Search results for: optimization algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4942

Search results for: optimization algorithms

2512 Metabolic Pathway Analysis of Microbes using the Artificial Bee Colony Algorithm

Authors: Serena Gomez, Raeesa Tanseen, Netra Shaligram, Nithin Francis, Sandesh B. J.

Abstract:

The human gut consists of a community of microbes which has a lot of effects on human health disease. Metabolic modeling can help to predict relative populations of stable microbes and their effect on health disease. In order to study and visualize microbes in the human gut, we developed a tool that offers the following modules: Build a tool that can be used to perform Flux Balance Analysis for microbes in the human gut using the Artificial Bee Colony optimization algorithm. Run simulations for an individual microbe in different conditions, such as aerobic and anaerobic and visualize the results of these simulations.

Keywords: microbes, metabolic modeling, flux balance analysis, artificial bee colony

Procedia PDF Downloads 106
2511 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds

Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang

Abstract:

Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.

Keywords: pose estimation, deep learning, point cloud, bin-picking, 3D computer vision

Procedia PDF Downloads 165
2510 Underneath Vehicle Inspection Using Fuzzy Logic, Subsumption, and Open Cv-Library

Authors: Hazim Abdulsada

Abstract:

The inspection of underneath vehicle system has been given significant attention by governments after the threat of terrorism become more prevalent. New technologies such as mobile robots and computer vision are led to have more secure environment. This paper proposed that a mobile robot like Aria robot can be used to search and inspect the bombs under parking a lot vehicle. This robot is using fuzzy logic and subsumption algorithms to control the robot that movies underneath the vehicle. An OpenCV library and laser Hokuyo are added to Aria robot to complete the experiment for under vehicle inspection. This experiment was conducted at the indoor environment to demonstrate the efficiency of our methods to search objects and control the robot movements under vehicle. We got excellent results not only by controlling the robot movement but also inspecting object by the robot camera at same time. This success allowed us to know the requirement to construct a new cost effective robot with more functionality.

Keywords: fuzzy logic, mobile robots, Opencv, subsumption, under vehicle inspection

Procedia PDF Downloads 477
2509 Predicting National Football League (NFL) Match with Score-Based System

Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor

Abstract:

This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.

Keywords: game prediction, NFL, football, artificial neural network

Procedia PDF Downloads 89
2508 A Supervised Goal Directed Algorithm in Economical Choice Behaviour: An Actor-Critic Approach

Authors: Keyvanl Yahya

Abstract:

This paper aims to find a algorithmic structure that affords to predict and explain economic choice behaviour particularly under uncertainty (random policies) by manipulating the prevalent Actor-Critic learning method that complies with the requirements we have been entrusted ever since the field of neuroeconomics dawned on us. Whilst skimming some basics of neuroeconomics that might be relevant to our discussion, we will try to outline some of the important works which have so far been done to simulate choice making processes. Concerning neurological findings that suggest the existence of two specific functions that are executed through Basal Ganglia all the way down to sub-cortical areas, namely 'rewards' and 'beliefs', we will offer a modified version of actor/critic algorithm to shed a light on the relation between these functions and most importantly resolve what is referred to as a challenge for actor-critic algorithms, that is lack of inheritance or hierarchy which avoids the system being evolved in continuous time tasks whence the convergence might not emerge.

Keywords: neuroeconomics, choice behaviour, decision making, reinforcement learning, actor-critic algorithm

Procedia PDF Downloads 399
2507 Preliminary Proposal to Use Adaptive Computer Games in the Virtual Rehabilitation Therapy

Authors: Mamoun S. Ideis, Zein Salah

Abstract:

Virtual Rehabilitation (VR) refers to using Virtual Reality’s hardware and simulations as means of exercising tools to rehabilitate patients in need. These patients will undergo their treatment exercises while playing different computer games, which helps achieve greater motivation for patients undergoing their therapeutic exercises. Virtual Rehabilitation systems adopt computer games as part of the treatment therapy. In this paper, we present a preliminary proposal to using adaptive computer games in Virtual Rehabilitation therapy. We also present some tips in designing those adaptive computer games by using different machine learning algorithms in order to create a personalized experience for each patient, which in turn, increases the potential benefits of the treatment that each patient receives. Furthermore, we propose a method of comparing the results of treatment using the adaptive computer games with the results of using static and classical computer games.

