Search results for: component behaviour
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4362

Search results for: component behaviour

1932 Evaluation of Greenhouse Covering Materials

Authors: Mouustafa A. Fadel, Ahmed Bani Hammad, Faisal Al Hosany, Osama Iwaimer

Abstract:

Covering materials of greenhouses is the most governing component of the construction which controls two major parameters the amount of light and heat diffused from the surrounding environment into the internal space. In hot areas, balancing between inside and outside the greenhouse consumes most of the energy spent in production systems. In this research, a special testing apparatus was fabricated to simulate the structure of the greenhouse provided with a 400W full spectrum light. Tests were carried out to investigate the effectiveness of different commercial covering material in light and heat diffusion. Twenty one combinations of Fiberglass, Polyethylene, Polycarbonate, Plexiglass and Agril (PP nonwoven fabric) were tested. It was concluded that Plexiglass was the highest in light transparency of 87.4% where the lowest was 33% and 86.8% for Polycarbonate sheets. The enthalpy of the air moving through the testing rig was calculated according to air temperature differences between inlet and outlet openings. The highest enthalpy value was for one layer of Fiberglass and it was 0.81 kj/kg air while it was for both Plexiglass and blocked Fiberglass with a value of 0.5 kj/kg air. It is concluded that, although Plexiglass has high level of transparency which is indeed very helpful under low levels of solar flux, it is not recommended under hot arid conditions where solar flux is available most of the year. On the other hand, it might be a disadvantage to use Plixeglass specially in summer where it helps to accumulate more heat inside the greenhouse.

Keywords: greenhouse, covering materials, aridlands, environmental control

Procedia PDF Downloads 472
1931 ZnS and Graphene Quantum Dots Nanocomposite as Potential Electron Acceptor for Photovoltaics

Authors: S. M. Giripunje, Shikha Jindal

Abstract:

Zinc sulphide (ZnS) quantum dots (QDs) were synthesized successfully via simple sonochemical method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis revealed the average size of QDs of the order of 3.7 nm. The band gap of the QDs was tuned to 5.2 eV by optimizing the synthesis parameters. UV-Vis absorption spectra of ZnS QD confirm the quantum confinement effect. Fourier transform infrared (FTIR) analysis confirmed the formation of single phase ZnS QDs. To fabricate the diode, blend of ZnS QDs and P3HT was prepared and the heterojunction of PEDOT:PSS and the blend was formed by spin coating on indium tin oxide (ITO) coated glass substrate. The diode behaviour of the heterojunction was analysed, wherein the ideality factor was found to be 2.53 with turn on voltage 0.75 V and the barrier height was found to be 1.429 eV. ZnS-Graphene QDs nanocomposite was characterised for the surface morphological study. It was found that the synthesized ZnS QDs appear as quasi spherical particles on the graphene sheets. The average particle size of ZnS-graphene nanocomposite QDs was found to be 8.4 nm. From voltage-current characteristics of ZnS-graphene nanocomposites, it is observed that the conductivity of the composite increases by 104 times the conductivity of ZnS QDs. Thus the addition of graphene QDs in ZnS QDs enhances the mobility of the charge carriers in the composite material. Thus, the graphene QDs, with high specific area for a large interface, high mobility and tunable band gap, show a great potential as an electron-acceptors in photovoltaic devices.

Keywords: graphene, heterojunction, quantum confinement effect, quantum dots(QDs), zinc sulphide(ZnS)

Procedia PDF Downloads 152
1930 Reliability Analysis of a Life Support System in a Public Aquarium

Authors: Mehmet Savsar

Abstract:

Complex Life Support Systems (LSS) are used in all large commercial and public aquariums in order to keep the fish alive. Reliabilities of individual equipment, as well as the complete system, are extremely important and critical since the life and safety of important fish depend on these life support systems. Failure of some critical device or equipment, which do not have redundancy, results in negative consequences and affects life support as a whole. In this paper, we have considered a life support system in a large public aquarium in Kuwait Scientific Center and presented a procedure and analysis to show how the reliability of such systems can be estimated by using appropriate tools and collected data. We have also proposed possible improvements for systems reliability. In particular, addition of parallel components and spare parts are considered and the numbers of spare parts needed for each component to achieve a required reliability during specified lead time are calculated. The results show that significant improvements in system reliability can be achieved by operating some LSS components in parallel and having certain numbers of spares available in the spare parts inventories. The procedures and the results presented in this paper are expected to be useful for aquarium engineers and maintenance managers dealing with LSS.

