Search results for: network dynamic transmission modes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10800

Search results for: network dynamic transmission modes

8370 A Study of the Adaptive Reuse for School Land Use Strategy: An Application of the Analytic Network Process and Big Data

Authors: Wann-Ming Wey

Abstract:

In today's popularity and progress of information technology, the big data set and its analysis are no longer a major conundrum. Now, we could not only use the relevant big data to analysis and emulate the possible status of urban development in the near future, but also provide more comprehensive and reasonable policy implementation basis for government units or decision-makers via the analysis and emulation results as mentioned above. In this research, we set Taipei City as the research scope, and use the relevant big data variables (e.g., population, facility utilization and related social policy ratings) and Analytic Network Process (ANP) approach to implement in-depth research and discussion for the possible reduction of land use in primary and secondary schools of Taipei City. In addition to enhance the prosperous urban activities for the urban public facility utilization, the final results of this research could help improve the efficiency of urban land use in the future. Furthermore, the assessment model and research framework established in this research also provide a good reference for schools or other public facilities land use and adaptive reuse strategies in the future.

Keywords: adaptive reuse, analytic network process, big data, land use strategy

Procedia PDF Downloads 203
8369 From Self-Regulation to Self-Efficacy: Student Empowerment in Translator Training

Authors: Paulina Pietrzak

Abstract:

The understanding of the role of the contemporary translator is fraught with contradictions and idealistic visions of individuals who, by definition, should be fully competent and versatile. In spite of the fact that lots of translation researchers have probed into the identification and exploration of the concept of translator competence, little study has been devoted to its metacognitive aspects. Due to the dynamic nature of the translator’s occupation, it is difficult to predict what specific skills will prove useful for novice translators in their professional career. Thus, it is crucial that the translator is self-regulated enough to adapt to changing job demands and effectively function in the contemporary, highly dynamic, translation market. The objective of the presentation is to investigate the role and nature of the translator’s self-regulation. It will also demonstrate the results of a pilot study into translation trainees’ self-regulatory skills and explore implications of these findings for translator training in relation to theories of student empowerment.

Keywords: cognitive translation research, translator competence, self-regulatory skills, translator training

Procedia PDF Downloads 207
8368 Development and Range Testing of a LoRaWAN System in an Urban Environment

Authors: N. R. Harris, J. Curry

Abstract:

This paper describes the construction and operation of an experimental LoRaWAN network surrounding the University of Southampton in the United Kingdom. Following successful installation, an experimental node design is built and characterised, with particular emphasis on radio range. Several configurations are investigated, including different data rates, and varying heights of node. It is concluded that although range can be great (over 8 km in this case), environmental topology is critical. However, shorter range implementations, up to about 2 km in an urban environment, are relatively insensitive although care is still needed. The example node and the relatively simple base station reported demonstrate that LoraWan can be a very low cost and practical solution to Internet of Things type applications for distributed monitoring systems with sensors spread over distances of several km.

Keywords: long-range, wireless, sensor, network

Procedia PDF Downloads 137
8367 Graphene Metamaterials Supported Tunable Terahertz Fano Resonance

Authors: Xiaoyong He

Abstract:

The manipulation of THz waves is still a challenging task due to lack of natural materials interacted with it strongly. Designed by tailoring the characters of unit cells (meta-molecules), the advance of metamaterials (MMs) may solve this problem. However, because of Ohmic and radiation losses, the performance of MMs devices is subjected to the dissipation and low quality factor (Q-factor). This dilemma may be circumvented by Fano resonance, which arises from the destructive interference between a bright continuum mode and dark discrete mode (or a narrow resonance). Different from symmetric Lorentz spectral curve, Fano resonance indicates a distinct asymmetric line-shape, ultrahigh quality factor, steep variations in spectrum curves. Fano resonance is usually realized through symmetry breaking. However, if concentric double rings (DR) are placed closely to each other, the near-field coupling between them gives rise to two hybridized modes (bright and narrowband dark modes) because of the local asymmetry, resulting into the characteristic Fano line shape. Furthermore, from the practical viewpoint, it is highly desirable requirement that to achieve the modulation of Fano spectral curves conveniently, which is an important and interesting research topics. For current Fano systems, the tunable spectral curves can be realized by adjusting the geometrical structural parameters or magnetic fields biased the ferrite-based structure. But due to limited dispersion properties of active materials, it is still a tough work to tailor Fano resonance conveniently with the fixed structural parameters. With the favorable properties of extreme confinement and high tunability, graphene is a strong candidate to achieve this goal. The DR-structure possesses the excitation of so-called “trapped modes,” with the merits of simple structure and high quality of resonances in thin structures. By depositing graphene circular DR on the SiO2/Si/ polymer substrate, the tunable Fano resonance has been theoretically investigated in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that the obvious Fano peak can be efficiently modulated because of the strong coupling between incident waves and graphene ribbons. As Fermi level increases, the peak amplitude of Fano curve increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 30% if Fermi level changes in the scope of 0.1-1.0 eV. The optimum gap distance between DR is about 8-12 μm, where the value of figure of merit shows a peak. As the graphene ribbon width increases, the Fano spectral curves become broad, and the resonant peak denotes blue shift. The results are very helpful to develop novel graphene plasmonic devices, e.g. sensors and modulators.