Keywords: virtual rehabilitation, physiotherapy, adaptive computer games, post-stroke, game design

Procedia PDF Downloads 301
2506 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm

Authors: Kamel Belammi, Houria Fatrim

Abstract:

imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.

Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes

Procedia PDF Downloads 536
2505 Application of Imperialist Competitive Algorithm for Optimal Location and Sizing of Static Compensator Considering Voltage Profile

Authors: Vahid Rashtchi, Ashkan Pirooz

Abstract:

This paper applies the Imperialist Competitive Algorithm (ICA) to find the optimal place and size of Static Compensator (STATCOM) in power systems. The output of the algorithm is a two dimensional array which indicates the best bus number and STATCOM's optimal size that minimizes all bus voltage deviations from their nominal value. Simulations are performed on IEEE 5, 14, and 30 bus test systems. Also some comparisons have been done between ICA and the famous Particle Swarm Optimization (PSO) algorithm. Results show that how this method can be considered as one of the most precise evolutionary methods for the use of optimum compensator placement in electrical grids.

Keywords: evolutionary computation, imperialist competitive algorithm, power systems compensation, static compensators, voltage profile

Procedia PDF Downloads 610
2504 Optimal Capacitor Placement in Distribution Systems

Authors: Sana Ansari, Sirus Mohammadi

Abstract:

In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. General Algebraic Modeling System (GAMS) has been used to solve the maximization modules using the MINOS optimization software with Linear Programming (LP). The proposed method is tested on 33 node distribution system and the results show that the algorithm suitable for practical implementation on real systems with any size.

Keywords: power losses, voltage stability, radial distribution systems, capacitor

Procedia PDF Downloads 650
2503 Ecological Networks: From Structural Analysis to Synchronization

Authors: N. F. F. Ebecken, G. C. Pereira

Abstract:

Ecological systems are exposed and are influenced by various natural and anthropogenic disturbances. They produce various effects and states seeking response symmetry to a state of global phase coherence or stability and balance of their food webs. This research project addresses the development of a computational methodology for modeling plankton food webs. The use of algorithms to establish connections, the generation of representative fuzzy multigraphs and application of technical analysis of complex networks provide a set of tools for defining, analyzing and evaluating community structure of coastal aquatic ecosystems, beyond the estimate of possible external impacts to the networks. Thus, this study aims to develop computational systems and data models to assess how these ecological networks are structurally and functionally organized, to analyze the types and degree of compartmentalization and synchronization between oscillatory and interconnected elements network and the influence of disturbances on the overall pattern of rhythmicity of the system.

Keywords: ecological networks, plankton food webs, fuzzy multigraphs, dynamic of networks

Procedia PDF Downloads 308
2502 Video Stabilization Using Feature Point Matching

Authors: Shamsundar Kulkarni

Abstract:

Video capturing by non-professionals will lead to unanticipated effects. Such as image distortion, image blurring etc. Hence, many researchers study such drawbacks to enhance the quality of videos. In this paper, an algorithm is proposed to stabilize jittery videos .A stable output video will be attained without the effect of jitter which is caused due to shaking of handheld camera during video recording. Firstly, salient points from each frame from the input video are identified and processed followed by optimizing and stabilize the video. Optimization includes the quality of the video stabilization. This method has shown good result in terms of stabilization and it discarded distortion from the output videos recorded in different circumstances.

Keywords: video stabilization, point feature matching, salient points, image quality measurement

Procedia PDF Downloads 316
2501 Binarization and Recognition of Characters from Historical Degraded Documents

Authors: Bency Jacob, S.B. Waykar

Abstract:

Degradations in historical document images appear due to aging of the documents. It is very difficult to understand and retrieve text from badly degraded documents as there is variation between the document foreground and background. Thresholding of such document images either result in broken characters or detection of false texts. Numerous algorithms exist that can separate text and background efficiently in the textual regions of the document; but portions of background are mistaken as text in areas that hardly contain any text. This paper presents a way to overcome these problems by a robust binarization technique that recovers the text from a severely degraded document images and thereby increases the accuracy of optical character recognition systems. The proposed document recovery algorithm efficiently removes degradations from document images. Here we are using the ostus method ,local thresholding and global thresholding and after the binarization training and recognizing the characters in the degraded documents.

