Search results for: polymer thin film
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3214

Search results for: polymer thin film

784 Graphene-Reinforced Silicon Oxycarbide Composite with Lamellar Structures Prepared by the Phase Transfer Method

Authors: Min Yu, Olivier T. Picot, Theo Graves Saunders, Ivo Dlouhy, Amit Mahajan, Michael J. Reece

Abstract:

Graphene was successfully introduced into a polymer-derived silicon oxycarbide (SiOC) matrix by phase transfer of graphene oxide (GO) from an aqueous (GO dispersed in water) to an organic phase (copolymer as SiOC precursor in diethyl ether). With GO concentrations increasing up to 2 vol%, graphene-containing flakes self-assembled into a lamellar structure in the matrix leading to composite with the anisotropic property. Spark plasma sintering (SPS) was applied to densify the composites with four different GO concentrations (0, 0.5, 1 and 2 vol%) up to ~2.3 g/cm3. The fracture toughness of SiOC-2 vol% GO composites was significantly increased by ~91% (from 0.70 to 1.34 MPa·m¹/²), at the expense of a decrease in the flexural strength (from 85MPa to 55MPa), compared to SiOC-0 vol% GO composites. Moreover, the electrical conductivity in the perpendicular direction (σ┴=3×10⁻¹ S/cm) in SiOC-2 vol% GO composite was two orders of magnitude higher than the parallel direction (σ║=4.7×10⁻³ S/cm) owing to the self-assembled lamellar structure of graphene in the SiOC matrix. The composites exhibited increased electrical conductivity (σ┴) from 8.4×10⁻³ to 3×10⁻¹ S/cm, with the increasing GO content from 0.5 to 2 vol%. The SiOC-2 vol% GO composites further showed the better electrochemical performance of oxygen reduction reaction (ORR) than pure graphene, exhibiting a similar onset potential (~0.75V vs. RHE) and more positive half-wave potential (~0.6V vs. RHE).

Keywords: composite, fracture toughness, flexural strength, electrical conductivity, electrochemical performance

Procedia PDF Downloads 153
783 Topic Prominence and Temporal Encoding in Mandarin Chinese

Authors: Tzu-I Chiang

Abstract:

A central question for finite-nonfinite distinction in Mandarin Chinese is how does Mandarin encode temporal information without the grammatical contrast between past and present tense. Moreover, how do L2 learners of Mandarin whose native language is English and whose L1 system has tense morphology, acquire the temporal encoding system in L2 Mandarin? The current study reports preliminary findings on the relationship between topic prominence and the temporal encoding in L1 and L2 Chinese. Oral narratives data from 30 natives and learners of Mandarin Chinese were collected via a film-retell task. In terms of coding, predicates collected from the narratives were transcribed and then coded based on four major verb types: n-degree Statives (quality-STA), point-scale Statives (status-STA), n-atom EVENT (ACT), and point EVENT (resultative-ACT). How native speakers and non-native speakers started retelling the story was calculated. Results of the study show that native speakers of Chinese tend to express Topic Time (TT) syntactically at the topic position; whereas L2 learners of Chinese across levels rely mainly on the default time encoded in the event types. Moreover, as the proficiency level of the learner increases, learners’ appropriate use of the event predicates increased, which supports the argument that L2 development of temporal encoding is affected by lexical aspect.

Keywords: topic prominence, temporal encoding, lexical aspect, L2 acquisition

Procedia PDF Downloads 187
782 Magnetic Field Induced Mechanical Behavior of Fluid Filled Carbon Nanotube Foam

Authors: Siva Kumar Reddy, Anwesha Mukherjee, Abha Misra

Abstract:

Excellent energy absorption capability in carbon nanotubes (CNT) is shown in their bulk structure that behaves like super compressible foam. Furthermore, a tunable mechanical behavior of CNT foam is achieved using several methods like changing the concentration of precursors, polymer impregnation, non covalent functionalization of CNT microstructure etc. Influence of magnetic field on compressive behavior of magnetic CNT demonstrated an enhanced peak stress and energy absorption capability, which does not require any surface and structural modification of the foam. This presentation discusses the mechanical behavior of micro porous CNT foam that is impregnated in magnetic field responsive fluid. Magnetic particles are dispersed in a nonmagnetic fluid so that alignment of both particles and CNT could play a crucial role in controlling the stiffness of the overall structure. It is revealed that the compressive behavior of CNT foam critically depends on the fluid viscosity as well as magnetic field intensity. Both peak Stress and energy absorption in CNT foam followed a power law behavior with the increase in the magnetic field intensity. However, in the absence of magnetic field, both peak stress and energy absorption capability of CNT foam presented a linear dependence on the fluid viscosity. Hence, this work demonstrates the role magnetic filed in controlling the mechanical behavior of the foams prepared at nanoscale.

Keywords: carbon nanotubes, magnetic field, energy absorption capability and viscosity

Procedia PDF Downloads 282
781 Pectin Degrading Enzyme: Entrapment of Pectinase Using Different Synthetic and Non-Synthetic Polymers for Continuous Degradation of Pectin Polymer

Authors: Haneef Ur Rehman, Afsheen Aman, Abdul Hameed Baloch, Shah Ali Ul Qader

Abstract:

Pectinase is a heterogeneous group of enzymes that catalyze the hydrolysis of pectin substances and widely has been used in food and textile industries. In current study, pectinase from B. licheniformis KIBGE-IB21 was immobilized within different polymers (calcium alginate beads, polyacrylamide gel and agar-agar matrix) to enhance its catalytic properties. Polyacrylamide gel was found to be most promising one and gave maximum (89%) immobilization yield. While less immobilization yield was observed in case of calcium alginate beads that only retained 46 % activity. The reaction time for maximum pectinolytic activity was increased from 5.0 to 10 minutes after immobilization. The temperature of pectinase for maximum enzyme activity was increased from 45 °C to 50 °C and 55 °C when it was immobilized within agar-agar and calcium alginate beads, respectively. The optimum pH of pectinase didn’t alter when it was immobilized within polyacrylamide gel and calcium alginate beads, but in case of agar-agar it was changed from pH 10 to pH 9.0. Thermal stability of pectinase was improved after immobilization and immobilized pectinase showed higher toleration against different temperatures as compared to free enzyme. It can be concluded that the entrapment is a simple, single step and promising procedure to immobilized pectinase within different synthetic and non-synthetic polymers and enhanced its catalytic properties.