Keywords: graphene, metamaterials, terahertz, tunable

Procedia PDF Downloads 344
8366 Determination of Johnson-Cook Material and Failure Model Constants for High Tensile Strength Tendon Steel in Post-Tensioned Concrete Members

Authors: I. Gkolfinopoulos, N. Chijiwa

Abstract:

To evaluate the remaining capacity in concrete tensioned members, it is important to accurately estimate damage in precast concrete tendons. In this research Johnson-Cook model and damage parameters of high-strength steel material were calculated by static and dynamic uniaxial tensile tests. Replication of experimental results was achieved through finite element analysis for both single 8-noded three-dimensional element as well as the full-scale dob-bone shaped model and relevant model parameters are proposed. Finally, simulation results in terms of strain and deformation were verified using digital image correlation analysis.

Keywords: DIC analysis, Johnson-Cook, quasi-static, dynamic, rupture, tendon

Procedia PDF Downloads 147
8365 Network Pharmacological Evaluation of Holy Basil Bioactive Phytochemicals for Identifying Novel Potential Inhibitors Against Neurodegenerative Disorder

Authors: Bhuvanesh Baniya

Abstract:

Alzheimer disease is illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Holy basil in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of holy basil as potential inhibitors for the treatment of Alzheimer disease. To fulfill this objective, the Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 7 active components in holy basil, 12 predicted neurodegenerative targets of holy basil, and 8063 Alzheimer-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to Alzheimer disease. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer’s disease pathways. Further, the molecular docking results to found that various compounds showed the best binding affinities. Further, MDS top results suggested could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer’s disease.

Keywords: holy basil, network pharmacology, neurodegeneration, active phytochemicals, molecular docking and simulation

Procedia PDF Downloads 101
8364 Aftershock Collapse Capacity Assessment of Mid-Rise Steel Moment Frames Subjected to As-Recorded Mainshock-Aftershock

Authors: Mohammadmehdi Torfehnejada, Serhan Senso

Abstract:

Aftershock collapse capacity of Special Steel Moment Frames (SSMFs) is evaluated under aftershock earthquakes by considering building heights 8 and 12 stories. The assessment evaluates the residual collapse capacity under aftershock excitation when various levels of damage have been induced by the mainshock. For this purpose, incremental dynamic analysis (IDA) under aftershock follows the mainshock imposing the intended damage level. The study results indicate that aftershock collapse capacity of this structure may decrease remarkably when the structure is subjected to large mainshock damage. The capacity reduction under aftershock is finally related to the mainshock damage level through regression equations.

Keywords: aftershock collapse capacity, special steel moment frames, mainshock-aftershock sequences, incremental dynamic analysis, mainshock damage

Procedia PDF Downloads 152
8363 Dynamic Stability Assessment of Different Wheel Sized Bicycles Based on Current Frame Design Practice with ISO Requirement for Bicycle Safety

Authors: Milan Paudel, Fook Fah Yap, Anil K. Bastola

Abstract:

The difficulties in riding small wheel bicycles and their lesser stability have been perceived for a long time. Although small wheel bicycles are designed using the similar approach and guidelines that have worked well for big wheel bicycles, the performance of the big wheelers and the smaller wheelers are markedly different. Since both the big wheelers and small wheelers have same fundamental geometry, most blame the small wheel for this discrepancy in the performance. This paper reviews existing guidelines for bicycle design, especially the front steering geometry for the bicycle, and provides a systematic and quantitative analysis of different wheel sized bicycles. A validated mathematical model has been used as a tool to assess the dynamic performance of the bicycles in term of their self-stability. The results obtained were found to corroborate the subjective perception of cyclists for small wheel bicycles. The current approach for small wheel bicycle design requires higher speed to be self-stable. However, it was found that increasing the headtube angle and selecting a proper trail could improve the dynamic performance of small wheel bicycles. A range of parameters for front steering geometry has been identified for small wheel bicycles that have comparable stability as big wheel bicycles. Interestingly, most of the identified geometries are found to be beyond the ISO recommended range and seem to counter the current approach of small wheel bicycle design. Therefore, it was successfully shown that the guidelines for big wheelers do not translate directly to small wheelers, but careful selection of the front geometry could make small wheel bicycles as stable as big wheel bicycles.

