures is numerically demonstrated by chevron bracing one such damper numerically into the model of a massive frame subject to an abrupt lateral load. A comparison of the responses of the frame to the aforementioned load, without and with the VE damper, clearly shows the efficacy of the damper in lowering the extent of frame vibration.

Keywords: viscoelastic, damper, distributed damping, tuned mass damper

Procedia PDF Downloads 107
596 Cement Bond Characteristics of Artificially Fabricated Sandstones

Authors: Ashirgul Kozhagulova, Ainash Shabdirova, Galym Tokazhanov, Minh Nguyen

Abstract:

The synthetic rocks have been advantageous over the natural rocks in terms of availability and the consistent studying the impact of a particular parameter. The artificial rocks can be fabricated using variety of techniques such as mixing sand and Portland cement or gypsum, firing the mixture of sand and fine powder of borosilicate glass or by in-situ precipitation of calcite solution. In this study, sodium silicate solution has been used as the cementing agent for the quartz sand. The molded soft cylindrical sandstone samples are placed in the gas-tight pressure vessel, where the hardening of the material takes place as the chemical reaction between carbon dioxide and the silicate solution progresses. The vessel allows uniform disperse of carbon dioxide and control over the ambient gas pressure. Current paper shows how the bonding material is initially distributed in the intergranular space and the surface of the sand particles by the usage of Electron Microscopy and the Energy Dispersive Spectroscopy. During the study, the strength of the cement bond as a function of temperature is observed. The impact of cementing agent dosage on the micro and macro characteristics of the sandstone is investigated. The analysis of the cement bond at micro level helps to trace the changes to particles bonding damage after a potential yielding. Shearing behavior and compressional response have been examined resulting in the estimation of the shearing resistance and cohesion force of the sandstone. These are considered to be main input values to the mathematical prediction models of sand production from weak clastic oil reservoir formations.

Keywords: artificial sanstone, cement bond, microstructure, SEM, triaxial shearing

Procedia PDF Downloads 167
595 Inverse Prediction of Thermal Parameters of an Annular Hyperbolic Fin Subjected to Thermal Stresses

Authors: Ashis Mallick, Rajeev Ranjan

Abstract:

The closed form solution for thermal stresses in an annular fin with hyperbolic profile is derived using Adomian decomposition method (ADM). The conductive-convective fin with variable thermal conductivity is considered in the analysis. The nonlinear heat transfer equation is efficiently solved by ADM considering insulated convective boundary conditions at the tip of fin. The constant of integration in the solution is to be estimated using minimum decomposition error method. The solution of temperature field is represented in a polynomial form for convenience to use in thermo-elasticity equation. The non-dimensional thermal stress fields are obtained using the ADM solution of temperature field coupled with the thermo-elasticity solution. The influence of the various thermal parameters in temperature field and stress fields are presented. In order to show the accuracy of the ADM solution, the present results are compared with the results available in literature. The stress fields in fin with hyperbolic profile are compared with those of uniform thickness profile. Result shows that hyperbolic fin profile is better choice for enhancing heat transfer. Moreover, less thermal stresses are developed in hyperbolic profile as compared to rectangular profile. Next, Nelder-Mead based simplex search method is employed for the inverse estimation of unknown non-dimensional thermal parameters in a given stress fields. Owing to the correlated nature of the unknowns, the best combinations of the model parameters which are satisfying the predefined stress field are to be estimated. The stress fields calculated using the inverse parameters give a very good agreement with the stress fields obtained from the forward solution. The estimated parameters are suitable to use for efficient and cost effective fin designing.

Keywords: Adomian decomposition, inverse analysis, hyperbolic fin, variable thermal conductivity

Procedia PDF Downloads 327
594 Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure

Authors: Omar Bouledroua, Djamel Zelmati, Zahreddine Hafsi, Milos B. Djukic

Abstract:

Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines.