Keywords: pectinase, characterization immobilization, polyacrylamide, agar-agar, calcium alginate beads

Procedia PDF Downloads 591
780 Effect of Seasonal Variation on Two Introduced Columbiformes in Awba Dam Tourism Centre, University of Ibadan, Ibadan

Authors: Kolawole F. Farinloye, Samson O. Ojo

Abstract:

Two Columbiformes species were recently introduced to the newly established Awba Dam Tourism Centre [ADTC], hence there is need to investigate the effect of seasonal variation on these species with respect to hematological composition. Blood samples were obtained from superficial ulna vein of the 128 apparently healthy C. livia and C. guinea into tubes containing EDTA as anticoagulant. Thin blood smears (TBS) were prepared, stained and viewed under microscope. Values of Red Blood Cell (RBC) count, White Blood Cell (WBC) count, cholesterol (CH), Uric Acid (UA), Protein (PR), Mean Corpuscular Volume (MCV), Haemoglobin Content (HB), Blood Volume (BV), Plasma Glucose (PG) and Length/Width (L/W) ratio of red blood cells were assessed. The procedure was carried out on a seasonal basis (wet and dry seasons of 2013-2014). Data was analyzed using descriptive and inferential statistics. Lymphocyte count for C. livia was F3, 161 = 13.15, while for C. guinea was F3, 178 = 13.15. Heterophil, H/L ratio and Muscle score values for both species were (rs = -0.38, rs = -0.44), (rs = 0.51, rs = 0.31) (4, 3) respectively. Analyses also demonstrated a low WBC to RBC ratio (0.004: 25.3) in both species during the wet season compared to dry season, respectively. L/W varied significantly among sampling seasons i.e. wet (19.1% of BV, 12.6% of BV, 0.1% of BV) and dry (18.9% of BV, 12.7% of BV, 0.08% of BV). The level of HB in wet season (19.20±8.46108) is lower compared to dry season (19.70±8.48762). T-test also showed (wet=15.625, 0.111), (dry=12.125, 0.146) respectively, hence there is no association between species and haematological parameters. Species introduced were found to be haematologically stable. Although there were slight differences in seasonal composition, however this can be attributed to seasonal variation; suggesting little or no effect of seasons on their blood composition.

Keywords: seasonal variation, Columbiformes, Awba Dam tourism centre, University of Ibadan, Ibadan

Procedia PDF Downloads 308
779 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet

Authors: Rangoli Goyal, Rama Bhargava

Abstract:

The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.

Keywords: FEM, thermophoresis, diffusiophoresis, Brownian motion

Procedia PDF Downloads 402
778 Causes of Deteriorations of Flexible Pavement, Its Condition Rating and Maintenance

Authors: Pooja Kherudkar, Namdeo Hedaoo

Abstract:

There are various causes for asphalt pavement distresses which can develop prematurely or with aging in services. These causes are not limited to aging of bitumen binder but include poor quality materials and construction, inadequate mix design, inadequate pavement structure design considering the traffic and lack of preventive maintenance. There is physical evidence available for each type of pavement distress. Distress in asphalt pavements can be categorized in different distress modes like fracture (cracking and spalling), distortion (permanent deformation and slippage), and disintegration (raveling and potholes). This study shows the importance of severity determination of distresses for the selection of appropriate preventive maintenance treatment. Distress analysis of the deteriorated roads was carried out. Four roads of urban flexible pavements from Pune city was selected as a case study. The roads were surveyed to detect the types, to measure the severity and extent of the distresses. Causes of distresses were investigated. The pavement condition rating values of the roads were calculated. These ranges of ratings were as follows; 1 for poor condition road, 1.1 to 2 for fair condition road and 2.1 to 3 for good condition road. Out of the four roads, two roads were found to be in fair condition and the other two were found in good condition. From the various preventive maintenance treatments like crack seal, fog seal, slurry seal, microsurfacing, surface dressing and thin hot mix/cold mix bituminous overlays, the effective maintenance treatments with respect to the surface condition and severity levels of the existing pavement were recommended.

Keywords: distress analysis, pavement condition rating, preventive maintenance treatments, surface distress measurement

Procedia PDF Downloads 175
777 Reorientation of Anisotropic Particles in Free Liquid Microjets

Authors: Mathias Schlenk, Susanne Seibt, Sabine Rosenfeldt, Josef Breu, Stephan Foerster

Abstract:

Thin liquid jets on micrometer scale play an important role in processing such as in fiber fabrication, inkjet printing, but also for sample delivery in modern synchrotron X-ray devices. In all these cases the liquid jets contain solvents and dissolved materials such as polymers, nanoparticles, fibers pigments or proteins. As liquid flow in liquid jets differs significantly from flow in capillaries and microchannels, particle localization and orientation will also be different. This is of critical importance for applications, which depend on well-defined homogeneous particle and fiber distribution and orientation in liquid jets. Investigations of particle orientation in liquid microjets of diluted solutions have been rare, despite their importance. With the arise of micro-focused X-ray beams it has become possible to scan across samples with micrometer resolution to locally analyse structure and orientation of the samples. In the present work, we used this method to scan across liquid microjets to determine the local distribution and orientation of anisotropic particles. The compromise wormlike block copolymer micelles as an example of long flexible fibrous structures, hectorite materials as a model of extended nanosheet structures, and gold nanorods as an illustration of short stiff cylinders to comprise all relevant anisotropic geometries. We find that due to the different velocity profile in the liquid jet, which resembles plug flow, the orientation of the particles which was generated in the capillary is lost or changed into non-oriented or bi-axially orientations depending on the geometrical shape of the particle.