Keywords: big wheel bicycle, design approach, ISO requirements, small wheel bicycle, stability and performance

Procedia PDF Downloads 194
8362 Lipid-Chitosan Hybrid Nanoparticles for Controlled Delivery of Cisplatin

Authors: Muhammad Muzamil Khan, Asadullah Madni, Nina Filipczek, Jiayi Pan, Nayab Tahir, Hassan Shah, Vladimir Torchilin

Abstract:

Lipid-polymer hybrid nanoparticles (LPHNP) are delivery systems for controlled drug delivery at tumor sites. The superior biocompatible properties of lipid and structural advantages of polymer can be obtained via this system for controlled drug delivery. In the present study, cisplatin-loaded lipid-chitosan hybrid nanoparticles were formulated by the single step ionic gelation method based on ionic interaction of positively charged chitosan and negatively charged lipid. Formulations with various chitosan to lipid ratio were investigated to obtain the optimal particle size, encapsulation efficiency, and controlled release pattern. Transmission electron microscope and dynamic light scattering analysis demonstrated a size range of 181-245 nm and a zeta potential range of 20-30 mV. Compatibility among the components and the stability of formulation were demonstrated with FTIR analysis and thermal studies, respectively. The therapeutic efficacy and cellular interaction of cisplatin-loaded LPHNP were investigated using in vitro cell-based assays in A2780/ADR ovarian carcinoma cell line. Additionally, the cisplatin loaded LPHNP exhibited a low toxicity profile in rats. The in-vivo pharmacokinetics study also proved a controlled delivery of cisplatin with enhanced mean residual time and half-life. Our studies suggested that the cisplatin-loaded LPHNP being a promising platform for controlled delivery of cisplatin in cancer therapy.

Keywords: cisplatin, lipid-polymer hybrid nanoparticle, chitosan, in vitro cell line study

Procedia PDF Downloads 130
8361 Importance of Location Selection of an Energy Storage System in a Smart Grid

Authors: Vanaja Rao

Abstract:

In the recent times, the need for the integration of Renewable Energy Sources (RES) in a Smart Grid is on the rise. As a result of this, associated energy storage systems are known to play important roles in sustaining the efficient operation of such RES like wind power and solar power. This paper investigates the importance of location selection of Energy Storage Systems (ESSs) in a Smart Grid. Three scenarios of ESS location is studied and analyzed in a Smart Grid, which are – 1. Near the generation/source, 2. In the middle of the Grid and, 3. Near the demand/consumption. This is explained with the aim of assisting any Distribution Network Operator (DNO) in deploying the ESSs in a power network, which will significantly help reduce the costs and time of planning and avoid any damages incurred as a result of installing them at an incorrect location of a Smart Grid. To do this, the outlined scenarios mentioned above are modelled and analyzed with the National Grid’s datasets of energy generation and consumption in the UK power network. As a result, the outcome of this analysis aims to provide a better overview for the location selection of the ESSs in a Smart Grid. This ensures power system stability and security along with the optimum usage of the ESSs.

Keywords: distribution networks, energy storage system, energy security, location planning, power stability, smart grid

Procedia PDF Downloads 299
8360 Enhancing Knowledge Graph Convolutional Networks with Structural Adaptive Receptive Fields for Improved Node Representation and Information Aggregation

Authors: Zheng Zhihao

Abstract:

Recently, Knowledge Graph Framework Network (KGCN) has developed powerful capabilities in knowledge representation and reasoning tasks. However, traditional KGCN often uses a fixed weight mechanism when aggregating information, failing to make full use of rich structural information, resulting in a certain expression ability of node representation, and easily causing over-smoothing problems. In order to solve these challenges, the paper proposes an new graph neural network model called KGCN-STAR (Knowledge Graph Convolutional Network with Structural Adaptive Receptive Fields). This model dynamically adjusts the perception of each node by introducing a structural adaptive receptive field. wild range, and a subgraph aggregator is designed to capture local structural information more effectively. Experimental results show that KGCN-STAR shows significant performance improvement on multiple knowledge graph data sets, especially showing considerable capabilities in the task of representation learning of complex structures.

Keywords: knowledge graph, graph neural networks, structural adaptive receptive fields, information aggregation

Procedia PDF Downloads 33
8359 Investigating the Neural Heterogeneity of Developmental Dyscalculia

Authors: Fengjuan Wang, Azilawati Jamaludin

Abstract:

Developmental Dyscalculia (DD) is defined as a particular learning difficulty with continuous challenges in learning requisite math skills that cannot be explained by intellectual disability or educational deprivation. Recent studies have increasingly recognized that DD is a heterogeneous, instead of monolithic, learning disorder with not only cognitive and behavioral deficits but so too neural dysfunction. In recent years, neuroimaging studies employed group comparison to explore the neural underpinnings of DD, which contradicted the heterogenous nature of DD and may obfuscate critical individual differences. This research aimed to investigate the neural heterogeneity of DD using case studies with functional near-infrared spectroscopy (fNIRS). A total of 54 aged 6-7 years old of children participated in this study, comprising two comprehensive cognitive assessments, an 8-minute resting state, and an 8-minute one-digit addition task. Nine children met the criteria of DD and scored at or below 85 (i.e., the 16th percentile) on the Mathematics or Math Fluency subtest of the Wechsler Individual Achievement Test, Third Edition (WIAT-III) (both subtest scores were 90 and below). The remaining 45 children formed the typically developing (TD) group. Resting-state data and brain activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), and intraparietal sulcus (IPS) were collected for comparison between each case and the TD group. Graph theory was used to analyze the brain network under the resting state. This theory represents the brain network as a set of nodes--brain regions—and edges—pairwise interactions across areas to reveal the architectural organizations of the nervous network. Next, a single-case methodology developed by Crawford et al. in 2010 was used to compare each case’s brain network indicators and brain activation against 45 TD children’s average data. Results showed that three out of the nine DD children displayed significant deviation from TD children’s brain indicators. Case 1 had inefficient nodal network properties. Case 2 showed inefficient brain network properties and weaker activation in the IFG and IPS areas. Case 3 displayed inefficient brain network properties with no differences in activation patterns. As a rise above, the present study was able to distill differences in architectural organizations and brain activation of DD vis-à-vis TD children using fNIRS and single-case methodology. Although DD is regarded as a heterogeneous learning difficulty, it is noted that all three cases showed lower nodal efficiency in the brain network, which may be one of the neural sources of DD. Importantly, although the current “brain norm” established for the 45 children is tentative, the results from this study provide insights not only for future work in “developmental brain norm” with reliable brain indicators but so too the viability of single-case methodology, which could be used to detect differential brain indicators of DD children for early detection and interventions.

Keywords: brain activation, brain network, case study, developmental dyscalculia, functional near-infrared spectroscopy, graph theory, neural heterogeneity

Procedia PDF Downloads 53
8358 Analysis of Performance Improvement Factors in Supply Chain Manufacturing Using Analytic Network Process and Kaizen

Authors: Juliza Hidayati, Yesie M. Sinuhaji, Sawarni Hasibuan

Abstract:

A company producing drinking water through many incompatibility issues that affect supply chain performance. The study was conducted to determine the factors that affect the performance of the supply chain and improve it. To obtain the dominant factors affecting the performance of the supply chain used Analytic Network Process, while to improve performance is done by using Kaizen. Factors affecting the performance of the supply chain to be a reference to identify the cause of the non-conformance. Results weighting using ANP indicates that the dominant factor affecting the level of performance is the precision of the number of shipments (15%), the ability of the fulfillment of the booking amount (12%), and the number of rejected products when signing (12%). Incompatibility of the factors that affect the performance of the supply chain are identified, so that found the root cause of the problem is most dominant. Based on the weight of Risk Priority Number (RPN) gained the most dominant root cause of the problem, namely the poorly maintained engine, the engine worked for three shifts, machine parts that are not contained in the plant. Improvements then performed using the Kaizen method of systematic and sustainable.

Keywords: analytic network process, booking amount, risk priority number, supply chain performance

Procedia PDF Downloads 294
8357 Quality-Of-Service-Aware Green Bandwidth Allocation in Ethernet Passive Optical Network

Authors: Tzu-Yang Lin, Chuan-Ching Sue

Abstract:

Sleep mechanisms are commonly used to ensure the energy efficiency of each optical network unit (ONU) that concerns a single class delay constraint in the Ethernet Passive Optical Network (EPON). How long the ONUs can sleep without violating the delay constraint has become a research problem. Particularly, we can derive an analytical model to determine the optimal sleep time of ONUs in every cycle without violating the maximum class delay constraint. The bandwidth allocation considering such optimal sleep time is called Green Bandwidth Allocation (GBA). Although the GBA mechanism guarantees that the different class delay constraints do not violate the maximum class delay constraint, packets with a more relaxed delay constraint will be treated as those with the most stringent delay constraint and may be sent early. This means that the ONU will waste energy in active mode to send packets in advance which did not need to be sent at the current time. Accordingly, we proposed a QoS-aware GBA using a novel intra-ONU scheduling to control the packets to be sent according to their respective delay constraints, thereby enhancing energy efficiency without deteriorating delay performance. If packets are not explicitly classified but with different packet delay constraints, we can modify the intra-ONU scheduling to classify packets according to their packet delay constraints rather than their classes. Moreover, we propose the switchable ONU architecture in which the ONU can switch the architecture according to the sleep time length, thus improving energy efficiency in the QoS-aware GBA. The simulation results show that the QoS-aware GBA ensures that packets in different classes or with different delay constraints do not violate their respective delay constraints and consume less power than the original GBA.

Keywords: Passive Optical Networks, PONs, Optical Network Unit, ONU, energy efficiency, delay constraint

Procedia PDF Downloads 284
8356 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory

Authors: Yin Yuanling

Abstract:

A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.

Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks

Procedia PDF Downloads 144
8355 Effects of Lung Protection Ventilation Strategies on Postoperative Pulmonary Complications After Noncardiac Surgery: A Network Meta-Analysis of Randomized Controlled Trials

Authors: Ran An, Dang Wang

Abstract:

Background: Mechanical ventilation has been confirmed to increase the incidence of postoperative pulmonary complications (PPCs), and several studies have shown that low tidal volumes combined with positive end-expiratory pressure (PEEP) and recruitment manoeuvres (RM) reduce the incidence of PPCs. However, the optimal lung-protective ventilatory strategy remains unclear. Methods: Multiple databases were searched for randomized controlled trials (RCTs) published prior to October 2023. The association between individual PEEP (iPEEP) or other forms of lung-protective ventilation and the incidence of PPCs was evaluated by Bayesian network meta-analysis. Results: We included 58 studies (11610 patients) in this meta-analysis. The network meta-analysis showed that low ventilation (LVt) combined with iPEEP and RM was associated with significantly lower incidences of PPCs [HVt: OR=0.38 95CrI (0.19, 0.75), LVt: OR=0.33, 95% CrI (0.12, 0.82)], postoperative atelectasis, and pneumonia than was HVt or LVt. In abdominal surgery, LVT combined with iPEEP or medium-to-high PEEP and RM were associated with significantly lower incidences of PPCs, postoperative atelectasis, and pneumonia. LVt combined with iPEEP and RM was ranked the highest, which was based on SUCRA scores. Conclusion: LVt combined with iPEEP and RM decreased the incidences of PPCs, postoperative atelectasis, and pneumonia in noncardiac surgery patients. iPEEP-guided ventilation was the optimal lung protection ventilation strategy. The quality of evidence was moderate.

Keywords: protection ventilation strategies, postoperative pulmonary complications, network meta-analysis, noncardiac surgery

Procedia PDF Downloads 35
8354 Application of Artificial Intelligence in Market and Sales Network Management: Opportunities, Benefits, and Challenges

Authors: Mohamad Mahdi Namdari

Abstract:

In today's rapidly changing and evolving business competition, companies and organizations require advanced and efficient tools to manage their markets and sales networks. Big data analysis, quick response in competitive markets, process and operations optimization, and forecasting customer behavior are among the concerns of executive managers. Artificial intelligence, as one of the emerging technologies, has provided extensive capabilities in this regard. The use of artificial intelligence in market and sales network management can lead to improved efficiency, increased decision-making accuracy, and enhanced customer satisfaction. Specifically, AI algorithms can analyze vast amounts of data, identify complex patterns, and offer strategic suggestions to improve sales performance. However, many companies are still distant from effectively leveraging this technology, and those that do face challenges in fully exploiting AI's potential in market and sales network management. It appears that the general public's and even the managerial and academic communities' lack of knowledge of this technology has caused the managerial structure to lag behind the progress and development of artificial intelligence. Additionally, high costs, fear of change and employee resistance, lack of quality data production processes, the need for updating structures and processes, implementation issues, the need for specialized skills and technical equipment, and ethical and privacy concerns are among the factors preventing widespread use of this technology in organizations. Clarifying and explaining this technology, especially to the academic, managerial, and elite communities, can pave the way for a transformative beginning. The aim of this research is to elucidate the capacities of artificial intelligence in market and sales network management, identify its opportunities and benefits, and examine the existing challenges and obstacles. This research aims to leverage AI capabilities to provide a framework for enhancing market and sales network performance for managers. The results of this research can help managers and decision-makers adopt more effective strategies for business growth and development by better understanding the capabilities and limitations of artificial intelligence.

Keywords: artificial intelligence, market management, sales network, big data analysis, decision-making, digital marketing

Procedia PDF Downloads 42
8353 Developing a Spatial Transport Model to Determine Optimal Routes When Delivering Unprocessed Milk

Authors: Sunday Nanosi Ndovi, Patrick Albert Chikumba

Abstract:

In Malawi, smallholder dairy farmers transport unprocessed milk to sell at Milk Bulking Groups (MBGs). MBGs store and chill the milk while awaiting collection by processors. The farmers deliver milk using various modes of transportation such as foot, bicycle, and motorcycle. As a perishable food, milk requires timely transportation to avoid deterioration. In other instances, some farmers bypass the nearest MBGs for facilities located further away. Untimely delivery worsens quality and results in rejection at MBG. Subsequently, these rejections lead to revenue losses for dairy farmers. Therefore, the objective of this study was to optimize routes when transporting milk by selecting the shortest route using time as a cost attribute in Geographic Information Systems (GIS). A spatially organized transport system impedes milk deterioration while promoting profitability for dairy farmers. A transportation system was modeled using Route Analysis and Closest Facility network extensions. The final output was to find the quickest routes and identify the nearest milk facilities from incidents. Face-to-face interviews targeted leaders from all 48 MBGs in the study area and 50 farmers from Namahoya MBG. During field interviews, coordinates were captured in order to create maps. Subsequently, maps supported the selection of optimal routes based on the least travel times. The questionnaire targeted 200 respondents. Out of the total, 182 respondents were available. Findings showed that out of the 50 sampled farmers that supplied milk to Namahoya, only 8% were nearest to the facility, while 92% were closest to 9 different MBGs. Delivering milk to the nearest MBGs would minimize travel time and distance by 14.67 hours and 73.37 km, respectively.