Keywords: hydrogen embrittlement, pipelines, transient flow, cyclic pressure, fatigue crack growth

Procedia PDF Downloads 88
593 Sustainability of Small Tourism Enterprises: A Comparison of Homestays and Independent Businesses from Ghalegaon and Ghandruk of the Annapurna Conservation Area, Nepal

Authors: Baikuntha Prasad Acharya, Elizabeth Halpenny

Abstract:

Small tourism enterprises (STEs) are primary providers of services and attractions in many destinations of less developed countries; they are considered the lifeblood of tourism sector. Furthermore, in rural community destinations of such countries including Nepal, STEs are regarded as alternative tools for advancing economic and sociocultural transformations. Many families in rural Nepali destinations are venturing into small tourism entrepreneurship so that their poverty can be reduced and they can live a sustained life. Most these communities are utilizing their lifestyles and natural and cultural heritages as tourism attractions. This study aimed to understand the sustainability of the STEs in rural destinations by synthesizing observations from Ghalegaon and Ghandruk of the Annapurna Conservation Area in western Nepal. Ghalegaon has community-based homestays and Ghandruk has independently owned and operated small tourism businesses such as cafes, tea houses, lodges, guest houses, and hotels, etc. The community-based homestays of Ghalegaon are compared with the independently owned and operated STEs of Ghandruk. The data were collected through multiple sources: 1) survey of tourists (n=112) and households (n=191); 2) interviews (n=14) with the locals, 3) group discussions (n=10) with different local groups including that of regional tourism players, experts and policy makers, 4) observations, and 5) document analysis. The STEs of both communities were first analyzed by understanding their level of sustainability as businesses, and then were explored how they were impacting on respective communities’ sustainability. The survey indicators and guidelines for interviews and group discussions were adapted to the Nepalese context based on four pillars of sustainability: economic, social, cultural and environmental; an additional dimension of management was also included, particularly for the STEs. The findings have shown a weaker economic and management dimensions of Ghalegaon’s Homestay than that of Ghandruk’s STEs. Some interesting social complexities of rural tourism and entrepreneurship were also revealed. This study’s findings do not much resonate to what Nepal government’s current rural tourism strategies that have been envisioned and prioritized for, particularly that the rural homestay tourism opportunities enhance inclusiveness of women and other deprived communities by spreading the benefits to the grassroots level. The study has highlighted several important applied implications to the local tourism management committees, tourism operators and associations, and regional and national tourism authorities. Further studies are advisable in other similar contexts in Nepal and in other countries to see whether there are variances in the findings.

Keywords: Nepal, rural tourism communities, small tourism enterprises, sustainability

Procedia PDF Downloads 335
592 Off-Shore Wind Turbines: The Issue of Soil Plugging during Pile Installation

Authors: Mauro Iannazzone, Carmine D'Agostino

Abstract:

Off-shore wind turbines are currently considered as a reliable source of renewable energy Worldwide and especially in the UK. Most of the operational off-shore wind turbines located in shallow waters (i.e. < 30 m) are supported on monopiles. Monopiles are open-ended steel tubes with diameter ranging between 4 to 6 m. It is expected that future off-shore wind farms will be located in water depths as high as 70 m. Therefore, alternative foundation arrangements are needed. Foundations for off-shore structures normally consist of open-ended piles driven into the soil by means of impact hammers. During pile installation, the soil inside the pile may be mobilized by the increasing shear strength such as to prevent more soil from entering the pile. This phenomenon is known as soil plugging, and represents an important issue as it may change significantly the driving resistance of open-ended piles. In fact, if the plugging formation is unexpected, the installation may require more powerful and more expensive hammers. Engineers need to estimate whether the driven pile will be installed in a plugged or unplugged mode. As a consequence, a prediction of the degree of soil plugging is required in order to correctly predict the drivability of the pile. This work presents a brief review of the state-of-the-art of pile driving and approaches used to predict formation of soil plugs. In addition, a novel analytical approach is proposed, which is based on the vertical equilibrium of a plugged pile. Differently from previous studies, this research takes into account the enhancement of the stress within the soil plug. Finally, the work presents and discusses a series of experimental tests, which are carried out on small-scale models piles to validate the analytical solution.