Keywords: anisotropic particles, liquid microjets, reorientation, SAXS

Procedia PDF Downloads 323
776 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters

Procedia PDF Downloads 296
775 Eliminating Arm, Neck and Leg Fatigue of United Asia International Plastics Corporation Workers through Rapid Entire Body Assessment

Authors: John Cheferson R. De Belen, John Paul G. Elizares, Ronald John G. Raz, Janina Elyse A. Reyes, Charie G. Salengua, Aristotle L. Soriano

Abstract:

Plastic is a type of synthetic or man-made polymer that can readily be molded into a variety of products. Its usage over the past century has enabled society to make huge technological advances. The workers of United Asia International Plastics Corporation (UAIPC), a plastic manufacturing company performs manual packaging which causes fatigue and stress on their arm, neck, and legs due to extended periods of standing and repetitive motions. With the use of the Fishbone Diagram, Five-Why Analysis, Rapid Entire Body Assessment (REBA), and Anthropometry, the stressful tasks and activities were identified and analyzed. Given the anthropometric measurements obtained from the workers, improved dimensions for the tables and chairs should be used and provide a new packaging machine. The validation of this proposal shall follow after its implementation. By eliminating fatigue during working hours in the production, the workers will be at ease at performing their work properly; productivity will increase that will lead to more profit. Further areas for study include measurement and comparison of the worker’s anthropometric measurement with the industry standard.

Keywords: anthropometry, fishbone diagram, five-why analysis, rapid entire body assessment

Procedia PDF Downloads 245
774 Knowledge, Hierarchy and Decision-Making: Analysis of Documentary Filmmaking Practices in India

Authors: Nivedita Ghosh

Abstract:

In his critique of Lefebvre’s view that ‘technological capacities’ are class-dependent, Francois Hetman argues that technology today is participatory, allowing the entry of individuals from different levels of social stratification. As a result, we are entering into an era of technology operators or ‘clerks’ who become the new decision-makers because of the knowledge they possess of the use of technologies. In response to Hetman’s thesis, this paper argues that knowledge of technology, while indeed providing a momentary space for decision-making, does not necessarily restructure social hierarchies. Through case studies presented from the world of Indian documentary filmmaking, this paper puts forth the view that Hetman’s clerks, despite being technologically advanced, do not break into the filmmaking hierarchical order. This remains true even for a situation where technical knowledge rests most with those in the lowest rungs of the filmmaking ladder. Instead, technological knowledge provides the space for other kinds of relationships to evolve, such as those of ‘trusting the technician’ or ‘admiration for the technician’s work’. Furthermore, what continues to define documentary filmmaking hierarchy is conceptualization capacities of the practitioners, which are influenced by a similarity in socio-cultural backgrounds and film school training accessible primarily to the filmmakers instead of the technicians. Accordingly, the paper concludes with the argument that more than ‘technological-capacities’, it is ‘conceptualization capacities’ which are class-dependent, especially when we study the field of documentary filmmaking.

Keywords: documentary filmmaking, India, technology, knowledge, hierarchy

Procedia PDF Downloads 242
773 Material Analysis for Temple Painting Conservation in Taiwan

Authors: Chen-Fu Wang, Lin-Ya Kung

Abstract:

For traditional painting materials, the artisan used to combine the pigments with different binders to create colors. As time goes by, the materials used for painting evolved from natural to chemical materials. The vast variety of ingredients used in chemical materials has complicated restoration work; it makes conservation work more difficult. Conservation work also becomes harder when the materials cannot be easily identified; therefore, it is essential that we take a more scientific approach to assist in conservation work. Paintings materials are high molecular weight polymer, and their analysis is very complicated as well other contamination such as smoke and dirt can also interfere with the analysis of the material. The current methods of composition analysis of painting materials include Fourier transform infrared spectroscopy (FT-IR), mass spectrometer, Raman spectroscopy, X-ray diffraction spectroscopy (XRD), each of which has its own limitation. In this study, FT-IR was used to analyze the components of the paint coating. We have taken the most commonly seen materials as samples and deteriorated it. The aged information was then used for the database to exam the temple painting materials. By observing the FT-IR changes over time, we can tell all of the painting materials will be deteriorated by the UV light, but only the speed of its degradation had some difference. From the deterioration experiment, the acrylic resin resists better than the others. After collecting the painting materials aging information on FT-IR, we performed some test on the paintings on the temples. It was found that most of the artisan used tune-oil for painting materials, and some other paintings used chemical materials. This method is now working successfully on identifying the painting materials. However, the method is destructive and high cost. In the future, we will work on the how to know the painting materials more efficiently.