Keywords: binarization, denoising, global thresholding, local thresholding, thresholding

Procedia PDF Downloads 348
2500 Efficient Internal Generator Based on Random Selection of an Elliptic Curve

Authors: Mustapha Benssalah, Mustapha Djeddou, Karim Drouiche

Abstract:

The random number generation (RNG) presents a significant importance for the security and the privacy of numerous applications, such as RFID technology and smart cards. Since, the quality of the generated bit sequences is paramount that a weak internal generator for example, can directly cause the entire application to be insecure, and thus it makes no sense to employ strong algorithms for the application. In this paper, we propose a new pseudo random number generator (PRNG), suitable for cryptosystems ECC-based, constructed by randomly selecting points from several elliptic curves randomly selected. The main contribution of this work is the increasing of the generator internal states by extending the set of its output realizations to several curves auto-selected. The quality and the statistical characteristics of the proposed PRNG are validated using the Chi-square goodness of fit test and the empirical Special Publication 800-22 statistical test suite issued by NIST.

Keywords: PRNG, security, cryptosystem, ECC

Procedia PDF Downloads 448
2499 Analyze and Visualize Eye-Tracking Data

Authors: Aymen Sekhri, Emmanuel Kwabena Frimpong, Bolaji Mubarak Ayeyemi, Aleksi Hirvonen, Matias Hirvonen, Tedros Tesfay Andemichael

Abstract:

Fixation identification, which involves isolating and identifying fixations and saccades in eye-tracking protocols, is an important aspect of eye-movement data processing that can have a big impact on higher-level analyses. However, fixation identification techniques are frequently discussed informally and rarely compared in any meaningful way. With two state-of-the-art algorithms, we will implement fixation detection and analysis in this work. The velocity threshold fixation algorithm is the first algorithm, and it identifies fixation based on a threshold value. For eye movement detection, the second approach is U'n' Eye, a deep neural network algorithm. The goal of this project is to analyze and visualize eye-tracking data from an eye gaze dataset that has been provided. The data was collected in a scenario in which individuals were shown photos and asked whether or not they recognized them. The results of the two-fixation detection approach are contrasted and visualized in this paper.

Keywords: human-computer interaction, eye-tracking, CNN, fixations, saccades

Procedia PDF Downloads 140
2498 Bipolar Impulse Noise Removal and Edge Preservation in Color Images and Video Using Improved Kuwahara Filter

Authors: Reji Thankachan, Varsha PS

Abstract:

Both image capturing devices and human visual systems are nonlinear. Hence nonlinear filtering methods outperforms its linear counterpart in many applications. Linear methods are unable to remove impulsive noise in images by preserving its edges and fine details. In addition, linear algorithms are unable to remove signal dependent or multiplicative noise in images. This paper presents an approach to denoise and smoothen the Bipolar impulse noised images and videos using improved Kuwahara filter. It involves a 2 stage algorithm which includes a noise detection followed by filtering. Numerous simulation demonstrate that proposed method outperforms the existing method by eliminating the painting like flattening effect along the local feature direction while preserving edge with improvement in PSNR and MSE.

Keywords: bipolar impulse noise, Kuwahara, PSNR MSE, PDF

Procedia PDF Downloads 500
2497 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime

Authors: Vrince Vimal, Madhav J. Nigam

Abstract:

Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.

Keywords: Wireless Sensor network (WSN), Random Deployment, Clustering, Isolated Nodes, Networks Lifetime

Procedia PDF Downloads 341
2496 Fuzzy Vehicle Routing Problem for Extreme Environment

Authors: G. Sirbiladze, B. Ghvaberidze, B. Matsaberidze

Abstract:

A fuzzy vehicle routing problem is considered in the possibilistic environment. A new criterion, maximization of expectation of reliability for movement on closed routes is constructed. The objective of the research is to implement a two-stage scheme for solution of this problem. Based on the algorithm of preferences on the first stage, the sample of so-called “promising” routes will be selected. On the second stage, for the selected promising routes new bi-criteria problem will be solved - minimization of total traveled distance and maximization of reliability of routes. The problem will be stated as a fuzzy-partitioning problem. Two possible solutions of this scheme are considered.