Keywords: off-shore wind turbines, pile installation, soil plugging, wind energy

Procedia PDF Downloads 312
591 Rumination Time and Reticuloruminal Temperature around Calving in Eutocic and Dystocic Dairy Cows

Authors: Levente Kovács, Fruzsina Luca Kézér, Ottó Szenci

Abstract:

Prediction of the onset of calving and recognizing difficulties at calving has great importance in decreasing neonatal losses and reducing the risk of health problems in the early postpartum period. In this study, changes of rumination time, reticuloruminal pH and temperature were investigated in eutocic (EUT, n = 10) and dystocic (DYS, n = 8) dairy cows around parturition. Rumination time was continuously recorded using an acoustic biotelemetry system, whereas reticuloruminal pH and temperature were recorded using an indwelling and wireless data transmitting system. The recording period lasted from 3 d before calving until 7 days in milk. For the comparison of rumination time and reticuloruminal characteristics between groups, time to return to baseline (the time interval required to return to baseline from the delivery of the calf) and area under the curve (AUC, both for prepartum and postpartum periods) were calculated for each parameter. Rumination time decreased from baseline 28 h before calving both for EUT and DYS cows (P = 0.023 and P = 0.017, respectively). After 20 h before calving, it decreased onwards to reach 32.4 ± 2.3 and 13.2 ± 2.0 min/4 h between 8 and 4 h before delivery in EUT and DYS cows, respectively, and then it decreased below 10 and 5 min during the last 4 h before calving (P = 0.003 and P = 0.008, respectively). Until 12 h after delivery rumination time reached 42.6 ± 2.7 and 51.0 ± 3.1 min/4 h in DYS and EUT dams, respectively, however, AUC and time to return to baseline suggested lower rumination activity in DYS cows than in EUT dams for the 168-h postpartum observational period (P = 0.012 and P = 0.002, respectively). Reticuloruminal pH decreased from baseline 56 h before calving both for EUT and DYS cows (P = 0.012 and P = 0.016, respectively), but did not differ between groups before delivery. In DYS cows, reticuloruminal temperature decreased from baseline 32 h before calving by 0.23 ± 0.02 °C (P = 0.012), whereas in EUT cows such a decrease was found only 20 h before delivery (0.48 ± 0.05 °C, P < 0.01). AUC of reticuloruminal temperature calculated for the prepartum period was greater in EUT cows than in DYS cows (P = 0.042). During the first 4 h after calving, it decreased from 39.7 ± 0.1 to 39.00 ± 0.1 °C and from 39.8 ± 0.1 to 38.8 ± 0.1 °C in EUT and DYS cows, respectively (P < 0.01 for both groups) and reached baseline levels after 35.4 ± 3.4 and 37.8 ± 4.2 h after calving in EUT and DYS cows, respectively. Based on our results, continuous monitoring of changes in rumination time and reticuloruminal temperature seems to be promising in the early detection of cows with a higher risk of dystocia. Depressed postpartum rumination time of DYS cows highlights the importance of the monitoring of cows experiencing difficulties at calving.

Keywords: reticuloruminal pH, reticuloruminal temperature, rumination time, dairy cows, dystocia

Procedia PDF Downloads 315
590 Cognitive Science Based Scheduling in Grid Environment

Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya

Abstract:

Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.

Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence

Procedia PDF Downloads 394
589 Strategic Interventions to Combat Socio-economic Impacts of Drought in Thar - A Case Study of Nagarparkar

Authors: Anila Hayat

Abstract:

Pakistan is one of those developing countries that are least involved in emissions but has the most vulnerable environmental conditions. Pakistan is ranked 8th in most affected countries by climate change on the climate risk index 1992-2011. Pakistan is facing severe water shortages and flooding as a result of changes in rainfall patterns, specifically in the least developed areas such as Tharparkar. Nagarparkar, once an attractive tourist spot located in Tharparkar because of its tropical desert climate, is now facing severe drought conditions for the last few decades. This study investigates the present socio-economic situation of local communities, major impacts of droughts and their underlying causes and current mitigation strategies adopted by local communities. The study uses both secondary (quantitative in nature) and primary (qualitative in nature) methods to understand the impacts and explore causes on the socio-economic life of local communities of the study area. The relevant data has been collected through household surveys using structured questionnaires, focus groups and in-depth interviews of key personnel from local and international NGOs to explore the sensitivity of impacts and adaptation to droughts in the study area. This investigation is limited to four rural communities of union council Pilu of Nagarparkar district, including Bheel, BhojaBhoon, Mohd Rahan Ji Dhani and Yaqub Ji Dhani villages. The results indicate that drought has caused significant economic and social hardships for the local communities as more than 60% of the overall population is dependent on rainfall which has been disturbed by irregular rainfall patterns. The decline in Crop yields has forced the local community to migrate to nearby areas in search of livelihood opportunities. Communities have not undertaken any appropriate adaptive actions to counteract the adverse effect of drought; they are completely dependent on support from the government and external aid for survival. Respondents also reported that poverty is a major cause of their vulnerability to drought. An increase in population, limited livelihood opportunities, caste system, lack of interest from the government sector, unawareness shaped their vulnerability to drought and other social issues. Based on the findings of this study, it is recommended that the local authorities shall create awareness about drought hazards and improve the resilience of communities against drought. It is further suggested to develop, introduce and implement water harvesting practices at the community level to promote drought-resistant crops.