Keywords: life support systems, aquariums, reliability, failures, availability, spare parts

Procedia PDF Downloads 278
1929 Leveraging NFT Secure and Decentralized Lending: A Defi Solution

Authors: Chandan M. S., Darshan G. A., Vyshnavi, Abhishek T.

Abstract:

In the evolving world of technology and digital assets, non-fungible tokens (NFTs) have emerged as the latest advancement. These digital assets represent ownership of intangible items and hold significant value. Unlike cryptocurrencies, like Ethereum or Bitcoin, NFTs cannot be exchanged due to their nature. Each NFT has an indivisible value. NFTs not only pave the way for financial services but also open up fresh opportunities for creators, buyers and artists. To revolutionize financing in the DeFi space, this proposed approach utilizes NFTs generated from digital arts. By eliminating intermediaries, this innovative method ensures trust and security in transactions. The idea entails automating borrower-lender interactions through contracts while securely storing data using blockchain technology. Borrowers can obtain funding by leveraging assets such as estate, artwork and collectibles that are often illiquid. The key component of this system is contracts that independently execute lending agreements and collateral transfers within predefined parameters. By leveraging the Ethereum blockchain, this project aims to provide consumers with access to a platform offering a wide range of financial services. The demonstration illustrates how NFT lending and borrowing is managed through contracts, providing a secure and trustworthy transaction environment.

Keywords: blockchain, defi, NFT, ethereum, marketplace

Procedia PDF Downloads 46
1928 A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion

Authors: Yingchen Yang

Abstract:

In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions.

Keywords: unidirectional, vertical axis, wave energy converter, wave rotor

Procedia PDF Downloads 231
1927 Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation

Authors: Praveen Kumar, Nitin Kumar, Hemant Kumar

Abstract:

The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulation is an easy tool to resolve that type of problem. Erosion wear behaviour due to solid–liquid mixture in the slurry pipeline has been investigated using commercial CFD code in FLUENT. Multi-phase Euler-Lagrange model was adopted to predict the solid particle erosion wear in 22.5° pipe bend for the flow of bottom ash-water suspension. The present study addresses erosion prediction in three dimensional 22.5° pipe bend for two-phase (solid and liquid) flow using finite volume method with standard k-ε turbulence, discrete phase model and evaluation of erosion wear rate with varying velocity 2-4 m/s. The result shows that velocity of solid-liquid mixture found to be highly dominating parameter as compared to solid concentration, density, and particle size. At low velocity, settling takes place in the pipe bend due to low inertia and gravitational effect on solid particulate which leads to high erosion at bottom side of pipeline.

Keywords: computational fluid dynamics (CFD), erosion, slurry transportation, k-ε Model

Procedia PDF Downloads 403
1926 Improving Medication Understanding, Use and Self-Efficacy among Stroke Patients: A Randomised Controlled Trial; Study Protocol

Authors: Jamunarani Appalasamy, Tha Kyi Kyi, Quek Kia Fatt, Joyce Pauline Joseph, Anuar Zaini M. Zain

Abstract:

Background: The Health Belief Theory had always been associated with chronic disease management. Various health behaviour concepts and perception branching from this Health Belief Theory had involved with medication understanding, use, and self-efficacy which directly link to medication adherence. In a previous quantitative and qualitative study, stroke patients in Malaysia were found to be strongly believing information obtained by various sources such as the internet and social communication. This action leads to lower perception of their stroke preventative medication benefit which in long-term creates non-adherence. Hence, this study intends to pilot an intervention which uses audio-visual concept incorporated with mHealth service to enhance learning and self-reflection among stroke patients to manage their disease. Methods/Design: Twenty patients will be allocated to a proposed intervention whereas another twenty patients are allocated to the usual treatment. The intervention involves a series of developed audio-visual videos sent via mobile phone which later await for responses and feedback from the receiver (patient) via SMS or recorded calls. The primary outcome would be the medication understanding, use and self-efficacy measured over two months pre and post intervention. Secondary outcome is measured from changes of blood parameters and other self-reported questionnaires. Discussion: This study shall also assess uptake/attrition, feasibility, and acceptability of this intervention. Trial Registration: NMRR-15-851-24737 (IIR)