Keywords: vehicle routing problem, fuzzy partitioning problem, multiple-criteria optimization, possibility theory

Procedia PDF Downloads 553
2495 Distinct Method to Measure the Quality of 2D Image Compression Techniques

Authors: Mohammed H. Rasheed, Hussein Nadhem Fadhel, Mohammed M. Siddeq

Abstract:

In this paper, we introduced tools for evaluating image quality that effectively aligns with human perception, emphasizing their usefulness in assessing the visual quality of images. These tools offer quantitative metrics to facilitate the comparison of various image compression algorithms. Specifically, we propose two metrics designed to measure the quality of decompressed images. These metrics utilize combined data (CD) derived from both the original and decompressed images to deliver accurate assessments. By comparing the results of our proposed metrics with widely used standards such as Peak Signal-to-Noise Ratio (PSNR) and Root Mean Square Error (RMSE), we demonstrate that our approach provides a closer match to human visual perception of image quality. This alignment underscores the practical application of the proposed metrics in scenarios requiring subjective evaluation accuracy.

Keywords: RMSE, PSNR, image quality metrics, image compression

Procedia PDF Downloads 41
2494 Intelligent IT Infrastructure in the Gas and Oil Industry

Authors: Ahmad Fahad Alotaibi, Khalid Hamed Hajri, Humoud Hudiban Rashidi

Abstract:

Intelligent information technology infrastructure is considered one of the enablers to enhance digital transformation in the gas and oil fields to optimize IT infrastructure reliability by supporting operations and maintenance in a safe and secure method to optimize resources. Smart IT buildings, communication rooms and shelters with intelligent technologies can strengthen the performance and profitability of gas and oil companies by ensuring business continuity. This paper describes the advantages of deploying intelligent IT infrastructure in the oil and gas industry by illustrating its positive impacts on some development aspects, for instance, operations, maintenance, safety, security and resource optimization. Moreover, it highlights the challenges and difficulties of providing smart IT services in a remote area and proposes solutions to overcome such difficulties.

Keywords: intelligent IT infrastructure, remote areas, oil and gas field, digitalization

Procedia PDF Downloads 65
2493 Wireless Sensor Anomaly Detection Using Soft Computing

Authors: Mouhammd Alkasassbeh, Alaa Lasasmeh

Abstract:

We live in an era of rapid development as a result of significant scientific growth. Like other technologies, wireless sensor networks (WSNs) are playing one of the main roles. Based on WSNs, ZigBee adds many features to devices, such as minimum cost and power consumption, and increasing the range and connect ability of sensor nodes. ZigBee technology has come to be used in various fields, including science, engineering, and networks, and even in medicinal aspects of intelligence building. In this work, we generated two main datasets, the first being based on tree topology and the second on star topology. The datasets were evaluated by three machine learning (ML) algorithms: J48, meta.j48 and multilayer perceptron (MLP). Each topology was classified into normal and abnormal (attack) network traffic. The dataset used in our work contained simulated data from network simulation 2 (NS2). In each database, the Bayesian network meta.j48 classifier achieved the highest accuracy level among other classifiers, of 99.7% and 99.2% respectively.

Keywords: IDS, Machine learning, WSN, ZigBee technology

Procedia PDF Downloads 546
2492 Naïve Bayes: A Classical Approach for the Epileptic Seizures Recognition

Authors: Bhaveek Maini, Sanjay Dhanka, Surita Maini

Abstract:

Electroencephalography (EEG) is used to classify several epileptic seizures worldwide. It is a very crucial task for the neurologist to identify the epileptic seizure with manual EEG analysis, as it takes lots of effort and time. Human error is always at high risk in EEG, as acquiring signals needs manual intervention. Disease diagnosis using machine learning (ML) has continuously been explored since its inception. Moreover, where a large number of datasets have to be analyzed, ML is acting as a boon for doctors. In this research paper, authors proposed two different ML models, i.e., logistic regression (LR) and Naïve Bayes (NB), to predict epileptic seizures based on general parameters. These two techniques are applied to the epileptic seizures recognition dataset, available on the UCI ML repository. The algorithms are implemented on an 80:20 train test ratio (80% for training and 20% for testing), and the performance of the model was validated by 10-fold cross-validation. The proposed study has claimed accuracy of 81.87% and 95.49% for LR and NB, respectively.