Keywords: temple painting, painting material, conservation, FT-IR

Procedia PDF Downloads 168
772 Identification, Isolation and Characterization of Unknown Degradation Products of Cefprozil Monohydrate by HPTLC

Authors: Vandana T. Gawande, Kailash G. Bothara, Chandani O. Satija

Abstract:

The present research work was aimed to determine stability of cefprozil monohydrate (CEFZ) as per various stress degradation conditions recommended by International Conference on Harmonization (ICH) guideline Q1A (R2). Forced degradation studies were carried out for hydrolytic, oxidative, photolytic and thermal stress conditions. The drug was found susceptible for degradation under all stress conditions. Separation was carried out by using High Performance Thin Layer Chromatographic System (HPTLC). Aluminum plates pre-coated with silica gel 60F254 were used as the stationary phase. The mobile phase consisted of ethyl acetate: acetone: methanol: water: glacial acetic acid (7.5:2.5:2.5:1.5:0.5v/v). Densitometric analysis was carried out at 280 nm. The system was found to give compact spot for cefprozil monohydrate (0.45 Rf). The linear regression analysis data showed good linear relationship in the concentration range 200-5.000 ng/band for cefprozil monohydrate. Percent recovery for the drug was found to be in the range of 98.78-101.24. Method was found to be reproducible with % relative standard deviation (%RSD) for intra- and inter-day precision to be < 1.5% over the said concentration range. The method was validated for precision, accuracy, specificity and robustness. The method has been successfully applied in the analysis of drug in tablet dosage form. Three unknown degradation products formed under various stress conditions were isolated by preparative HPTLC and characterized by mass spectroscopic studies.

Keywords: cefprozil monohydrate, degradation products, HPTLC, stress study, stability indicating method

Procedia PDF Downloads 288
771 Three Dimensional Large Eddy Simulation of Blood Flow and Deformation in an Elastic Constricted Artery

Authors: Xi Gu, Guan Heng Yeoh, Victoria Timchenko

Abstract:

In the current work, a three-dimensional geometry of a 75% stenosed blood vessel is analysed. Large eddy simulation (LES) with the help of a dynamic subgrid scale Smagorinsky model is applied to model the turbulent pulsatile flow. The geometry, the transmural pressure and the properties of the blood and the elastic boundary were based on clinical measurement data. For the flexible wall model, a thin solid region is constructed around the 75% stenosed blood vessel. The deformation of this solid region was modelled as a deforming boundary to reduce the computational cost of the solid model. Fluid-structure interaction is realised via a two-way coupling between the blood flow modelled via LES and the deforming vessel. The information of the flow pressure and the wall motion was exchanged continually during the cycle by an arbitrary lagrangian-eulerian method. The boundary condition of current time step depended on previous solutions. The fluctuation of the velocity in the post-stenotic region was analysed in the study. The axial velocity at normalised position Z=0.5 shows a negative value near the vessel wall. The displacement of the elastic boundary was concerned in this study. In particular, the wall displacement at the systole and the diastole were compared. The negative displacement at the stenosis indicates a collapse at the maximum velocity and the deceleration phase.

Keywords: Large Eddy Simulation, Fluid Structural Interaction, constricted artery, Computational Fluid Dynamics

Procedia PDF Downloads 281
770 An Electrochemical Study on Ethanol Oxidation with Pt/Pd Composite Electrodes in Sodium Hydroxide Solution

Authors: Yu-Chen Luo, Wan-Tzu Yen, I-Ping Liu, Po-Hsuan Yeh, Yuh-Lang Lee

Abstract:

The use of a Pt electrode leads to high catalytic efficiency in the ethanol electro-oxidation. However, the carbon monoxide (CO) released in the reaction will poison the Pt surfaces, lowering the electrocatalytic activity. In this study, composite electrodes are prepared to overcome the poisoning issue, and the related electro-oxidation behaviors are studied by surface-enhanced infrared absorption spectroscopy (SEIRAS) and cyclic voltammetry (CV). An electroless plating method is utilized to deposit Pt catalytic layers on the Pd film-coated FTO substrates. According to the SEIRAS spectra, the carbon dioxide signal of the Pt/Pd composite electrode is larger than that of the Pt one, whereas the CO signal of the composite electrode is relatively smaller. This result suggests that the studied Pt/Pd electrode has a better ability against CO poisoning. The CV analyses are conducted in alkaline environments, and current densities related to the ethanol oxidation in the forward scan (If) and to the CO poisoning in the backward scan (Ib) are measured. A higher ratio of If to Ib (If/Ib) usually represents a better ability against the poisoning effect. The If/Ib values are 2.53 and 2.07 for the Pt and Pt/Pd electrodes, respectively, which is possibly attributed to the increasing ability of CO adsorption of Pt electrode. Despite the lower If/Ib, the Pt/Pd composite electrode shows a higher ethanol oxidation performance in the alkaline system than the Pt does. Furthermore, its stability is also superior.

Keywords: cyclic voltammogram, electroless deposition, ethanol electro-oxidation, surface-enhanced infrared absorption spectroscopy

Procedia PDF Downloads 105
769 Amino Acid Derivatives as Green Corrosion Inhibitors for Mild Steel in 1M HCl: Electrochemical, Surface and Density Functional Theory Studies

Authors: Jiyaul Haque, Vandana Srivastava, M. A. Quraishi

Abstract:

The amino acids based corrosion inhibitors 2-(3-(carboxymethyl)-1H-imidazol-3-ium-1-yl) acetate (Z-1),2-(3-(1-carboxyethyl)-1H-imidazol-3-ium-1-yl) propanoate (Z-2) and 2-(3-(1-carboxy-2-phenylethyl)-1H-imidazol-3-ium-1-yl)-3- phenylpropanoate (Z-3) were synthesized by the reaction of amino acids, glyoxal and formaldehyde, and characterized by the FTIR and NMR spectroscopy. The corrosion inhibition performance of synthesized inhibitors was studied by electrochemical (EIS and PDP), surface and DFT methods. The results show, the studied Z-1, Z-2 and Z-3 are effective inhibitors, showed the maximum inhibition efficiency of 88.52 %, 89.48 and 96.08% at concentration 200ppm, respectively. The results of potentiodynamic polarization (PDP) study showed that Z-1 act as a cathodic inhibitor, while Z-2 and Z-3 act as mixed type inhibitors. The results of electrochemical impedance spectroscopy (EIS) studies showed that zwitterions inhibit the corrosion through adsorption mechanism. The adsorption of synthesized zwitterions on the mild steel surface was followed the Langmuir adsorption isotherm. The formation of zwitterions film on mild steel surface was confirmed by the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). The quantum chemical parameters were used to study the reactivity of inhibitors and supported the experimental results. An inhibitor adsorption model is proposed.

Keywords: electrochemical impedance spectroscopy, green corrosion inhibitors, mild steel, SEM, quantum chemical calculation, zwitterions

Procedia PDF Downloads 171
768 Materials for Electrically Driven Aircrafts: Highly Conductive Carbon-Fiber Reinforced Epoxy Composites

Authors: Simon Bard, Martin Demleitner, Florian Schonl, Volker Altstadt

Abstract:

For an electrically driven aircraft, whose engine is based on semiconductors, alternative materials are needed. The avoid hotspots in the materials thermally conductive polymers are necessary. Nevertheless, the mechanical properties of these materials should remain. Herein, the work of three years in a project with airbus and Siemens is presented. Different strategies have been pursued to achieve conductive fiber-reinforced composites: Metal-coated carbon fibers, pitch-based fibers and particle-loaded matrices have been investigated. In addition, a combination of copper-coated fibers and a conductive matrix has been successfully tested for its conductivity and mechanical properties. First, prepregs have been produced with a laboratory scale prepreg line, which can handle materials with maximum width of 300 mm. These materials have then been processed to fiber-reinforced laminates. For the PAN-fiber reinforced laminates, it could be shown that there is a strong dependency between fiber volume content and thermal conductivity. Laminates with 50 vol% of carbon fiber offer a conductivity of 0.6 W/mK, those with 66 vol% of fiber a thermal conductivity of 1 W/mK. With pitch-based fiber, the conductivity enhances to 1.5 W/mK for 61 vol% of fiber, compared to 0.81 W/mK with the same amount of fibers produced from PAN (+83% in conducitivity). The thermal conductivity of PAN-based composites with 50 vol% of fiber is at 0.6 W/mK, their nickel-coated counterparts with the same fiber volume content offer a conductivity of 1 W/mK, an increase of 66%.

Keywords: carbon, electric aircraft, polymer, thermal conductivity

Procedia PDF Downloads 147
767 Vascularized Adipose Tissue Engineering by Using Adipose ECM/Fibroin Hydrogel

Authors: Alisan Kayabolen, Dilek Keskin, Ferit Avcu, Andac Aykan, Fatih Zor, Aysen Tezcaner

Abstract:

Adipose tissue engineering is a promising field for regeneration of soft tissue defects. However, only very thin implants can be used in vivo since vascularization is still a problem for thick implants. Another problem is finding a biocompatible scaffold with good mechanical properties. In this study, the aim is to develop a thick vascularized adipose tissue that will integrate with the host, and perform its in vitro and in vivo characterizations. For this purpose, a hydrogel of decellularized adipose tissue (DAT) and fibroin was produced, and both endothelial cells and adipocytes that were differentiated from adipose derived stem cells were encapsulated in this hydrogel. Mixing DAT with fibroin allowed rapid gel formation by vortexing. It also provided to adjust mechanical strength by changing fibroin to DAT ratio. Based on compression tests, gels of DAT/fibroin ratio with similar mechanical properties to adipose tissue was selected for cell culture experiments. In vitro characterizations showed that DAT is not cytotoxic; on the contrary, it has many natural ECM components which provide biocompatibility and bioactivity. Subcutaneous implantation of hydrogels resulted with no immunogenic reaction or infection. Moreover, localized empty hydrogels gelled successfully around host vessel with required shape. Implantations of cell encapsulated hydrogels and histological analyses are under study. It is expected that endothelial cells inside the hydrogel will form a capillary network and they will bind to the host vessel passing through hydrogel.

Keywords: adipose tissue engineering, decellularization, encapsulation, hydrogel, vascularization

Procedia PDF Downloads 514
766 Binderless Naturally-extracted Metal-free Electrocatalyst for Efficient NOₓ Reduction

Authors: Hafiz Muhammad Adeel Sharif, Tian Li, Changping Li

Abstract:

Recently, the emission of nitrogen-sulphur oxides (NOₓ, SO₂) has become a global issue and causing serious threats to health and the environment. Catalytic reduction of NOx and SOₓ gases into friendly gases is considered one of the best approaches. However, regeneration of the catalyst, higher bond-dissociation energy for NOx, i.e., 150.7 kcal/mol, escape of intermediate gas (N₂O, a greenhouse gas) with treated flue-gas, and limited activity of catalyst remains a great challenge. Here, a cheap, binderless naturally-extracted bass-wood thin carbon electrode (TCE) is presented, which shows excellent catalytic activity towards NOx reduction. The bass-wood carbonization at 900 ℃ followed by thermal activation in the presence of CO2 gas at 750 ℃. The thermal activation resulted in an increase in epoxy groups on the surface of the TCE and enhancement in the surface area as well as the degree of graphitization. The TCE unique 3D strongly inter-connected network through hierarchical micro/meso/macro pores that allow large electrode/electrolyte interface. Owing to these characteristics, the TCE exhibited excellent catalytic efficiency towards NOx (~83.3%) under ambient conditions and enhanced catalytic response under pH and sulphite exposure as well as excellent stability up to 168 hours. Moreover, a temperature-dependent activity trend was found where the highest catalytic activity was achieved at 80 ℃, beyond which the electrolyte became evaporative and resulted in a performance decrease. The designed electrocatalyst showed great potential for effective NOx-reduction, which is highly cost-effective, green, and sustainable.

