Search results for: green composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4045

Search results for: green composite

1615 The Effect of Awareness-Raising on Household Water Consumption

Authors: R. Morbidelli, C. Saltalippi, A. Flammini, J. Dari

Abstract:

This work analyses what effect systematic awareness-raising of the population on domestic water consumption produces. In a period where the availability of water is continually decreasing due to reduced rainfall, it is of paramount importance to raise awareness among the population. We conducted an experiment on a large sample of homes in urban areas of Central Italy. In the first phase, lasting three weeks, normal per capita, water consumption was quantified. Subsequently, instructions were given on how to save water during various uses in the household (showers, cleaning hands, use of water in toilets, watering small green areas, use of water in the kitchen, ...), and small visual messages were posted at water dispensers to remind users to behave properly. Finally, household consumption was assessed again for a further three weeks. This experiment made it possible to quantify the effect of the awareness-raising action on the reduction of water consumption without the use of any structural action (replacement of dispensers, improvement of the water system, ...).

Keywords: water saving, urban areas, awareness-raising, climate change

Procedia PDF Downloads 101
1614 SNR Classification Using Multiple CNNs

Authors: Thinh Ngo, Paul Rad, Brian Kelley

Abstract:

Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.

Keywords: classification, CNN, deep learning, prediction, SNR

Procedia PDF Downloads 129
1613 Graphen-Based Nanocomposites for Glucose and Ethanol Enzymatic Biosensor Fabrication

Authors: Tesfaye Alamirew, Delele Worku, Solomon W. Fanta, Nigus Gabbiye

Abstract:

Recently graphen based nanocomposites are become an emerging research areas for fabrication of enzymatic biosensors due to their property of large surface area, conductivity and biocompatibility. This review summarizes recent research reports of graphen based nanocomposites for the fabrication of glucose and ethanol enzymatic biosensors. The newly fabricated enzyme free microwave treated nitrogen doped graphen (MN-d-GR) had provided highest sensitivity towards glucose and GCE/rGO/AuNPs/ADH composite had provided far highest sensitivity towards ethanol compared to other reported graphen based nanocomposites. The MWCNT/GO/GOx and GCE/ErGO/PTH/ADH nanocomposites had also enhanced wide linear range for glucose and ethanol detection respectively. Generally, graphen based nanocomposite enzymatic biosensors had fast direct electron transfer rate, highest sensitivity and wide linear detection ranges during glucose and ethanol sensing.

Keywords: glucose, ethanol, enzymatic biosensor, graphen, nanocomposite

Procedia PDF Downloads 120
1612 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi

Abstract:

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Keywords: electric power consumption, LED color, LED lighting, plant factory

Procedia PDF Downloads 184
1611 Cryogenic Machining of Sawdust Incorporated Polypropylene Composites

Authors: K. N. Umesh

Abstract:

Wood Polymer Composites (WPC) were synthesized artificially by combining polypropylene, wood and resin. It is difficult to obtain a good surface finish by conventional machining on WPC because of material degradation due to excessive heat generated during the process. In order to preserve the material property and deliver a better surface finish and accuracy, a proper solution is devised for the machining of wood composites at low temperature. This research focuses on studying the effects of parameters of cryogenic machining on sawdust incorporated polypropylene composite material, in view of evolving the most suitable composition and an appropriate combination of process parameters. The machining characteristics of the six different compositions of WPC were evaluated by analyzing the trend. An attempt is made to determine proper combinations material composition and process control parameters, through process capability studies. A WPC of 80%-wood (saw dust particles), 20%-polypropylene and 0%-resin was found to be the best alternative for obtaining the best surface finish under cryogenic machining conditions.

Keywords: Cryogenic Machining, Process Capability, Surface Finish, Wood Polymer Composites

Procedia PDF Downloads 243
1610 Wear Characteristics of Al Based Composites Fabricated with Nano Silicon Carbide Particles

Authors: Mohammad Reza Koushki Ardestani, Saeed Daneshmand, Mohammad Heydari Vini

Abstract:

In the present study, AA7075/SiO2 composites have been fabricated via liquid metallurgy process. Using the degassing process, the wet ability of the molten aluminum alloys increased which improved the bonding between aluminum matrix and reinforcement (SiO2) particles. AA7075 alloy and SiO2 particles were taken as the base matrix and reinforcements, respectively. Then, contents of 2.5 and 5 wt. % of SiO2 subdivisions were added into the AA7075 matrix. To improve wettability and distribution, reinforcement particles were pre-heated to a temperature of 550°C for each composite sample. A uniform distribution of SiO2 particles was observed through the matrix alloy in the microstructural study. A hardened EN32 steel disc as the counter face was used to evaluate the wear rate pin-on-disc, a wear testing machine containing. The results showed that the wear rate of the AA/SiO2 composites was lesser than that of the monolithic AA7075 samples. Finally, The SEM worn surfaces of samples were investigated.