Keywords: closest facility, milk, route analysis, spatial transport

Procedia PDF Downloads 58
8352 Device Control Using Brain Computer Interface

Authors: P. Neeraj, Anurag Sharma, Harsukhpreet Singh

Abstract:

In current years, Brain-Computer Interface (BCI) scheme based on steady-state Visual Evoked Potential (SSVEP) have earned much consideration. This study tries to evolve an SSVEP based BCI scheme that can regulate any gadget mock-up in two unique positions ON and OFF. In this paper, two distinctive gleam frequencies in low-frequency part were utilized to evoke the SSVEPs and were shown on a Liquid Crystal Display (LCD) screen utilizing Lab View. Two stimuli shading, Yellow, and Blue were utilized to prepare the system in SSVEPs. The Electroencephalogram (EEG) signals recorded from the occipital part. Elements of the brain were separated by utilizing discrete wavelet Transform. A prominent system for multilayer system diverse Neural Network Algorithm (NNA), is utilized to characterize SSVEP signals. During training of the network with diverse calculation Regression plot results demonstrated that when Levenberg-Marquardt preparing calculation was utilized the exactness turns out to be 93.9%, which is superior to another training algorithm.

Keywords: brain computer interface, electroencephalography, steady-state visual evoked potential, wavelet transform, neural network

Procedia PDF Downloads 334
8351 Performance Based Design of Masonry Infilled Reinforced Concrete Frames for Near-Field Earthquakes Using Energy Methods

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

Performance based design (PBD) is an iterative exercise in which a preliminary trial design of the building structure is selected and if the selected trial design of the building structure does not conform to the desired performance objective, the trial design is revised. In this context, development of a fundamental approach for performance based seismic design of masonry infilled frames with minimum number of trials is an important objective. The paper presents a plastic design procedure based on the energy balance concept for PBD of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames subjected to near-field earthquakes. The proposed energy based plastic design procedure was implemented for trial performance based seismic design of representative masonry infilled reinforced concrete frames with various practically relevant distributions of masonry infill panels over the frame elevation. Non-linear dynamic analyses of the trial PBD of masonry infilled R/C frames was performed under the action of near-field earthquake ground motions. The results of non-linear dynamic analyses demonstrate that the proposed energy method is effective for performance based design of masonry infilled R/C frames under near-field as well as far-field earthquakes.

Keywords: masonry infilled frame, energy methods, near-fault ground motions, pushover analysis, nonlinear dynamic analysis, seismic demand

Procedia PDF Downloads 292
8350 An MIPSSTWM-based Emergency Vehicle Routing Approach for Quick Response to Highway Incidents

Authors: Siliang Luan, Zhongtai Jiang

Abstract:

The risk of highway incidents is commonly recognized as a major concern for transportation authorities due to the hazardous consequences and negative influence. It is crucial to respond to these unpredictable events as soon as possible faced by emergency management decision makers. In this paper, we focus on path planning for emergency vehicles, one of the most significant processes to avoid congestion and reduce rescue time. A Mixed-Integer Linear Programming with Semi-Soft Time Windows Model (MIPSSTWM) is conducted to plan an optimal routing respectively considering the time consumption of arcs and nodes of the urban road network and the highway network, especially in developing countries with an enormous population. Here, the arcs indicate the road segments and the nodes include the intersections of the urban road network and the on-ramp and off-ramp of the highway networks. An attempt in this research has been made to develop a comprehensive and executive strategy for emergency vehicle routing in heavy traffic conditions. The proposed Cuckoo Search (CS) algorithm is designed by imitating obligate brood parasitic behaviors of cuckoos and Lévy Flights (LF) to solve this hard and combinatorial problem. Using a Chinese city as our case study, the numerical results demonstrate the approach we applied in this paper outperforms the previous method without considering the nodes of the road network for a real-world situation. Meanwhile, the accuracy and validity of the CS algorithm also show better performances than the traditional algorithm.

Keywords: emergency vehicle, path planning, cs algorithm, urban traffic management and urban planning

Procedia PDF Downloads 80
8349 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning

Authors: Joseph George, Anne Kotteswara Roa

Abstract:

Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.

Keywords: skin cancer, deep learning, performance measures, accuracy, datasets

Procedia PDF Downloads 129
8348 Study on Dynamic Stiffness Matching and Optimization Design Method of a Machine Tool

Authors: Lu Xi, Li Pan, Wen Mengmeng

Abstract:

The stiffness of each component has different influences on the stiffness of the machine tool. Taking the five-axis gantry machining center as an example, we made the modal analysis of the machine tool, followed by raising and lowering the stiffness of the pillar, slide plate, beam, ram and saddle so as to study the stiffness matching among these components on the standard of whether the stiffness of the modified machine tool changes more than 50% relative to the stiffness of the original machine tool. The structural optimization of the machine tool can be realized by changing the stiffness of the components whose stiffness is mismatched. For example, the stiffness of the beam is mismatching. The natural frequencies of the first six orders of the beam increased by 7.70%, 0.38%, 6.82%, 7.96%, 18.72% and 23.13%, with the weight increased by 28Kg, leading to the natural frequencies of several orders which had a great influence on the dynamic performance of the whole machine increased by 1.44%, 0.43%, 0.065%, which verified the correctness of the optimization method based on stiffness matching proposed in this paper.