Keywords: electrocatalyst, NOx-reduction, bass-wood electrode, integrated wet-scrubbing, sustainable

Procedia PDF Downloads 58
765 Economic Viability of Using Guar Gum as a Viscofier in Water Based Drilling Fluids

Authors: Devesh Motwani, Amey Kashyap

Abstract:

Interest in cost effective drilling has increased substantially in the past years. Economics associated with drilling fluids is needed to be considered seriously for lesser cost per foot in planning and drilling of a wellbore and the various environmental concerns imposed by international communities related with the constituents of the drilling fluid. Viscofier such as Guar Gum is a high molecular weight polysaccharide from Guar plants, is used to increase viscosity in water-based and brine-based drilling fluids thus enabling more efficient cleaning of the bore. Other applications of this Viscofier are to reduce fluid loss by giving a better colloidal solution, decrease fluid friction and so minimising power requirements and used in hydraulic fracturing to increase the recovery of oil and gas. Guar gum is also used as a surfactant, synthetic polymer and defoamer. This paper presents experimental results to verifying the properties of guar gum as a viscofier and filtrate retainer as well as observing the impact of different quantities of guar gum and Carboxymethyl cellulose (CMC) in a standard sample of water based bentonite mud solution. This is in attempt to make a drilling fluid which contains half of the quantity of drilling mud used and yet is equally viscous to the standardised mud sample. Thus we can see that mud economics will be greatly affected by this approach. However guar gum is thermally stable till 60-65°C thus limited to be used in drilling shallow wells and for a wider thermal range, suitable chrome free additives are required.

Keywords: economics, guargum, viscofier, CMC, thermal stability

Procedia PDF Downloads 448
764 Effect of Permeability on Glass Fiber Reinforced Plastic Laminate Produced by Vacuum Assisted Resin Transfer Molding Process

Authors: Nagri Sateesh, Kundavarapu Vengalrao, Kopparthi Phaneendra Kumar

Abstract:

Vacuum assisted resin transfer molding (VARTM) is one of the manufacturing technique that is viable for production of fiber reinforced polymer composite components suitable for aerospace, marine and commercial applications. However, the repeatable quality of the product can be achieved by critically fixing the process parameters such as Vacuum Pressure (VP) and permeability of the preform. The present investigation is aimed at studying the effect of permeability for production of Glass Fiber Reinforced Plastic (GFRP) components with consistent quality. The VARTM mould is made with an acrylic transparent top cover to observe and record the resin flow pattern. Six layers of randomly placed glass fiber under five different vacuum pressures VP1 = 0.013, VP2 = 0.026, VP3 = 0.039, VP4 = 0.053 and VP5 = 0.066 MPa were studied. The laminates produced by this process under the above mentioned conditions were characterized with ASTM D procedures so as to study the effect of these process parameters on the quality of the laminate. Moreover, as mentioned there is a considerable effect of permeability on the impact strength and the void content in the laminates under different vacuum pressures. SEM analysis of the impact tested fractured GFRP composites showed the bonding of fiber and matrix.

Keywords: permeability, vacuum assisted resin transfer molding (VARTM), ASTM D standards, SEM

Procedia PDF Downloads 134
763 Evaluation of Critical Rate in Mature Oil Field with Dynamic Oil Rim Fluid Contacts in the Niger Delta

Authors: Stanley Ibuchukwu Onwukwe

Abstract:

Most reservoir in mature oil fields are vulnerable to challenges of water and/or gas coning as the size of their oil column reduces due to long period of oil production. These often result to low oil production and excessive water and/or gas production. Since over 50 years of oil production in the Niger delta, it is apparent that most of the oil fields in the region have reached their mature stages, thereby susceptible to coning tendencies. As a result of these, a good number of wells have been shut-in and abandoned, with significant amount of oil left unproduced. Analysis of the movement of fluid contacts in the reservoir is a significant aspect of reservoir studies and can assist in the management of coning tendencies and production performance of reservoirs in a mature field. This study, therefore, seeks to evaluate the occurrence of coning through the movement of fluid contacts (GOC and OWC) and determine the critical rate for controlling coning tendencies in mature oil field. This study applies the principle of Nodal analysis to calibrate the thin oil column of a reservoir of a mature field, and was graphically evaluated using the Joshi’s equation of critical rate for gas-oil system and oil-water system respectively. A representative Proxy equation was developed and sensitivity analysis carried out to determine the trend of critical rate as the oil column is been depleted. The result shows the trend in the movement of the GOC and OWC, and the critical rate, beyond which will result in excessive water and gas production, resulting to decreasing oil production from the reservoir. This result of this study can be used as a first pass assessment in the development of mature oil field reservoirs anticipated to experience water and/or gas coning during production.