Keywords: Al7075, SiO₂, wear, composites, stir casting

Procedia PDF Downloads 89
1609 Design Modification of Lap Joint of Fiber Metal Laminates (CARALL)

Authors: Shaher Bano, Samia Fida, Asif Israr

Abstract:

The synergistic effect of properties of metals and fibers reinforced laminates has diverted attention of the world towards use of robust composite materials known as fiber-metal laminates in many high performance applications. In this study, modification of an adhesively bonded joint as a single lap joint of carbon fibers based CARALL FML has done to increase interlaminar shear strength of the joint. The effect of different configurations of joint designs such as spews, stepped and modification in adhesive by addition of nano-fillers was studied. Both experimental and simulation results showed that modified joint design have superior properties as maximum force experienced stepped joint was 1.5 times more than the simple lap joint. Addition of carbon nano-tubes as nano-fillers in the adhesive joint increased the maximum force due to crack deflection mechanism.

Keywords: adhesive joint, Carbon Reinforced Aluminium Laminate (CARALL), fiber metal laminates, spews

Procedia PDF Downloads 229
1608 Crystallography Trials of Escherichia coli Nitrate Transporter, NarU

Authors: Naureen Akhtar

Abstract:

The stability of the protein in detergent-containing solution is the key for its successful crystallisation. Fluorescence-detection size-exclusion chromatography (FSEC) is a potential approach for screening monodispersity as well as the stability of protein in a detergent-containing-solution. In this present study, covalently linked Green Fluorescent Protein (GFP) to bacterial nitrate transporter, NarU from Escherichia coli was studied for pre-crystallisation trials by FSEC. Immobilised metal ion affinity chromatography (IMAC) and gel filtration were employed for their purification. The main objectives of this study were over-expression, detergent screening and crystallisation of nitrate transporter proteins. This study could not produce enough proteins that could realistically be taken forward to achieve the objectives set for this particular research. In future work, different combinations of variables like vectors, tags, creation of mutant proteins, host cells, position of GFP (N- or C-terminal) and/or membrane proteins would be tried to determine the best combination as the principle of technique is still promising.

Keywords: transporters, detergents, over-expression, crystallography

Procedia PDF Downloads 468
1607 Comparison of Artificial Neural Networks and Statistical Classifiers in Olive Sorting Using Near-Infrared Spectroscopy

Authors: İsmail Kavdır, M. Burak Büyükcan, Ferhat Kurtulmuş

Abstract:

Table olive is a valuable product especially in Mediterranean countries. It is usually consumed after some fermentation process. Defects happened naturally or as a result of an impact while olives are still fresh may become more distinct after processing period. Defected olives are not desired both in table olive and olive oil industries as it will affect the final product quality and reduce market prices considerably. Therefore it is critical to sort table olives before processing or even after processing according to their quality and surface defects. However, doing manual sorting has many drawbacks such as high expenses, subjectivity, tediousness and inconsistency. Quality criterions for green olives were accepted as color and free of mechanical defects, wrinkling, surface blemishes and rotting. In this study, it was aimed to classify fresh table olives using different classifiers and NIR spectroscopy readings and also to compare the classifiers. For this purpose, green (Ayvalik variety) olives were classified based on their surface feature properties such as defect-free, with bruised defect and with fly defect using FT-NIR spectroscopy and classification algorithms such as artificial neural networks, ident and cluster. Bruker multi-purpose analyzer (MPA) FT-NIR spectrometer (Bruker Optik, GmbH, Ettlingen Germany) was used for spectral measurements. The spectrometer was equipped with InGaAs detectors (TE-InGaAs internal for reflectance and RT-InGaAs external for transmittance) and a 20-watt high intensity tungsten–halogen NIR light source. Reflectance measurements were performed with a fiber optic probe (type IN 261) which covered the wavelengths between 780–2500 nm, while transmittance measurements were performed between 800 and 1725 nm. Thirty-two scans were acquired for each reflectance spectrum in about 15.32 s while 128 scans were obtained for transmittance in about 62 s. Resolution was 8 cm⁻¹ for both spectral measurement modes. Instrument control was done using OPUS software (Bruker Optik, GmbH, Ettlingen Germany). Classification applications were performed using three classifiers; Backpropagation Neural Networks, ident and cluster classification algorithms. For these classification applications, Neural Network tool box in Matlab, ident and cluster modules in OPUS software were used. Classifications were performed considering different scenarios; two quality conditions at once (good vs bruised, good vs fly defect) and three quality conditions at once (good, bruised and fly defect). Two spectrometer readings were used in classification applications; reflectance and transmittance. Classification results obtained using artificial neural networks algorithm in discriminating good olives from bruised olives, from olives with fly defect and from the olive group including both bruised and fly defected olives with success rates respectively changing between 97 and 99%, 61 and 94% and between 58.67 and 92%. On the other hand, classification results obtained for discriminating good olives from bruised ones and also for discriminating good olives from fly defected olives using the ident method ranged between 75-97.5% and 32.5-57.5%, respectfully; results obtained for the same classification applications using the cluster method ranged between 52.5-97.5% and between 22.5-57.5%.