Keywords: machine tool, optimization, modal analysis, stiffness matching

Procedia PDF Downloads 102
8347 The Role of Dynamic Ankle Foot Orthosis on Temporo-Spatial Parameters of Gait and Balance in Patients with Hereditary Spastic Paraparesis: Six-Months Follow Up

Authors: Suat Erel, Gozde Gur

Abstract:

Background: Recently a supramalleolar type of dynamic ankle foot orthosis (DAFO) has been increasingly used to support all of the dynamic arches of the foot and redistribute the pressure under the plantar surface of the foot to reduce the muscle tone. DAFO helps to maintain balance and postural control by providing stability and proprioceptive feedback in children with disease like Cerebral Palsy, Muscular Dystrophies, Down syndrome, and congenital hypotonia. Aim: The aim of this study was to investigate the role of Dynamic ankle foot orthosis (DAFO) on temporo-spatial parameters of gait and balance in three children with hereditary spastic paraparesis (HSP). Material Method: 13, 14, and 8 years old three children with HSP were included in the study. To provide correction on weight bearing and to improve gait, DAFO was made. Lower extremity spasticity (including gastocnemius, hamstrings and hip adductor muscles) using modified Ashworth Scale (MAS) (0-5), The temporo-spatial gait parameters (walking speed, cadence, base of support, step length) and Timed Up & Go test (TUG) were evaluated. All of the assessments about gait were compared with (with DAFO and shoes) and without DAFO (with shoes only) situations. Also after six months follow up period, assessments were repeated by the same physical therapist. Results: MAS scores for lower extremity were between “2-3” for the first child, “0-2” for the second child and “1-2” for the third child. TUG scores (sec) decreased from 20.2 to 18 for case one, from 9.4 to 9 for case two and from 12,4 to 12 for case three in the condition with shoes only and also from 15,2 to 14 for case one, from 7,2 to 7,1 for case two and from 10 to 7,3 for case three in the condition with DAFO and shoes. Gait speed (m/sec) while wearing shoes only was similar but while wearing DAFO and shoes increased from 0,4 to 0,5 for case one, from 1,5 to 1,6 for case two and from 1,0 to 1,2 for case three. Base of support scores (cm) wearing shoes only decreased from 18,5 to 14 for case one, from 13 to 12 for case three and were similar as 11 for case two. While wearing DAFO and shoes, base of support decreased from 10 to 9 for case one, from 11,5 to 10 for case three and was similar as 8 for case two. Conclusion: The use of a DAFO in a patient with HSP normalized the temporo-spatial gait parameters and improved balance. Walking speed is a gold standard for evaluating gait quality. With the use of DAFO, walking speed increased in this three children with HSP. With DAFO, better TUG scores shows that functional ambulation improved. Reduction in base of support and more symmetrical step lengths with DAFO indicated better balance. These encouraging results warrant further study on wider series.

Keywords: dynamic ankle foot orthosis, gait, hereditary spastic paraparesis, balance in patient

Procedia PDF Downloads 354
8346 Performance of Total Vector Error of an Estimated Phasor within Local Area Networks

Authors: Ahmed Abdolkhalig, Rastko Zivanovic

Abstract:

This paper evaluates the Total Vector Error of an estimated Phasor as define in IEEE C37.118 standard within different medium access in Local Area Networks (LAN). Three different LAN models (CSMA/CD, CSMA/AMP, and Switched Ethernet) are evaluated. The Total Vector Error of the estimated Phasor has been evaluated for the effect of Nodes Number under the standardized network Band-width values defined in IEC 61850-9-2 communication standard (i.e. 0.1, 1, and 10 Gbps).

Keywords: phasor, local area network, total vector error, IEEE C37.118, IEC 61850

Procedia PDF Downloads 311
8345 Dynamic Voltage Restorer Control Strategies: An Overview

Authors: Arvind Dhingra, Ashwani Kumar Sharma

Abstract:

Power quality is an important parameter for today’s consumers. Various custom power devices are in use to give a proper supply of power quality. Dynamic Voltage Restorer is one such custom power device. DVR is a static VAR device which is used for series compensation. It is a power electronic device that is used to inject a voltage in series and in synchronism to compensate for the sag in voltage. Inductive Loads are a major source of power quality distortion. The induction furnace is one such typical load. A typical induction furnace is used for melting the scrap or iron. At the time of starting the melting process, the power quality is distorted to a large extent especially with the induction of harmonics. DVR is one such approach to mitigate these harmonics. This paper is an attempt to overview the various control strategies being followed for control of power quality by using DVR. An overview of control of harmonics using DVR is also presented.