Keywords: coning, fluid contact movement, mature oil field, oil production

Procedia PDF Downloads 227
762 Face Shield Design with Additive Manufacturing Practice Combating COVID-19 Pandemic

Authors: May M. Youssef

Abstract:

This article introduces a design, for additive manufacturing technology, face shield as Personal Protective Equipment from the respiratory viruses such as coronavirus 2. The face shields help to reduce ocular exposure and play a vital role in diverting away from the respiratory COVID-19 air droplets around the users' face. The proposed face shield comprises three assembled polymer parts. The frame with a transparency overhead projector sheet visor is suitable for frontline health care workers and ordinary citizens. The frame design allows tightening the shield around the user’s head and permits rubber elastic straps to be used if required. That ergonomically designed with a unique face mask support used in case of wearing extra protective mask was created using computer aided design (CAD) software package. The finite element analysis (FEA) structural verification of the proposed design is performed by an advanced simulation technique. Subsequently, the prototype model was fabricated by a 3D printing using Fused Deposition Modeling (FDM) as a globally developed face shield product. This study provides a different face shield designs for global production, which showed to be suitable and effective toward supply chain shortages and frequent needs of personal protective goods during coronavirus disease and similar viruses.

Keywords: additive manufacturing, Coronavirus-19, face shield, personal protective equipment, 3D printing

Procedia PDF Downloads 183
761 The Long-Term Effects of Immediate Implantation, Early Implantation and Delayed Implantation at Aesthetics Area

Authors: Xing Wang, Lin Feng, Xuan Zou, Hongchen liu

Abstract:

Immediate Implantation after tooth extraction is considered to be the ideal way to retain the alveolar bone, but some scholars believe the aesthetic effect in the Early Implantation case are more reliable. In this study, 89 patients were added to this retrospective study up to 5 years. Assessment indicators was including the survival of the implant (peri-implant infection, implant loosening, shedding, crowns and occlusal), aesthetics (color and fullness gums, papilla height, probing depth, X-ray alveolar crest height, the patient's own aesthetic satisfaction, doctors aesthetics score), repair defects around the implant (peri-implant bone changes in height and thickness, whether the use of autologous bone graft, whether to use absorption/repair manual nonabsorbable material), treatment time, cost and the use of antibiotics.The results demonstrated that there is no significant difference in long-term success rate of immediate implantation, early implantation and delayed implantation (p> 0.05). But the results indicated immediate implantation group could get get better aesthetic results after two years (p< 0.05), but may increase the risk of complications and failures (p< 0.05). High-risk indicators include gingival recession, labial bone wall damage, thin gingival biotypes, planting position and occlusal restoration bad and so on. No matter which type of implanting methods was selected, the extraction methods and bone defect amplification techniques are observed as a significant factors on aesthetic effect (p< 0.05).

Keywords: immediate implantation, long-term effects, aesthetics area, dental implants

Procedia PDF Downloads 345
760 Magnetorheological Silicone Composites Filled with Micro- and Nano-Sized Magnetites with the Addition of Ionic Liquids

Authors: M. Masłowski, M. Zaborski

Abstract:

Magnetorheological elastomer composites based on micro- and nano-sized Fe3O4 magnetoactive fillers in silicone rubber are reported and studied. To improve the dispersion of applied fillers in polymer matrix, ionic liquids such as 1-ethyl-3-methylimidazolium diethylphosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium trifluoromethanesulfonate,1-butyl-3-methylimidazolium tetrafluoroborate, trihexyltetradecylphosphonium chloride were added during the process of composites preparation. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy), similarly to ferromagnetic particles content and theirs quantity. Micro and non-sized magnetites were active fillers improving the mechanical properties of elastomers. They also changed magnetic properties and reinforced the magnetorheological effect of composites. Application of ionic liquids as dispersing agents influenced the dispersion of magnetic fillers in the elastomer matrix. Scanning electron microscopy images used to observe magnetorheological elastomer microstructures proved that the dispersion improvement had a significant effect on the composites properties. Moreover, the particles orientation and their arrangement in the elastomer investigated by vibration sample magnetometer showed the correlation between MRE microstructure and their magnetic properties.

Keywords: magnetorheological elastomers, iron oxides, ionic liquids, dispersion

Procedia PDF Downloads 316
759 Biaxial Fatigue Specimen Design and Testing Rig Development

Authors: Ahmed H. Elkholy

Abstract:

An elastic analysis is developed to obtain the distribution of stresses, strains, bending moment and deformation for a thin hollow, variable thickness cylindrical specimen when subjected to different biaxial loadings. The specimen was subjected to a combination of internal pressure, axial tensile loading and external pressure. Several axial to circumferential stress ratios were investigated in detail. The analytical model was then validated using experimental results obtained from a test rig using several biaxial loadings. Based on the preliminary results obtained, the specimen was then modified geometrically to ensure uniform strain distribution through its wall thickness and along its gauge length. The new design of the specimen has a higher buckling strength and a maximum value of equivalent stress according to the maximum distortion energy theory. A cyclic function generator of the standard servo-controlled, electro-hydraulic testing machine is used to generate a specific signal shape (sine, square,…) at a certain frequency. The two independent controllers of the electronic circuit cause an independent movement to each servo-valve piston. The movement of each piston pressurizes the upper and lower sides of the actuators alternately. So, the specimen will be subjected to axial and diametral loads independent of each other. The hydraulic system has two different pressures: one pressure will be responsible for axial stress produced in the specimen and the other will be responsible for the tangential stress. Changing the two pressure ratios will change the stress ratios accordingly. The only restriction on the maximum stress obtained is the capacity of the testing system and specimen instability due to buckling.