Keywords: migration, vulnerability, awareness, Drought

Procedia PDF Downloads 132
588 Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model

Authors: Didier Auroux, Vladimir Groza

Abstract:

This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed.

Keywords: Abrasive Waterjet Milling, inverse problem, model parameters identification, regularization

Procedia PDF Downloads 316
587 Quoting Jobshops Due Dates Subject to Exogenous Factors in Developing Nations

Authors: Idris M. Olatunde, Kareem B.

Abstract:

In manufacturing systems, especially job shops, service performance is a key factor that determines customer satisfaction. Service performance depends not only on the quality of the output but on the delivery lead times as well. Besides product quality enhancement, delivery lead time must be minimized for optimal patronage. Quoting accurate due dates is sine quo non for job shop operational survival in a global competitive environment. Quoting accurate due dates in job shops has been a herculean task that nearly defiled solutions from many methods employed due to complex jobs routing nature of the system. This class of NP-hard problems possessed no rigid algorithms that can give an optimal solution. Jobshop operational problem is more complex in developing nations due to some peculiar factors. Operational complexity in job shops emanated from political instability, poor economy, technological know-how, and the non-promising socio-political environment. The mentioned exogenous factors were hardly considered in the previous studies on scheduling problem related to due date determination in job shops. This study has filled the gap created in the past studies by developing a dynamic model that incorporated the exogenous factors for accurate determination of due dates for varying jobs complexity. Real data from six job shops selected from the different part of Nigeria, were used to test the efficacy of the model, and the outcomes were analyzed statistically. The results of the analyzes showed that the model is more promising in determining accurate due dates than the traditional models deployed by many job shops in terms of patronage and lead times minimization.

Keywords: due dates prediction, improved performance, customer satisfaction, dynamic model, exogenous factors, job shops

Procedia PDF Downloads 412
586 Integrative Transcriptomic Profiling of NK Cells and Monocytes: Advancing Diagnostic and Therapeutic Strategies for COVID-19

Authors: Salma Loukman, Reda Benmrid, Najat Bouchmaa, Hicham Hboub, Rachid El Fatimy, Rachid Benhida

Abstract:

In this study, it use integrated transcriptomic datasets from the GEO repository with the purpose of investigating immune dysregulation in COVID-19. Thus, in this context, we decided to be focused on NK cells and CD14+ monocytes gene expression, considering datasets GSE165461 and GSE198256, respectively. Other datasets with PBMCs, lung, olfactory, and sensory epithelium and lymph were used to provide robust validation for our results. This approach gave an integrated view of the immune responses in COVID-19, pointing out a set of potential biomarkers and therapeutic targets with special regard to standards of physiological conditions. IFI27, MKI67, CENPF, MBP, HBA2, TMEM158, THBD, HBA1, LHFPL2, SLA, and AC104564.3 were identified as key genes from our analysis that have critical biological processes related to inflammation, immune regulation, oxidative stress, and metabolic processes. Consequently, such processes are important in understanding the heterogeneous clinical manifestations of COVID-19—from acute to long-term effects now known as 'long COVID'. Subsequent validation with additional datasets consolidated these genes as robust biomarkers with an important role in the diagnosis of COVID-19 and the prediction of its severity. Moreover, their enrichment in key pathophysiological pathways presented them as potential targets for therapeutic intervention.The results provide insight into the molecular dynamics of COVID-19 caused by cells such as NK cells and other monocytes. Thus, this study constitutes a solid basis for targeted diagnostic and therapeutic development and makes relevant contributions to ongoing research efforts toward better management and mitigation of the pandemic.