Keywords: artificial neural networks, statistical classifiers, NIR spectroscopy, reflectance, transmittance

Procedia PDF Downloads 239
1606 Cellular Automata Model for Car Accidents at a Signalized Intersection

Authors: Rachid Marzoug, Noureddine Lakouari, Beatriz Castillo Téllez, Margarita Castillo Téllez, Gerardo Alberto Mejía Pérez

Abstract:

This paper developed a two-lane cellular automata model to explain the relationship between car accidents at a signalized intersection and traffic-related parameters. It is found that the increase of the lane-changing probability P?ₕ? increases the risk of accidents, besides, the inflow α and the probability of accidents Pₐ? exhibit a nonlinear relationship. Furthermore, depending on the inflow, Pₐ? exhibits three different phases. The transition from phase I to phase II is of first (second) order when P?ₕ?=0 (P?ₕ?>0). However, the system exhibits a second (first) order transition from phase II to phase III when P?ₕ?=0 (P?ₕ?>0). In addition, when the inflow is not very high, the green light length of one road should be increased to improve road safety. Finally, simulation results show that the traffic at the intersection is safer adopting symmetric lane-changing rules than asymmetric ones.

Keywords: two-lane intersection, accidents, fatality risk, lane-changing, phase transition

Procedia PDF Downloads 212
1605 Studies on H2S Gas Sensing Performance of Al2O3-Doped ZnO Thick Films at Ppb Level

Authors: M. K. Deore

Abstract:

The thick films of undoped and Al2O3 doped- ZnO were prepared by screen printing technique. AR grade (99.9 % pure) Zinc Oxide powder were mixed mechanochemically in acetone medium with Aluminium Chloride (AlCl2) material in various weight percentages such as 0.5, 1, 3 and 5 wt % to obtain Al2O3 - ZnO composite. The prepared materials were sintered at 1000oC for 12h in air ambience and ball milled to ensure sufficiently fine particle size. The electrical, structural and morphological properties of the films were investigated. The X-ray diffraction analysis of pure and doped ZnO shows the polycrystalline nature. The surface morphology of the films was studied by SEM. The final composition of each film was determined by EDAX analysis. The gas response of undoped and Al2O3- doped ZnO films were studied for different gases such as CO, H2, NH3, and H2S at operating temperature ranging from 50 oC to 450 o C. The pure film shows the response to H2S gas (500ppm) at 300oC while the film doped with 3 wt.% Al2O3 gives the good response to H2S gas(ppb) at 350oC. The selectivity, response and recovery time of the sensor were measured and presented.

Keywords: thick films, ZnO-Al2O3, H2S gas, sensitivity, selectivity, response and recovery time

Procedia PDF Downloads 416
1604 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method

Authors: Balwinder Singh

Abstract:

The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.

Keywords: reinforcement, silicon carbide, fly ash, red mud

Procedia PDF Downloads 153
1603 The Use of Plant-Based Natural Fibers in Reinforced Cement Composites

Authors: N. AlShaya, R. Alhomidan, S. Alromizan, W. Labib

Abstract:

Plant-based natural fibers are used more increasingly in construction materials. It is done to reduce the pressure on the built environment, which has been increased dramatically due to the increases world population and their needs. Plant-based natural fibers are abundant in many countries. Despite the low-cost of such environmental friendly renewable material, it has the ability to enhance the mechanical properties of construction materials. This paper presents an extensive discussion on the use of plant-based natural fibers as reinforcement for cement-based composites, with a particular emphasis upon fiber types; fiber characteristics, and fiber-cement composites performance. It also covers a thorough overview on the main factors, affecting the properties of plant-based natural fiber cement composite in it fresh and hardened state. The feasibility of using plant-based natural fibers in producing various construction materials; such as, mud bricks and blocks is investigated. In addition, other applications of using such fibers as internal curing agents as well as durability enhancer are also discussed. Finally, recommendation for possible future work in this area is presented.

Keywords: natural fibres, cement composites, construction materia, sustainability, stregth, durability

Procedia PDF Downloads 215
1602 Photocatalytic Activity of Polypyrrole/ZnO Composites for Degradation of Dye Reactive Red 45 in Wastewater

Authors: Ljerka Kratofil Krehula, Vanja Gilja, Andrea Husak, Sniježana Šuka, Zlata Hrnjak-Murgić

Abstract:

Zinc oxide (ZnO) can be used as photocatalysts for water purification. However, one particular interest is given on the integration of inorganic ZnO nanoclusters with conducting polymers because the resulting nanocomposites may possess unique properties and enhanced photocatalytic activity in comparison to pure ZnO, using UV and also visible light. It is needed to explore the appropriate structure of polypyrrole that can induce activation of ZnO photocatalyst since the synthesis of organic/inorganic hybrid materials can result in a synergistic and complementary feature, increasing ZnO photocatalytic efficiency. In this paper several different composites of polypyrrole/zinc oxide (ZnO) were studied. Composite samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and scanning electron microscopy (SEM). The photocatalytic efficiency of prepared samples was studied as a decomposition of Reactive Red 45 (RR 45) dye, which was monitored by UV-Vis spectroscopy as a change in absorbance of characteristic wavelength at 542 nm. Results show good photocatalytic efficiency of all nanocomposite samples.