Keywords: health belief, medication understanding, medication use, self-efficacy

Procedia PDF Downloads 216
1925 Evaluation of the Self-Efficacy and Learning Experiences of Final year Students of Computer Science of Southwest Nigerian Universities

Authors: Olabamiji J. Onifade, Peter O. Ajayi, Paul O. Jegede

Abstract:

This study aimed at investigating the preparedness of the undergraduate final year students of Computer Science as the next entrants into the workplace. It assessed their self-efficacy in computational tasks and examined the relationship between their self-efficacy and their learning experiences in Southwest Nigerian universities. The study employed a descriptive survey research design. The population of the study comprises all the final year students of Computer Science. A purposive sampling technique was adopted in selecting a representative sample of interest from the final year students of Computer Science. The Students’ Computational Task Self-Efficacy Questionnaire (SCTSEQ) was used to collect data. Mean, standard deviation, frequency, percentages, and linear regression were used for data analysis. The result obtained revealed that the final year students of Computer Science were averagely confident in performing computational tasks, and there is a significant relationship between the learning experiences of the students and their self-efficacy. The study recommends that the curriculum be improved upon to accommodate industry experts as lecturers in some of the courses, make provision for more practical sessions, and the learning experiences of the student be considered an important component in the undergraduate Computer Science curriculum development process.

Keywords: computer science, learning experiences, self-efficacy, students

Procedia PDF Downloads 136
1924 Nature of a Supercritical Mesophase

Authors: Hamza Javar Magnier, Leslie V. Woodcock

Abstract:

It has been reported that at temperatures above the critical there is no “continuity of liquid and gas”, as originally hypothesized by van der Waals. Rather, both gas and liquid phases, with characteristic properties as such, extend to supercritical temperatures. Each phase is bounded by the locus of a percolation transition, i.e. a higher-order thermodynamic phase change associated with percolation of gas clusters in a large void, or liquid interstitial vacancies in a large cluster. Between these two-phase bounds, it is reported there exists a mesophase that resembles an otherwise homogeneous dispersion of gas micro-bubbles in liquid (foam) and a dispersion of liquid micro-droplets in gas (mist). Such a colloidal-like state of a pure one-component fluid represents a hitherto unchartered equilibrium state of matter besides pure solid, liquid or gas. Here we provide compelling evidence, from molecular dynamics (MD) simulations, for the existence of this supercritical mesophase and its colloidal nature. We report preliminary results of computer simulations for a model fluid using a simplistic representation of atoms or molecules, i.e. a hard-core repulsion with an attraction so short that the atoms are referred to as “adhesive spheres”. Molecular clusters, and hence percolation transitions, are unambiguously defined. Graphics of color-coded clusters show colloidal characteristics of the supercritical mesophase.

Keywords: critical phenomena, mesophase, supercritical, square-well, critical parameters

Procedia PDF Downloads 421
1923 A Study on Shock Formation over a Transonic Aerofoil

Authors: M. Fowsia, Dominic Xavier Fernando, Vinojitha, Rahamath Juliyana

Abstract:

Aerofoil is a primary element to be designed during the initial phase of creating any new aircraft. It is the component that forms the cross-section of the wing. The wing is used to produce lift force that balances the weight which is acting downwards. The lift force is created due to pressure difference over the top and bottom surface which is caused due to velocity variation. At sub-sonic velocities, for a real fluid, we obtain a smooth flow of air over both the surfaces. In this era of high speed travel, commercial aircraft that can travel faster than speed of sound barrier is required. However transonic velocities cause the formation of shock waves which can cause flow separation over the top and bottom surfaces. In the transonic range, shock waves move across the top and bottom surfaces of the aerofoil, until both the shock waves merge into a single shock wave that is formed near the leading edge of theaerofoil. In this paper, a transonic aerofoil is designed and its aerodynamic properties at different velocities in the Transonic range (M = 0.8; 0.9; 1; 1.1; 1.2) are studied with the help of CFD. The Pressure and Velocity distributions over the top and bottom surfaces of aerofoil are studied and the variations of shock patterns, at different velocities, are analyzed. The analysis can be used to determine the effect of drag divergence on the lift created by the aerofoil.