Keywords: SARS-COV-2, RNA-seq, biomarkers, severity, long COVID-19, bio analysis

Procedia PDF Downloads 12
585 Design, Synthesis and Pharmacological Investigation of Novel 2-Phenazinamine Derivatives as a Mutant BCR-ABL (T315I) Inhibitor

Authors: Gajanan M. Sonwane

Abstract:

Nowadays, the entire pharmaceutical industry is facing the challenge of increasing efficiency and innovation. The major hurdles are the growing cost of research and development and a concurrent stagnating number of new chemical entities (NCEs). Hence, the challenge is to select the most druggable targets and to search the equivalent drug-like compounds, which also possess specific pharmacokinetic and toxicological properties that allow them to be developed as drugs. The present research work includes the studies of developing new anticancer heterocycles by using molecular modeling techniques. The heterocycles synthesized through such methodology are much effective as various physicochemical parameters have been already studied and the structure has been optimized for its best fit in the receptor. Hence, on the basis of the literature survey and considering the need to develop newer anticancer agents, new phenazinamine derivatives were designed by subjecting the nucleus to molecular modeling, viz., GQSAR analysis and docking studies. Simultaneously, these designed derivatives were subjected to in silico prediction of biological activity through PASS studies and then in silico toxicity risk assessment studies. In PASS studies, it was found that all the derivatives exhibited a good spectrum of biological activities confirming its anticancer potential. The toxicity risk assessment studies revealed that all the derivatives obey Lipinski’s rule. Amongst these series, compounds 4c, 5b and 6c were found to possess logP and drug-likeness values comparable with the standard Imatinib (used for anticancer activity studies) and also with the standard drug methotrexate (used for antimitotic activity studies). One of the most notable mutations is the threonine to isoleucine mutation at codon 315 (T315I), which is known to be resistant to all currently available TKI. Enzyme assay planned for confirmation of target selective activity.

Keywords: drug design, tyrosine kinases, anticancer, Phenazinamine

Procedia PDF Downloads 116
584 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane

Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo

Abstract:

Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.

Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining

Procedia PDF Downloads 86
583 Optimizing the Window Geometry Using Fractals

Authors: K. Geetha Ramesh, A. Ramachandraiah

Abstract:

In an internal building space, daylight becomes a powerful source of illumination. The challenge therefore, is to develop means of utilizing both direct and diffuse natural light in buildings while maintaining and improving occupant's visual comfort, particularly at greater distances from the windows throwing daylight. The geometrical features of windows in a building have significant effect in providing daylight. The main goal of this research is to develop an innovative window geometry, which will effectively provide the daylight component adequately together with internal reflected component(IRC) and also the external reflected component(ERC), if any. This involves exploration of a light redirecting system using fractal geometry for windows, in order to penetrate and distribute daylight more uniformly to greater depths, minimizing heat gain and glare, and also to reduce building energy use substantially. Of late the creation of fractal geometrical window and the occurrence of daylight illuminance due to such windows is becoming an interesting study. The amount of daylight can change significantly based on the window geometry and sky conditions. This leads to the (i) exploration of various fractal patterns suitable for window designs, and (ii) quantification of the effect of chosen fractal window based on the relationship between the fractal pattern, size, orientation and glazing properties for optimizing daylighting. There are a lot of natural lighting applications able to predict the behaviour of a light in a room through a traditional opening - a regular window. The conventional prediction methodology involves the evaluation of the daylight factor, the internal reflected component and the external reflected component. Having evaluated the daylight illuminance level for a conventional window, the technical performance of a fractal window for an optimal daylighting is to be studied and compared with that of a regular window. The methodologies involved are highlighted in this paper.

Keywords: daylighting, fractal geometry, fractal window, optimization

Procedia PDF Downloads 301
582 Recurrent Neural Networks for Complex Survival Models

Authors: Pius Marthin, Nihal Ata Tutkun

Abstract:

Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional and machine learning models and our model demonstrates better performance across all datasets.

Keywords: cumulative incidence function (CIF), risk information weight (RIW), autoencoders (AE), survival analysis, recurrent events with competing risks, recurrent neural networks (RNN), long short-term memory (LSTM), self-attention, multilayers perceptrons (MLPs)

Procedia PDF Downloads 89
581 Civic E-Participation in Central and Eastern Europe: A Comparative Analysis

Authors: Izabela Kapsa

Abstract:

Civic participation is an important aspect of democracy. The contemporary model of democracy is based on citizens' participation in political decision-making (deliberative democracy, participatory democracy). This participation takes many forms of activities like display of slogans and symbols, voting, social consultations, political demonstrations, membership in political parties or organizing civil disobedience. The countries of Central and Eastern Europe after 1989 are characterized by great social, economic and political diversity. Civil society is also part of the process of democratization. Civil society, funded by the rule of law, civil rights, such as freedom of speech and association and private ownership, was to play a central role in the development of liberal democracy. Among the many interpretations of concepts, defining the concept of contemporary democracy, one can assume that the terms civil society and democracy, although different in meaning, nowadays overlap. In the post-communist countries, the process of shaping and maturing societies took place in the context of a struggle with a state governed by undemocratic power. State fraud or repudiation of the institution is a representative state, which in the past was the only way to manifest and defend its identity, but after the breakthrough became one of the main obstacles to the development of civil society. In Central and Eastern Europe, there are many obstacles to the development of civil society, for example, the elimination of economic poverty, the implementation of educational campaigns, consciousness-related obstacles, the formation of social capital and the deficit of social activity. Obviously, civil society does not only entail an electoral turnout but a broader participation in the decision-making process, which is impossible without direct and participative democratic institutions. This article considers such broad forms of civic participation and their characteristics in Central and Eastern Europe. The paper is attempts to analyze the functioning of electronic forms of civic participation in Central and Eastern European states. This is not accompanied by a referendum or a referendum initiative, and other forms of political participation, such as public consultations, participative budgets, or e-Government. However, this paper will broadly present electronic administration tools, the application of which results from both legal regulations and increasingly common practice in state and city management. In the comparative analysis, the experiences of post-communist bloc countries will be summed up to indicate the challenges and possible goals for further development of this form of citizen participation in the political process. The author argues that for to function efficiently and effectively, states need to involve their citizens in the political decision-making process, especially with the use of electronic tools.

Keywords: Central and Eastern Europe, e-participation, e-government, post-communism

Procedia PDF Downloads 193
580 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty

Authors: D. S. Gomes, A. T. Silva

Abstract:

Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.

Keywords: logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation

Procedia PDF Downloads 291
579 The Impression of Adaptive Capacity of the Rural Community in the Indian Himalayan Region: A Way Forward for Sustainable Livelihood Development

Authors: Rommila Chandra, Harshika Choudhary

Abstract:

The value of integrated, participatory, and community based sustainable development strategies is eminent, but in practice, it still remains fragmentary and often leads to short-lived results. Despite the global presence of climate change, its impacts are felt differently by different communities based on their vulnerability. The developing countries have the low adaptive capacity and high dependence on environmental variables, making them highly susceptible to outmigration and poverty. We need to understand how to enable these approaches, taking into account the various governmental and non-governmental stakeholders functioning at different levels, to deliver long-term socio-economic and environmental well-being of local communities. The research assessed the financial and natural vulnerability of Himalayan networks, focusing on their potential to adapt to various changes, through accessing their perceived reactions and local knowledge. The evaluation was conducted by testing indices for vulnerability, with a major focus on indicators for adaptive capacity. Data for the analysis were collected from the villages around Govind National Park and Wildlife Sanctuary, located in the Indian Himalayan Region. The villages were stratified on the basis of connectivity via road, thus giving two kinds of human settlements connected and isolated. The study focused on understanding the complex relationship between outmigration and the socio-cultural sentiments of local people to not abandon their land, assessing their adaptive capacity for livelihood opportunities, and exploring their contribution that integrated participatory methodologies can play in delivering sustainable development. The result showed that the villages having better road connectivity, access to market, and basic amenities like health and education have a better understanding about the climatic shift, natural hazards, and a higher adaptive capacity for income generation in comparison to the isolated settlements in the hills. The participatory approach towards environmental conservation and sustainable use of natural resources were seen more towards the far-flung villages. The study helped to reduce the gap between local understanding and government policies by highlighting the ongoing adaptive practices and suggesting precautionary strategies for the community studied based on their local conditions, which differ on the basis of connectivity and state of development. Adaptive capacity in this study has been taken as the externally driven potential of different parameters, leading to a decrease in outmigration and upliftment of the human environment that could lead to sustainable livelihood development in the rural areas of Himalayas.