Keywords: photocatalysis, polypyrrole, wastewater, zinc oxide

Procedia PDF Downloads 259
1601 Dual Role of Microalgae: Carbon Dioxide Capture Nutrients Removal

Authors: Mohamad Shurair, Fares Almomani, Simon Judd, Rahul Bhosale, Anand Kumar, Ujjal Gosh

Abstract:

This study evaluated the use of mixed indigenous microalgae (MIMA) as a treatment process for wastewaters and CO2 capturing technology at different temperatures. The study follows the growth rate of MIMA, removals of organic matter, removal of nutrients from synthetic wastewater and its effectiveness as CO2 capturing technology from flue gas. A noticeable difference between the growth patterns of MIMA was observed at different CO2 and different operational temperatures. MIMA showed the highest growth grate when injected with CO2 dosage of 10% and limited growth was observed for the systems injected with 5% and 15 % of CO2 at 30 ◦C. Ammonia and phosphorus removals for Spirulina were 69%, 75%, and 83%, and 20%, 45%, and 75% for the media injected with 0, 5 and 10% CO2. The results of this study show that simple and cost-effective microalgae-based wastewater treatment systems can be successfully employed at different temperatures as a successful CO2 capturing technology even with the small probability of inhibition at high temperatures

Keywords: greenhouse, climate change, CO2 capturing, green algae

Procedia PDF Downloads 329
1600 Tricalcium Phosphate-Chitosan Composites for Tissue Engineering Applications

Authors: G. Voicu, C. D. Ghitulica, A. Cucuruz, C. Busuioc

Abstract:

In the field of tissue engineering, the compositional and microstructural features of the employed materials play an important role, with implications on the mechanical and biological behaviour of the medical devices. In this context, the development of calcium phosphate-natural biopolymer composites represents a choice of many scientific groups. Thus, tricalcium phosphate powders were synthesized by a wet method, namely co-precipitation, starting from high purity reagents. Moreover, the substitution of calcium with magnesium have been approached, in the 5-10 wt.% range. Afterwards, the phosphate powders were integrated into two types of composites with chitosan, different from morphological point of view. First, 3D porous scaffolds were obtained by a freeze-drying procedure. Second, uniform compact films were achieved by film casting. The influence of chitosan molecular weight (low, medium and high), as well as phosphate powder to polymer ratio (1:1 and 1:2) on the morphological properties, were analysed in detail. In conclusion, the reported biocomposites, prepared by a straightforward route are suitable for bone substitution or repairing applications.

Keywords: bone reconstruction, chitosan, composite scaffolds, tricalcium phosphate

Procedia PDF Downloads 239
1599 Evaluation for Punching Shear Strength of Slab-Column Connections with Ultra High Performance Fiber-Reinforced Concrete Overlay

Authors: H. S. Youm, S. G. Hong

Abstract:

This paper presents the test results on 5 slab-column connection specimens with Ultra High Performance Fiber-Reinforced Concrete (UHPFRC) overlay including 1 control specimen to investigate retrofitting effect of UHPFRC overlay on the punching shear capacity. The test parameters were the thickness of the UHPFRC overlay and the amount of steel re-bars in it. All specimens failed in punching shear mode with abrupt failure aspect. The test results showed that by adding a thin layer of UHPFRC over the Reinforced Concrete (RC) substrates, considerable increases in global punching shear resistance up to 82% and structural rigidity were achieved. Furthermore, based on the cracking patterns the composite systems appeared to be governed by two failure modes: 1) diagonal shear failure in RC section and 2) debonding failure at the interface.

Keywords: punching shear strength, retrofit, slab-column connection, UHPFRC, UHPFRC overlay

Procedia PDF Downloads 248
1598 Wear and Fraction Behavior of Porcelain Coated with Polyurethane/SiO2 Coating Layer

Authors: Ching Yern Chee

Abstract:

Various loading of nano silica is added into polyurethane (PU) and then coated on porcelain substrate. The wear and friction properties of the porcelain substrates coated with polyurethane/nano silica nano composite coatings were investigated using the reciprocating wear testing machine. The friction and wear test of polyurethane/nano silica coated porcelain substrate was studied at different sliding speed and applied load. It was found that the optimum composition of nano silica is 3 wt% which gives the lowest friction coefficient and wear rate in all applied load ranges and sliding speeds. For 3 wt% nano silica filled PU coated porcelain substrate, the increment of sliding speed caused higher wear rates but lower frictions coefficient. Besides, the friction coefficient of nano silica filled PU coated porcelain substrate decreased but the wear rate increased with the applied load.