Keywords: epileptic seizure recognition, logistic regression, Naïve Bayes, machine learning

Procedia PDF Downloads 65
2491 Mean Shift-Based Preprocessing Methodology for Improved 3D Buildings Reconstruction

Authors: Nikolaos Vassilas, Theocharis Tsenoglou, Djamchid Ghazanfarpour

Abstract:

In this work we explore the capability of the mean shift algorithm as a powerful preprocessing tool for improving the quality of spatial data, acquired from airborne scanners, from densely built urban areas. On one hand, high resolution image data corrupted by noise caused by lossy compression techniques are appropriately smoothed while at the same time preserving the optical edges and, on the other, low resolution LiDAR data in the form of normalized Digital Surface Map (nDSM) is upsampled through the joint mean shift algorithm. Experiments on both the edge-preserving smoothing and upsampling capabilities using synthetic RGB-z data show that the mean shift algorithm is superior to bilateral filtering as well as to other classical smoothing and upsampling algorithms. Application of the proposed methodology for 3D reconstruction of buildings of a pilot region of Athens, Greece results in a significant visual improvement of the 3D building block model.

Keywords: 3D buildings reconstruction, data fusion, data upsampling, mean shift

Procedia PDF Downloads 318
2490 Control of Proton Exchange Membrane Fuel Cell Power System Using PI and Sliding Mode Controller

Authors: Mohamed Derbeli, Maissa Farhat, Oscar Barambones, Lassaad Sbita

Abstract:

Conventional controller (PI) applied to a DC/DC boost converter for the improvement and optimization of the Proton Exchange Membrane Fuel Cell (PEMFC) system efficiency, cannot attain a good performance effect. Thus, due to its advantages comparatively with the PI controller, this paper interest is focused on the use of the sliding mode controller (SMC), Stability of the closed loop system is analytically proved using Lyapunov approach for the proposed controller. The model and the controllers are implemented in the MATLAB and SIMULINK environment. A comparison of results indicates that the suggested approach has considerable advantages compared to the traditional controller.

Keywords: DC/DC boost converter, PEMFC, PI controller, sliding mode controller

Procedia PDF Downloads 238
2489 Application of the Discrete-Event Simulation When Optimizing of Business Processes in Trading Companies

Authors: Maxat Bokambayev, Bella Tussupova, Aisha Mamyrova, Erlan Izbasarov

Abstract:

Optimization of business processes in trading companies is reviewed in the report. There is the presentation of the “Wholesale Customer Order Handling Process” business process model applicable for small and medium businesses. It is proposed to apply the algorithm for automation of the customer order processing which will significantly reduce labor costs and time expenditures and increase the profitability of companies. An optimized business process is an element of the information system of accounting of spare parts trading network activity. The considered algorithm may find application in the trading industry as well.

Keywords: business processes, discrete-event simulation, management, trading industry

Procedia PDF Downloads 348
2488 A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm

Authors: Ali Nourollah, Mohsen Movahedinejad

Abstract:

In this paper a new algorithm to generate random simple polygons from a given set of points in a two dimensional plane is designed. The proposed algorithm uses a genetic algorithm to generate polygons with few vertices. A new merge algorithm is presented which converts any two polygons into a simple polygon. This algorithm at first changes two polygons into a polygonal chain and then the polygonal chain is converted into a simple polygon. The process of converting a polygonal chain into a simple polygon is based on the removal of intersecting edges. The merge algorithm has the time complexity of O ((r+s) *l) where r and s are the size of merging polygons and l shows the number of intersecting edges removed from the polygonal chain. It will be shown that 1 < l < r+s. The experiments results show that the proposed algorithm has the ability to generate a great number of different simple polygons and has better performance in comparison to celebrated algorithms such as space partitioning and steady growth.

Keywords: Divide and conquer, genetic algorithm, merge polygons, Random simple polygon generation.