Keywords: adaptive capacity, Indian Himalayan region, participatory, sustainable livelihood development

Procedia PDF Downloads 118
578 Sensitivity Analysis of the Thermal Properties in Early Age Modeling of Mass Concrete

Authors: Farzad Danaei, Yilmaz Akkaya

Abstract:

In many civil engineering applications, especially in the construction of large concrete structures, the early age behavior of concrete has shown to be a crucial problem. The uneven rise in temperature within the concrete in these constructions is the fundamental issue for quality control. Therefore, developing accurate and fast temperature prediction models is essential. The thermal properties of concrete fluctuate over time as it hardens, but taking into account all of these fluctuations makes numerical models more complex. Experimental measurement of the thermal properties at the laboratory conditions also can not accurately predict the variance of these properties at site conditions. Therefore, specific heat capacity and the heat conductivity coefficient are two variables that are considered constant values in many of the models previously recommended. The proposed equations demonstrate that these two quantities are linearly decreasing as cement hydrates, and their value are related to the degree of hydration. The effects of changing the thermal conductivity and specific heat capacity values on the maximum temperature and the time it takes for concrete to reach that temperature are examined in this study using numerical sensibility analysis, and the results are compared to models that take a fixed value for these two thermal properties. The current study is conducted in 7 different mix designs of concrete with varying amounts of supplementary cementitious materials (fly ash and ground granulated blast furnace slag). It is concluded that the maximum temperature will not change as a result of the constant conductivity coefficient, but variable specific heat capacity must be taken into account, also about duration when a concrete's central node reaches its max value again variable specific heat capacity can have a considerable effect on the final result. Also, the usage of GGBFS has more influence compared to fly ash.

Keywords: early-age concrete, mass concrete, specific heat capacity, thermal conductivity coefficient

Procedia PDF Downloads 77
577 Analysis of Adolescents Birth Rate in Zimbabwe: The Case of High Widening Gap between Rural and Urban Areas, Secondary Analysis from the 2022 National Population and Housing Census

Authors: Mercy Marimirofa, Farai Machinga, Alfred Zvoushe, Tsitsidzaishe Musvosvi

Abstract:

Adolescent Birth rate (ABR) is an important indicator of both gender equality and equity in the country. This is the number of births to women aged between 15 and 19 years per 1000 live births. There has been a decreasing trend in ABR in Zimbabwe since 2014. However, the difference between rural areas and urban areas has continued to widen. A secondary analysis was conducted to assess the differences in ABR between the rural areas of Zimbabwe and the urban areas. This was also done to determine the root causes of high ABR in rural areas compared to urban areas and the impact this may cause to the economic development of the nation. The analysis was done according to geographical characteristics (provinces). A total of 69,335 females aged 10 to 19 years had live births among a total population of 791,914 females aged 15 to 19 years. The total Adolescent Birth rate in Zimbabwe is 87/1000 live births, while in rural areas, it is 114.4/1000 live births compared to urban areas, which is 49.7/1000 live births. A decrease in the ABR trends has been recorded since 2014 from 143/1000 live births among adolescents in rural areas to 97/1000 live births in urban areas. This shows that rural areas still have high rates of ABR compared to their urban counterparts, and the gap is still wide. High ABR is a result of early child marriages, teenage pregnancies as well as poverty. Most of these marriages (46%) are intergenerational relationships and have resulted in an increase in gender-based violence cases among adolescents, poor health outcomes, including pregnancy complications such as eclampsia, Cephalous Pelvic Disproportion (CPD), and obstructed labour. Maternal deaths among adolescence is also high compared to adults. Furthermore, the increase of school dropouts among adolescent girls is on the rise due to teen pregnancies. These challenges are being faced mostly by rural adolescent girls as compared to their urban counterparts. The widening gap in ABR between urban areas and rural areas is a matter of concern and needs to be addressed. There is a need to inform policy, programming, and interventions targeting rural areas to address the challenges and gaps in reducing ABR. This abstract is to inform policymakers on the strategies and resources required to address the challenges currently distressing adolescents. There is a need to improve access to Sexual and Reproductive Health (SRH) Services by adolescents and reduce the age of consent to access SRH services should be reduced from 18 years for ease access to young people to reduce teenage pregnancies. Comprehensive sexuality education, both in-school and out of school, should be strengthened to increase knowledge among young people on sexuality.