Keywords: porcelain, nanocomposite coating, morphology, friction, wear behavior

Procedia PDF Downloads 524
1597 Antimicrobial Activity of the Cyanobacteria spp. against Fish Pathogens in Aquaculture

Authors: I. Tulay Cagatay

Abstract:

Blue-green microalgae cyanobacteria, which are important photosynthetic organisms of aquatic ecosystems, are the primary sources of many bioactive compounds such as proteins, carbohydrates, lipids, vitamins and enzymes that can be used as antimicrobial and antiviral agents. Some of these organisms are nowadays used directly in the food, cosmetic and pharmaceutical industry, or in aquaculture and biotechnological approaches like biofuel or drug therapy. Finding the effective, environmental friendly chemotropic and antimicrobial agents to control fish pathogens are crucial in a country like Turkey which has a production capacity of about 240 thousand tons of cultured fish and has 2377 production farms and which is the second biggest producer in Europe. In our study, we tested the antimicrobial activity of cyanobacterium spp. against some fish pathogens Aeromonas hydrophila and Yersinia ruckeri that are important pathogens for rainbow trout farms. Agar disk diffusion test method was used for studying antimicrobial activity on pathogens. Both tested microorganisms have shown antimicrobial activity positively as the inhibition zones were 0.45 mm and 0.40 mm respectively.

Keywords: fish pathogen, cyanobacteria, antimicrobial activity, trout

Procedia PDF Downloads 158
1596 Construction and Application of Zr-MCM41 Nanoreactors as Highly Active and Efficiently Catalyst in the Synthesis of Biginelli-Type Compounds

Authors: Zohreh Derikvand

Abstract:

Nanoreactors Zr-MCM-41were prepared via the reaction of ZrOCl2, Fumed silica, sodium hydroxide and cethyltrimethyl ammonium bromide under hydrothermal condition. The prepared nanoreactors were characterized by FT-IR spectroscopy, X-ray diffraction (XRD), Scanning electron micrographs (SEM) and nitrogen adsorption-desorption. The XRD pattern of Zr-MCM-41 exhibits a high-intensity (100) and two low-intensity reflections (110 and 200) which are characteristic of hexagonal structure, exhibiting the long-range order and good textural uniformity of mesoporous structure. Based on the green chemistry approach, we report an efficient and environmentally benign protocol to study the catalytic activity of Zr-MCM-41 in the Biginelli type reactions initially. Nanoreactors Zr-MCM-41 were used as highly recoverable and reusable catalyst for synthesis of 3,4-dihydropyrimidin-2(1H)-one, octahydroquinazolinone, benzimidazolo-quinazolineone and 4,6-diarylpyrimidin-2(1H)-one. The methodology offers several advantages such as short reaction time, high yields and simple operation. The catalyst was active up to three cycles.

Keywords: Zr-MCM-41 nanoreactors, Biginelli like reactions, 3, 4-dihydropyrimidin-2(1H)-ones, ctahydroquinazolinones

Procedia PDF Downloads 200
1595 Solomon 300 OD (Betacyfluthrin+Imidacloprid): A Combi-Product for the Management of Insect-Pests of Chilli (Capsicum annum L.)

Authors: R. S. Giraddi, B. Thirupam Reddy, D. N. Kambrekar

Abstract:

Chilli (Capsicum annum L.) an important commercial vegetable crop is ravaged by a number of insect-pests during both vegetative and reproductive phase resulting into significant crop loss.Thrips, Scirtothripsdorsalis, mite, Polyphagotarsonemuslatus and whitefly, Bemisiatabaci are the key sap feeding insects, their infestation leads to leaf curl, stunted growth and yield loss.During flowering and fruit formation stage, gall midge fly, Asphondyliacapparis (Rubsaaman) infesting flower buds and young fruits andHelicoverpaarmigera (Hubner) feeding on matured green fruits are the important insect pests causing significant crop loss.The pest is known to infest both flower buds and young fruits resulting into malformation of flower buds and twisting of fruits.In order to manage these insect-pests a combi product consisting of imidacloprid and betacyfluthrin (Soloman 300 OD) was evaluated for its bio-efficacy, phytotoxicity and effect on predator activity.Imidacloprid, a systemic insecticide belonging to neo-nicotinoid group, is effective against insect pests such as aphids, whiteflies (sap feeders) and other insectsviz., termites and soil insects.Beta-Cyfluthrin is an insecticide of synthetic pyrethroid group which acts by contact action and ingestion. It acts on the insects' nervous system as sodium channel blocker consequently a disorder of the nervous system occurs leading finally to the death. The field experiments were taken up during 2015 and 2016 at the Main Agricultural Research Station of University of Agricultural Sciences, Dharwad, Karnataka, India.The trials were laid out in a Randomized Block Design (RBD) with three replications using popular land race of Byadagi crop variety.Results indicated that the product at 21.6 + 50.4% gai/ha (240 ml/ha) and 27.9 + 65% gai/ha (310 ml/ha) was found quite effective in controlling thrips (0.00 to 0.66 thrips per six leaves) as against the standard check insecticide recommended for thrips by the University of Agricultural Sciences, Dharwad wherein the density of thrips recorded was significantly higher (1.00 to 2.00 Nos./6 leaves). Similarly, the test insecticide was quite effective against other target insects, whiteflies, fruit borer and gall midge fly as indicated by lower insect population observed in the treatments as compared to standard insecticidal control. The predatory beetle activity was found to be normal in all experimental plots. Highest green fruit yield of 5100-5500 kg/ha was recorded in Soloman 300 OD applied crop at 310 ml/ha rate as compared to 4750 to 5050 kg/ha recorded in check. At present 6-8 sprays of insecticides are recommended for management of these insect-pests on the crop. If combi-products are used in pest management programmes, it is possible to reduce insecticide usages in crop ecosystem.