Keywords: transonic aerofoil, cfd, drag divergence, shock formation, viscous flow

Procedia PDF Downloads 525
1922 Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics

Authors: M. Bodner, M. Scampicchio

Abstract:

Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.

Keywords: adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA

Procedia PDF Downloads 137
1921 Heavy Metal Adsorption from Synthetic Wastewater Using Agro Waste-Based Nanoparticles: A Comparative Study

Authors: Nomthandazo Precious Sibiya, Thembisile Patience Mahlangu, Sudesh Rathilal

Abstract:

Heavy metal removal is critical in the wastewater treatment process due to its numerous harmful effects on human and aquatic life. There are several chemical and physical techniques for removing heavy metals from wastewater, including ion exchange, reverse osmosis, adsorption, electrodialysis, and ultrafiltration. However, adsorption technology has captivated researchers for years due to its low cost, high efficiency, and compatible with the environment. In this study, the adsorption effectiveness of three modified agro-waste materials was explored for the removal of lead from synthetic wastewater: banana peels (BP), orange peels (OP), and sugarcane bagasse (SB). The magnetite (Fe₃O₄) is incorporated with BP, OP, and SB at a ratio of 1:1 to create magnetic biosorbents. Characterization of biosorbents was carried out using and scanning electron microscopy (SEM) combined with energy-dispersive X-ray (EDX) to investigate surface morphology and elemental compositions, respectively. A series of batch experiments were carried out to investigate the effects of adsorbent mass, agitation time, and initial pH concentration on adsorption behaviour, as well as adsorption isotherms and kinetics. The removal efficiency of lead by the modified agro-waste materials proved to be superior to that of non-modified agro-waste materials. The proof of concept was achieved, and agro-waste materials can be paired with adsorption technology to effectively remove lead from aqueous media. The use of agricultural waste as biosorbents will aid in waste reduction and management.

Keywords: adsorption, isotherms, kinetics, agro waste, nanoparticles, batch

Procedia PDF Downloads 64
1920 A Mathematical Model for Reliability Redundancy Optimization Problem of K-Out-Of-N: G System

Authors: Gak-Gyu Kim, Won Il Jung

Abstract:

According to a remarkable development of science and technology, function and role of the system of engineering fields has recently been diversified. The system has become increasingly more complex and precise, and thus, system designers intended to maximize reliability concentrate more effort at the design stage. This study deals with the reliability redundancy optimization problem (RROP) for k-out-of-n: G system configuration with cold standby and warm standby components. This paper further intends to present the optimal mathematical model through which the following three elements of (i) multiple components choices, (ii) redundant components quantity and (iii) the choice of redundancy strategies may be combined in order to maximize the reliability of the system. Therefore, we focus on the following three issues. First, we consider RROP that there exists warm standby state as well as cold standby state of the component. Second, as eliminating an approximation approach of the previous RROP studies, we construct a precise model for system reliability. Third, given transition time when the state of components changes, we present not simply a workable solution but the advanced method. For the wide applicability of RROPs, moreover, we use absorbing continuous time Markov chain and matrix analytic methods in the suggested mathematical model.

Keywords: RROP, matrix analytic methods, k-out-of-n: G system, MTTF, absorbing continuous time Markov Chain

Procedia PDF Downloads 252
1919 Assessing Environmental Urban Sustainability Using Multivariate Analysis: A Case of Nagpur, India

Authors: Anusha Vaddiraj Pallapu

Abstract:

Measuring urban sustainable development is at the forefront in contributing to overall sustainability, and it refers to attaining social equity, environmental protection and minimizing the impacts of urbanization. Assessing performance of urban issues ranging from larger consumption of natural resources by humans in terms of lifestyle to creating a polluted nearby environment, social and even economic dimensions of sustainability major issues observed such as water quality, transportation, management of solid waste and traffic pollution. However, relying on the framework of the project to do the goals of sustainable development or minimization of urban impacts through management practices is not enough to deal with the present urban issues. The aim of the sustainability is to know how severely the resources are depleted because of human consumption and how issues are characterized. The paper aims to assign benchmarks for the selected sustainability indicators for research, and analysis is done through multivariate analysis in Indian context a case of Nagpur city to identify the play role of each urban issues in the overall sustainability. The main objectives of this paper are to examine the indicators over by time basis on various scenarios and how benchmarking is used, what and which categories of values should be considered as the performance of indicators function.