Keywords: adolescence birth rate, live birth, teenage pregnancies, SRH services

Procedia PDF Downloads 80
576 Correlation between Neck Circumference and Other Anthropometric Indices as a Predictor of Obesity

Authors: Madhur Verma, Meena Rajput, Kamal Kishore

Abstract:

Background: The general view that obesity is a problem of prosperous Western countries has been repealed with substantial evidence showing that middle-income countries like India are now at the heart of a fat explosion. Neck circumference has evolved as a promising index to measure obesity, because of the convenience of its use, even in culture sensitive population. Objectives: To determine whether neck circumference (NC) was associated with overweight and obesity and contributed to the prediction like other classical anthropometric indices. Methodology: Cross-sectional study consisting of 1080 adults (> 19 years) selected through Multi-stage random sampling between August 2013 and September 2014 using the pretested semi-structured questionnaire. After recruitment, the demographic and anthropometric parameters [BMI, Waist & Hip Circumference (WC, HC), Waist to hip ratio (WHR), waist to height ratio (WHtR), body fat percentage (BF %), neck circumference (NC)] were recorded & calculated as per standard procedures. Analysis was done using appropriate statistical tests. (SPSS, version 21.) Results: Mean age of study participants was 44.55+15.65 years. Overall prevalence of overweight & obesity as per modified criteria for Asian Indians (BMI ≥ 23 kg/m2) was 49.62% (Females-51.48%; Males-47.77%). Also, number of participants having high WHR, WHtR, BF%, WC & NC was 827(76.57%), 530(49.07%), 513(47.5%), 537(49.72%) & 376(34.81%) respectively. Variation of NC, BMI & BF% with age was non- significant. In both the genders, as per the Pearson’s correlational analysis, neck circumference was positively correlated with BMI (men, r=0.670 {p < 0.05}; women, r=0.564 {p < 0.05}), BF% (men, r=0.407 {p < 0.05}; women, r= 0.283 {p < 0.05}), WC (men, r=0.598{p < 0.05}; women, r=0.615 {p < 0.05}), HC (men, r=0.512{p < 0.05}; women, r=0.523{p < 0.05}), WHR (men, r= 0.380{p > 0.05}; women, r=0.022{p > 0.05}) & WHtR (men, r=0.318 {p < 0.05}; women, r=0.396{p < 0.05}). On ROC analysis, NC showed good discriminatory power to identify obesity with AUC (AUC for males: 0.822 & females: 0.873; p- value < 0.001) with maximum sensitivity and specificity at a cut-off value of 36.55 cms for males & 34.05cms for females. Conclusion: NC has fair validity as a community-based screener for overweight and obese individuals in the study context and has also correlated well with other classical indices.

Keywords: neck circumference, obesity, anthropometric indices, body fat percentage

Procedia PDF Downloads 248
575 In silico Subtractive Genomics Approach for Identification of Strain-Specific Putative Drug Targets among Hypothetical Proteins of Drug-Resistant Klebsiella pneumoniae Strain 825795-1

Authors: Umairah Natasya Binti Mohd Omeershffudin, Suresh Kumar

Abstract:

Klebsiella pneumoniae, a Gram-negative enteric bacterium that causes nosocomial and urinary tract infections. Particular concern is the global emergence of multidrug-resistant (MDR) strains of Klebsiella pneumoniae. Characterization of antibiotic resistance determinants at the genomic level plays a critical role in understanding, and potentially controlling, the spread of multidrug-resistant (MDR) pathogens. In this study, drug-resistant Klebsiella pneumoniae strain 825795-1 was investigated with extensive computational approaches aimed at identifying novel drug targets among hypothetical proteins. We have analyzed 1099 hypothetical proteins available in genome. We have used in-silico genome subtraction methodology to design potential and pathogen-specific drug targets against Klebsiella pneumoniae. We employed bioinformatics tools to subtract the strain-specific paralogous and host-specific homologous sequences from the bacterial proteome. The sorted 645 proteins were further refined to identify the essential genes in the pathogenic bacterium using the database of essential genes (DEG). We found 135 unique essential proteins in the target proteome that could be utilized as novel targets to design newer drugs. Further, we identified 49 cytoplasmic protein as potential drug targets through sub-cellular localization prediction. Further, we investigated these proteins in the DrugBank databases, and 11 of the unique essential proteins showed druggability according to the FDA approved drug bank databases with diverse broad-spectrum property. The results of this study will facilitate discovery of new drugs against Klebsiella pneumoniae.

Keywords: pneumonia, drug target, hypothetical protein, subtractive genomics

Procedia PDF Downloads 176