Keywords: Imidacloprid, Betacyfluthrin, gallmidge fly, thrips, chilli

Procedia PDF Downloads 159
1594 Submicron Size of Alumina/Titania Tubes for CO2-CH4 Conversion

Authors: Chien-Wan Hun, Shao-Fu Chang, Jheng-En Yang, Chien-Chon Chen, Wern-Dare Jheng

Abstract:

This research provides a systematic way to study and better understand double nano-tubular structure of alunina (Al2O3) and titania (TiO2). The TiO2 NT was prepared by immersing Al2O3 template in 0.02 M titanium fluoride (TiF4) solution (pH=3) at 25 °C for 120 min, followed by annealing at 450 °C for 1 h to obtain anatase TiO2 NT in the Al2O3 template. Large-scale development of film for nanotube-based CO2 capture and conversion can potentially result in more efficient energy harvesting. In addition, the production process will be relatively environmentally friendly. The knowledge generated by this research will significantly advance research in the area of Al2O3, TiO2, CaO, and Ca2O3 nano-structure film fabrication and applications for CO2 capture and conversion. This green energy source will potentially reduce reliance on carbon-based energy resources and increase interest in science and engineering careers.

Keywords: alumina, titania, nano-tubular, film, CO2

Procedia PDF Downloads 389
1593 Analysis of Different Resins in Web-to-Flange Joints

Authors: W. F. Ribeiro, J. L. N. Góes

Abstract:

The industrial process adds to engineering wood products features absent in solid wood, with homogeneous structure and reduced defects, improved physical and mechanical properties, bio-deterioration, resistance and better dimensional stability, improving quality and increasing the reliability of structures wood. These features combined with using fast-growing trees, make them environmentally ecological products, ensuring a strong consumer market. The wood I-joists are manufactured by the industrial profiles bonding flange and web, an important aspect of the production of wooden I-beams is the adhesive joint that bonds the web to the flange. Adhesives can effectively transfer and distribute stresses, thereby increasing the strength and stiffness of the composite. The objective of this study is to evaluate different resins in a shear strain specimens with the aim of analyzing the most efficient resin and possibility of using national products, reducing the manufacturing cost. First was conducted a literature review, where established the geometry and materials generally used, then established and analyzed 8 national resins and produced six specimens for each.

Keywords: engineered wood products, structural resin, wood i-joist, Pinus taeda

Procedia PDF Downloads 272
1592 Electro-Mechanical Response and Engineering Properties of Piezocomposite with Imperfect Interface

Authors: Rattanan Tippayaphalapholgul, Yasothorn Sapsathiarn

Abstract:

Composites of piezoelectric materials are widely use in practical applications such as nondestructive testing devices, smart adaptive structures and medical devices. A thorough understanding of coupled electro-elastic response and properties of piezocomposite are crucial for the development and design of piezoelectric composite materials used in advanced applications. The micromechanics analysis is employed in this paper to determine the response and engineering properties of the piezocomposite. A mechanical imperfect interface bonding between piezoelectric inclusion and polymer matrix is taken into consideration in the analysis. The micromechanics analysis is based on the Boundary Element Method (BEM) together with the periodic micro-field micromechanics theory. A selected set of numerical results is presented to investigate the influence of volume ratio and interface bonding condition on effective piezocomposite material coefficients and portray basic features of coupled electroelastic response within the domain of piezocomposite unit cell.

Keywords: effective engineering properties, electroelastic response, imperfect interface, piezocomposite

Procedia PDF Downloads 227
1591 A Patent Trend Analysis for Hydrogen Based Ironmaking: Identifying the Technology’s Development Phase

Authors: Ebru Kaymaz, Aslı İlbay Hamamcı, Yakup Enes Garip, Samet Ay

Abstract:

The use of hydrogen as a fuel is important for decreasing carbon emissions. For the steel industry, reducing carbon emissions is one of the most important agendas of recent times globally. Because of the Paris Agreement requirements, European steel industry studies on green steel production. Although many literature reviews have analyzed this topic from technological and hydrogen based ironmaking, there are very few studies focused on patents of decarbonize parts of the steel industry. Hence, this study focus on technological progress of hydrogen based ironmaking and on understanding the main trends through patent data. All available patent data were collected from Questel Orbit. The trend analysis of more than 900 patent documents has been carried out by using Questel Orbit Intellixir to analyze a large number of data for scientific intelligence.