Keywords: DVR, power quality, harmonics, harmonic mitigation

Procedia PDF Downloads 378
8344 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout

Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati

Abstract:

Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.

Keywords: metabolic network, gene knockout, flux balance analysis, microarray data, integration

Procedia PDF Downloads 579
8343 Linking Enhanced Resting-State Brain Connectivity with the Benefit of Desirable Difficulty to Motor Learning: A Functional Magnetic Resonance Imaging Study

Authors: Chien-Ho Lin, Ho-Ching Yang, Barbara Knowlton, Shin-Leh Huang, Ming-Chang Chiang

Abstract:

Practicing motor tasks arranged in an interleaved order (interleaved practice, or IP) generally leads to better learning than practicing tasks in a repetitive order (repetitive practice, or RP), an example of how desirable difficulty during practice benefits learning. Greater difficulty during practice, e.g. IP, is associated with greater brain activity measured by higher blood-oxygen-level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) in the sensorimotor areas of the brain. In this study resting-state fMRI was applied to investigate whether increase in resting-state brain connectivity immediately after practice predicts the benefit of desirable difficulty to motor learning. 26 healthy adults (11M/15F, age = 23.3±1.3 years) practiced two sets of three sequences arranged in a repetitive or an interleaved order over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, fMRI data were acquired in a resting state after practice. The resting-state fMRI data was decomposed using a group-level spatial independent component analysis (ICA), yielding 9 independent components (IC) matched to the precuneus network, primary visual networks (two ICs, denoted by I and II respectively), sensorimotor networks (two ICs, denoted by I and II respectively), the right and the left frontoparietal networks, occipito-temporal network, and the frontal network. A weighted resting-state functional connectivity (wRSFC) was then defined to incorporate information from within- and between-network brain connectivity. The within-network functional connectivity between a voxel and an IC was gauged by a z-score derived from the Fisher transformation of the IC map. The between-network connectivity was derived from the cross-correlation of time courses across all possible pairs of ICs, leading to a symmetric nc x nc matrix of cross-correlation coefficients, denoted by C = (pᵢⱼ). Here pᵢⱼ is the extremum of cross-correlation between ICs i and j; nc = 9 is the number of ICs. This component-wise cross-correlation matrix C was then projected to the voxel space, with the weights for each voxel set to the z-score that represents the above within-network functional connectivity. The wRSFC map incorporates the global characteristics of brain networks measured by the between-network connectivity, and the spatial information contained in the IC maps measured by the within-network connectivity. Pearson correlation analysis revealed that greater IP-minus-RP difference in wRSFC was positively correlated with the RP-minus-IP difference in the response time on Day 5, particularly in brain regions crucial for motor learning, such as the right dorsolateral prefrontal cortex (DLPFC), and the right premotor and supplementary motor cortices. This indicates that enhanced resting brain connectivity during the early phase of memory consolidation is associated with enhanced learning following interleaved practice, and as such wRSFC could be applied as a biomarker that measures the beneficial effects of desirable difficulty on motor sequence learning.

Keywords: desirable difficulty, functional magnetic resonance imaging, independent component analysis, resting-state networks

Procedia PDF Downloads 203
8342 System Detecting Border Gateway Protocol Anomalies Using Local and Remote Data

Authors: Alicja Starczewska, Aleksander Nawrat, Krzysztof Daniec, Jarosław Homa, Kacper Hołda

Abstract:

Border Gateway Protocol is the main routing protocol that enables routing establishment between all autonomous systems, which are the basic administrative units of the internet. Due to the poor protection of BGP, it is important to use additional BGP security systems. Many solutions to this problem have been proposed over the years, but none of them have been implemented on a global scale. This article describes a system capable of building images of real-time BGP network topology in order to detect BGP anomalies. Our proposal performs a detailed analysis of BGP messages that come into local network cards supplemented by information collected by remote collectors in different localizations.

Keywords: BGP, BGP hijacking, cybersecurity, detection

Procedia PDF Downloads 77
8341 Fashion Designers' Role Towards Society through Ethical Designing

Authors: Vishaka Agarwal

Abstract:

Fashion is a dynamic entity. With globalisation, fashion is being retailed out to every corner of the world, and people are becoming fashion aware and adapting to the latest trends and look. In this scenario, the role of fashion in providing social change in society is strong. Every product that we use has a design element in it, and consumers prefer to buy those products. The aim of the paper is to look at the ways in which social change can be brought into society through ethical designing by designers taking into consideration the IPR issues. Review of research done by earlier researchers in studying the work done by designers to achieve social change in the society and also discussions with designers to understand the future plans looking at changing world scenario would be done. The paper concludes that fashion has a dynamic role to play in achieving social change in society, and designers are virtually controlling what people buy, wear, and consume globally. This paper would be useful to the social planners and designers in planning the future of society.

Keywords: fashion designers, ethics, intellectual property right, society

Procedia PDF Downloads 193