Keywords: biaxial, fatigue, stress, testing

Procedia PDF Downloads 112
758 Effect of Hollow and Solid Recycled-Poly Fibers on the Mechanical and Morphological Properties of Short-Fiber-Reinforced Polypropylene Composites

Authors: S. Kerakra, S. Bouhelal, M. Poncot

Abstract:

The aim of this study is to give a comprehensive overview of the effect of short hollow and solid recycled polyethylene terephthalate (PET) fibers in different breaking tenacities reinforced isotactic polypropylene (iPP) composites on the mechanical and morphological properties. Composites of iPP/3, 7and 10 wt% of solid and hollow recycled PET fibers were prepared by batched melt mixing in a Brabender. The incorporation of solid recycled-PET fibers in isotactic polypropylene increase Young’s modulus of iPP relatively, meanwhile it increased proportionally with hollow fibers content. An improvement of the storage modulus, and a shift up in glass transition temperatures of hollow fibers/iPP composites was determined by DMA results. The morphology of composites was determined by scanning electron microscope (SEM) and optical polarized microscopy (OM) showing a good dispersion of the hollow fibers. Also, their flexible aspect (folding, bending) was observed. But, one weak interaction between the polymer/fibers phases was shown. Polymers can be effectively reinforced with short hollow recycled PET fibers due to their characteristics like recyclability, lightweight and the flexible aspect, which allows the absorbance of the energy of a striker with a minimum damage of the matrix. Aiming to improve the affinity matrix–recycled hollow PET fibers, it is suggested the addition of compatibilizers, as maleic anhydride.

Keywords: isotactic polypropylene, hollow recycled PET fibers, solid recycled-PET fibers, composites, short fiber, scanning electron microscope

Procedia PDF Downloads 259
757 Investigating the Potential for Introduction of Warm Mix Asphalt in Kuwait Using the Volcanic Ash

Authors: H. Al-Baghli, F. Al-Asfour

Abstract:

The current applied asphalt technology for Kuwait roads pavement infrastructure is the hot mix asphalt (HMA) pavement, including both pen grade and polymer modified bitumen (PMBs), that is produced and compacted at high temperature levels ranging from 150 to 180 °C. There are no current specifications for warm and cold mix asphalts in Kuwait’s Ministry of Public Works (MPW) asphalt standard and specifications. The process of the conventional HMA is energy intensive and directly responsible for the emission of greenhouse gases and other environmental hazards into the atmosphere leading to significant environmental impacts and raising health risk to labors at site. Warm mix asphalt (WMA) technology, a sustainable alternative preferred in multiple countries, has many environmental advantages because it requires lower production temperatures than HMA by 20 to 40 °C. The reduction of temperatures achieved by WMA originates from multiple technologies including foaming and chemical or organic additives that aim to reduce bitumen and improve mix workability. This paper presents a literature review of WMA technologies and techniques followed by an experimental study aiming to compare the results of produced WMA samples, using a water containing additive (foaming process), at different compaction temperatures with the HMA control volumetric properties mix designed in accordance to the new MPW’s specifications and guidelines.

Keywords: warm-mix asphalt, water-bearing additives, foaming-based process, chemical additives, organic additives

Procedia PDF Downloads 112
756 Solubility Enhancement of Poorly Soluble Anticancer Drug, Docetaxel Using a Novel Polymer, Soluplus via Solid Dispersion Technique

Authors: Adinarayana Gorajana, Venkata Srikanth Meka, Sanjay Garg, Lim Sue May

Abstract:

This study was designed to evaluate and enhance the solubility of poorly soluble drug, docetaxel through solid dispersion (SD) technique prepared using freeze drying method. Docetaxel solid dispersions were formulated with Soluplus in different weight ratios. Freeze drying method was used to prepare the solid dispersions. Solubility of the solid dispersions were evaluated respectively and the optimized of drug-solubilizers ratio systems were characterized with different analytical methods like Differential scanning calorimeter (DSC), Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to confirm the formation of complexes between drug and solubilizers. The solubility data revealed an overall improvement in solubility for all SD formulations. The ternary combination 1:5:2 gave the highest increase in solubility that is approximately 3 folds from the pure drug, suggesting the optimum drug-solubilizers ratio system. This data corresponds with the DSC and SEM analyses, which demonstrates presence of drug in amorphous state and the dispersion in the solubilizers in molecular level. The solubility of the poorly soluble drug, docetaxel was enhanced through preparation of solid dispersion formulations employing freeze drying method. Solid dispersion with multiple carrier system shows better solubility compared to single carrier system.

Keywords: docetaxel, freeze drying, soluplus, solid dispersion technique

Procedia PDF Downloads 490
755 Thermal Method for Testing Small Chemisorbent Samples on the Base of Potassium Superoxide

Authors: Pavel V. Balabanov, Daria A. Liubimova, Aleksandr P. Savenkov

Abstract:

The increase of technogenic and natural accidents, accompanied by air pollution, for example, by combustion products, leads to the necessity of respiratory protection. This work is devoted to the development of a calorimetric method and a device which allow investigating quickly the kinetics of carbon dioxide sorption by chemo-sorbents on the base of potassium superoxide in order to assess the protective properties of respiratory protective closed-circuit apparatus. The features of the traditional approach for determining the sorption properties in a thin layer of chemo-sorbent are described, as well as methods and devices, which can be used for the sorption kinetics study. The authors of the paper developed an approach (as opposed to the traditional approach) based on the power measurement of internal heat sources in the chemo-sorbent layer. The emergence of the heat sources is a result of the exothermic reaction of carbon dioxide sorption. This approach eliminates the necessity of chemical analysis of samples and can significantly reduce the time and material expenses during chemo-sorbents testing. The error of determining the volume fraction of adsorbed carbon dioxide by the developed method does not exceed 12%. Taking into account the efficiency of the method, we consider that it is a good alternative to traditional methods of chemical analysis under the assessment of the protection sorbents quality.

Keywords: carbon dioxide chemisorption, exothermic reaction, internal heat sources, respiratory protective apparatus

Procedia PDF Downloads 395