Keywords: hydrogen based ironmaking, DRI, direct reduction, carbon emission, steelmaking, patent analysis

Procedia PDF Downloads 137
1590 A Study of Environmental Investment on the Sustainable Development in United States

Authors: K. Y. Chen, Y. N. Jia, H. Chua, C. W. Kan

Abstract:

In United States (US), the environmental policy went through two stages that are government control period and market mechanism period. In the government control period in the 1970s, environmental problems in U.S. are treated by mandatory direct control method, including promulgation of laws, formulation of emission standards and mandatory installation of pollution treatment equipment. After the 1980s, the environmental policy in U.S. went into the second stage, in which the government strengthened the incentives and coordination effects of market. Since then, environmental governance had been partially replaced by means of economic regulation of the market. Green Tax Policy and Marketable Pollution Permits are good examples of government's economic interventions. U.S. Federal Government regards environmental industry as high-tech industry which is promoted in this period. Therefore, in the paper, we aim to analyse the effect of environmental investment on the sustainable development in the US. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: United States, public environmental investment, analysis, sustainable development

Procedia PDF Downloads 241
1589 Antifungal Activity of Processed Sulfur Solution as Potential Eco-Friendly Disinfectant against Saprolegnia parasitica and Its Safety in Freshwater-Farmed Fish

Authors: Hye-Hyun Lee, Hyo-Kon Chun, Kyung-Hee Kim Kim, Mi-Hee Kim, Saet-Byul Chu, Sang-Jong Lee, Seung-Hyeop Lee, Seung-Won Yi

Abstract:

Some chemicals such as malachite green, methylene blue, and copper sulfate had been used frequently as disinfectants controlling fungal infection in aquaculture. However, their carcinogenicity, mutagenicity and teratogenicity were reported in mammals. After their accumulation in food fish and its consumers was confirmed, concerns about public health has resulted in enhanced monitoring and increased demand for eco-friendly treatments. Therefore, this study aimed to evaluate safety to fish and efficacy of sulfur solution processed by effective microorganisms (EM-PSS) against Saprolegnia parasitica, for use of a potential aquatic fungicidal disinfectant. The natural sulfur purchased from Kawah Ijen volcano, East Java, Indonesia was processed by the liquid mixture consisting of following twelve effective microorganisms (Rapha-el®; Lbiotech, Jeonnam, Korea), Lactobacillus parafarraginis, L. paracasei, L. harbinensis, L. buchneri, L. perolens, L. rhamnosus, L. vaccinostercus, Acetobacter lovaniensis, A. peroxydans, Pichia fermentans, Candida ethanolica, Saccharomycopsis schoenii isolated from fermentation process of oriental medicinal herbs including green tea, privet, and puer tea. The material was applied to in vitro antifungal activity test for Saprolegnia parasitica using agar dilution method. In addition, an acute toxicity test was performed on carp (Cyprinus carpio), eel (Anguilla japonica), and mud fish (Misgurnus mizolepis) for 96 hours. After three species of fish (n=15) were accustomed to experimental water environment for three days, the EM-PSS was added to each tank as final concentrations to be 0 to 500 ppm. The fish were taken into necropsy, and the histological sections of the gill, liver, and spleen were counter-stained with hematoxylin and eosin (H-E). And hence, no observed effect concentration (NOEC) of the solution was used for taking a medicinal bath for mudfish infected by Saprolegnia parasitica in practice. The result of in vitro antifungal activity test showed the growth inhibition of the fungus at 100 ppm, which and the lower concentrations occurred no fatal case in any fish species tested until the end of the examination. The 125 ppm of the solution, however, resulted in 13.3 %, 13.3 %, and 6.3 % of mortality in carp, eel, and mudfish, respectively. But both 250 and 500 ppm of the solution leaded lethality to all population of each fish species within 24 hours. Besides, H-E staining also showed no specific evidence for toxicity in fish at lesser than 100 ppm of EM-PSS. On the other hand, as a result of field application of the solution, no growth of fungal mycelium was found in fish bodies from gross observation 5 days post treatment. In conclusion, 100ppm of EM-PSS resulted in inhibition and treatment of Saprolegnia parasitica infection. In addition, the use of EM-PSS lower than 100 ppm is safe for fish. Therefore, EM-PSS could be used as aquatic fungicide, and also may be possible to be a potential eco-friendly disinfectant in aquaculture.