Procedia PDF Downloads 536
2487 Investigation of Steel Infill Panels under Blast Impulsive Loading

Authors: Seyed M. Zahrai, Saeid Lotfi

Abstract:

If an infill panel does not have enough ductility against the loading, it breaks and gets damaged before depreciation and load transfer. As steel infill panel has appropriate ductility before fracture, it can be used as an alternative to typical infill panels under blast loading. Concerning enough ductility of out-of-plane behavior the infill panel, the impact force enters the horizontal diaphragm and is distributed among the lateral elements which can be made from steel infill panels. This article investigates the behavior of steel infill panels with different thickness and stiffeners using finite element analysis with geometric and material nonlinearities for optimization of the steel plate thickness and stiffeners arrangement to obtain more efficient design for its out-of-plane behavior.

Keywords: blast loading, ductility, maximum displacement, steel infill panel

Procedia PDF Downloads 281
2486 Modelling of Multi-Agent Systems for the Scheduling of Multi-EV Charging from Power Limited Sources

Authors: Manan’Iarivo Rasolonjanahary, Chris Bingham, Nigel Schofield, Masoud Bazargan

Abstract:

This paper presents the research and application of model predictive scheduled charging of electric vehicles (EV) subject to limited available power resource. To focus on algorithm and operational characteristics, the EV interface to the source is modelled as a battery state equation during the charging operation. The researched methods allow for the priority scheduling of EV charging in a multi-vehicle regime and when subject to limited source power availability. Priority attribution for each connected EV is described. The validity of the developed methodology is shown through the simulation of different scenarios of charging operation of multiple connected EVs including non-scheduled and scheduled operation with various numbers of vehicles. Performance of the developed algorithms is also reported with the recommendation of the choice of suitable parameters.

Keywords: model predictive control, non-scheduled, power limited sources, scheduled and stop-start battery charging

Procedia PDF Downloads 163
2485 Block Mining: Block Chain Enabled Process Mining Database

Authors: James Newman

Abstract:

Process mining is an emerging technology that looks to serialize enterprise data in time series data. It has been used by many companies and has been the subject of a variety of research papers. However, the majority of current efforts have looked at how to best create process mining from standard relational databases. This paper is the first pass at outlining a database custom-built for the minimal viable product of process mining. We present Block Miner, a blockchain protocol to store process mining data across a distributed network. We demonstrate the feasibility of storing process mining data on the blockchain. We present a proof of concept and show how the intersection of these two technologies helps to solve a variety of issues, including but not limited to ransomware attacks, tax documentation, and conflict resolution.

Keywords: blockchain, process mining, memory optimization, protocol

Procedia PDF Downloads 110
2484 Genetic Algorithm for Solving the Flexible Job-Shop Scheduling Problem

Authors: Guilherme Baldo Carlos

Abstract:

The flexible job-shop scheduling problem (FJSP) is an NP-hard combinatorial optimization problem, which can be applied to model several applications in a wide array of industries. This problem will have its importance increase due to the shift in the production mode that modern society is going through. The demands are increasing and for products personalized and customized. This work aims to apply a meta-heuristic called a genetic algorithm (GA) to solve this problem. A GA is a meta-heuristic inspired by the natural selection of Charles Darwin; it produces a population of individuals (solutions) and selects, mutates, and mates the individuals through generations in order to find a good solution for the problem. The results found indicate that the GA is suitable for FJSP solving.

Keywords: genetic algorithm, evolutionary algorithm, scheduling, flexible job-shop scheduling

Procedia PDF Downloads 151
2483 Dynamic Synthesis of a Flexible Multibody System

Authors: Mohamed Amine Ben Abdallah, Imed Khemili, Nizar Aifaoui

Abstract:

This work denotes an insight into dynamic synthesis of multibody systems. A set of mechanism parameters design variable are synthetized based on a desired mechanism response, such as, velocity, acceleration and bodies deformations. Moreover, knowing the work space, for a robot, and mechanism response allow defining optimal parameters mechanism handling with the desired target response. To this end, evolutionary genetic algorithm has been deployed. A demonstrative example for imperfect mechanism has been treated, mainly, a slider crank mechanism with a flexible connecting rod. The transversal deflection of the connecting rod has been chosen as response to identify the mechanism design parameters.

Keywords: dynamic response, evolutionary genetic algorithm, flexible bodies, optimization

Procedia PDF Downloads 326