Keywords: antifungal activity, effective microorganism, toxicity, saprolegnia, processed sulfur solution

Procedia PDF Downloads 252
1588 Fully Instrumented Small-Scale Fire Resistance Benches for Aeronautical Composites Assessment

Authors: Fabienne Samyn, Pauline Tranchard, Sophie Duquesne, Emilie Goncalves, Bruno Estebe, Serge Boubigot

Abstract:

Stringent fire safety regulations are enforced in the aeronautical industry due to the consequences that potential fire event on an aircraft might imply. This is so much true that the fire issue is considered right from the design of the aircraft structure. Due to the incorporation of an increasing amount of polymer matrix composites in replacement of more conventional materials like metals, the nature of the fire risks is changing. The choice of materials used is consequently of prime importance as well as the evaluation of its resistance to fire. The fire testing is mostly done using the so-called certification tests according to standards such as the ISO2685:1998(E). The latter describes a protocol to evaluate the fire resistance of structures located in fire zone (ability to withstand fire for 5min). The test consists in exposing an at least 300x300mm² sample to an 1100°C propane flame with a calibrated heat flux of 116kW/m². This type of test is time-consuming, expensive and gives access to limited information in terms of fire behavior of the materials (pass or fail test). Consequently, it can barely be used for material development purposes. In this context, the laboratory UMET in collaboration with industrial partners has developed a horizontal and a vertical small-scale instrumented fire benches for the characterization of the fire behavior of composites. The benches using smaller samples (no more than 150x150mm²) enables to cut downs costs and hence to increase sampling throughput. However, the main added value of our benches is the instrumentation used to collect useful information to understand the behavior of the materials. Indeed, measurements of the sample backside temperature are performed using IR camera in both configurations. In addition, for the vertical set up, a complete characterization of the degradation process, can be achieved via mass loss measurements and quantification of the gasses released during the tests. These benches have been used to characterize and study the fire behavior of aeronautical carbon/epoxy composites. The horizontal set up has been used in particular to study the performances and durability of protective intumescent coating on 2mm thick 2D laminates. The efficiency of this approach has been validated, and the optimized coating thickness has been determined as well as the performances after aging. Reductions of the performances after aging were attributed to the migration of some of the coating additives. The vertical set up has enabled to investigate the degradation process of composites under fire. An isotropic and a unidirectional 4mm thick laminates have been characterized using the bench and post-fire analyses. The mass loss measurements and the gas phase analyses of both composites do not present significant differences unlike the temperature profiles in the thickness of the samples. The differences have been attributed to differences of thermal conductivity as well as delamination that is much more pronounced for the isotropic composite (observed on the IR-images). This has been confirmed by X-ray microtomography. The developed benches have proven to be valuable tools to develop fire safe composites.

Keywords: aeronautical carbon/epoxy composite, durability, intumescent coating, small-scale ‘ISO 2685 like’ fire resistance test, X-ray microtomography

Procedia PDF Downloads 266
1587 Preparation and Characterization of TiO₂-SiO₂ Composite Films on Plastics Using Aqueous Peroxotitanium Acid Solution

Authors: Ayu Minamizawa, Jae-Ho Kim, Susumu Yonezawa

Abstract:

Aqueous peroxotitanium acid solution was prepared by the reaction between H₂O₂ solution and TiO₂ fluorinated using F₂ gas. The coating of TiO₂/SiO₂ multilayer on the surface of polycarbonate (PC) resin was carried out step by step using the TEOS solution and aqueous peroxotitanium acid solution. We confirmed each formation of SiO₂ and TiO₂ layer by scanning electron microscopy and energy-dispersive X-ray spectroscopy, and x-ray photoelectron spectroscopy results. The formation of a TiO₂ thin layer on SiO₂ coated on polycarbonate (PC) was carried out at 120 ℃ and for 15 min ~ 3 h with aqueous peroxotitanium acid solution using a hydrothermal synthesis autoclave reactor. The morphology TiO₂ coating layer largely depended on the reaction time, as shown in the results of SEM-EDS analysis. Increasing the reaction times, the TiO₂ layer expanded uniformly. Moreover, the surface fluorination of the SiO₂ layer can promote the formation of the TiO₂ layer on the surface.

Keywords: aqueous peroxotitanium acid solution, photocatalytic activity, polycarbonate, surface fluorination

Procedia PDF Downloads 110
1586 Application of Nanofibers in Heavy Metal (HM) Filtration

Authors: Abhijeet Kumar, Palaniswamy N. K.

Abstract:

Heavy metal contamination in water sources endangers both the environment and human health. Various water filtration techniques have been employed till now for purification and removal of hazardous metals from water. Among all the existing methods, nanofibres have emerged as a viable alternative for effective heavy metal removal in recent years because of their unique qualities, such as large surface area, interconnected porous structure, and customizable surface chemistry. Among the numerous manufacturing techniques, solution blow spinning has gained popularity as a versatile process for producing nanofibers with customized properties. This paper seeks to offer a complete overview of the use of nanofibers for heavy metal filtration, particularly those produced using solution blow spinning. The review discusses current advances in nanofiber materials, production processes, and heavy metal removal performance. Furthermore, the field's difficulties and future opportunities are examined in order to direct future research and development activities.

Keywords: heavy metals, nanofiber composite, filter membranes, adsorption, impaction

Procedia PDF Downloads 61