Keywords: environmental sustainability indicators, principal component analysis, urban sustainability, urban clusters, benchmarking

Procedia PDF Downloads 338
1918 The Impact of Alumina Cement on Properties of Portland Cement Slurries and Mortars

Authors: Krzysztof Zieliński, Dariusz Kierzek

Abstract:

The addition of a small amount of alumina cement to Portland cement results in immediate setting, a rapid increase in the compressive strength and a clear increase of the adhesion to concrete substrate. This phenomenon is used, among others, for the production of liquid floor self-levelling compounds. Alumina cement is several times more expensive than Portland cement and is a component having a significant impact on prices of products manufactured with its use. For the production of liquid floor self-levelling compounds, low-alumina cement containing approximately 40% Al2O3 is normally used. The aim of the study was to determine the impact of Portland cement with the addition of alumina cement on the basic physical and mechanical properties of cement slurries and mortars. CEM I 42.5R and three types of alumina cement containing 40%, 50% and 70% of Al2O3 were used for the tests. Mixes containing 4%, 6%, 8%, 10% and 12% of different varieties of alumina cement were prepared; for which, the time of initial and final setting, compressive and flexural strength and adhesion to concrete substrate were determined. The analysis of the obtained test results showed that a similar immediate setting effect and clearly better adhesion strength can be obtained using the addition of 6% of high-alumina cement than 12% of low-alumina cement. As the prices of these cements are similar, this can give significant financial savings in the production of liquid floor self-levelling compounds.

Keywords: alumina cement, immediate setting, compression strength, adhesion to substrate

Procedia PDF Downloads 148
1917 Fixed Point Iteration of a Damped and Unforced Duffing's Equation

Authors: Paschal A. Ochang, Emmanuel C. Oji

Abstract:

The Duffing’s Equation is a second order system that is very important because they are fundamental to the behaviour of higher order systems and they have applications in almost all fields of science and engineering. In the biological area, it is useful in plant stem dependence and natural frequency and model of the Brain Crash Analysis (BCA). In Engineering, it is useful in the study of Damping indoor construction and Traffic lights and to the meteorologist it is used in the prediction of weather conditions. However, most Problems in real life that occur are non-linear in nature and may not have analytical solutions except approximations or simulations, so trying to find an exact explicit solution may in general be complicated and sometimes impossible. Therefore we aim to find out if it is possible to obtain one analytical fixed point to the non-linear ordinary equation using fixed point analytical method. We started by exposing the scope of the Duffing’s equation and other related works on it. With a major focus on the fixed point and fixed point iterative scheme, we tried different iterative schemes on the Duffing’s Equation. We were able to identify that one can only see the fixed points to a Damped Duffing’s Equation and not to the Undamped Duffing’s Equation. This is because the cubic nonlinearity term is the determining factor to the Duffing’s Equation. We finally came to the results where we identified the stability of an equation that is damped, forced and second order in nature. Generally, in this research, we approximate the solution of Duffing’s Equation by converting it to a system of First and Second Order Ordinary Differential Equation and using Fixed Point Iterative approach. This approach shows that for different versions of Duffing’s Equations (damped), we find fixed points, therefore the order of computations and running time of applied software in all fields using the Duffing’s equation will be reduced.

Keywords: damping, Duffing's equation, fixed point analysis, second order differential, stability analysis

Procedia PDF Downloads 289
1916 Impact of Proposed Modal Shift from Private Users to Bus Rapid Transit System: An Indian City Case Study

Authors: Rakesh Kumar, Fatima Electricwala

Abstract:

One of the major thrusts of the Bus Rapid Transit System is to reduce the commuter’s dependency on private vehicles and increase the shares of public transport to make urban transportation system environmentally sustainable. In this study, commuter mode choice analysis is performed that examines behavioral responses to the proposed Bus Rapid Transit System (BRTS) in Surat, with estimation of the probable shift from private mode to public mode. Further, evaluation of the BRTS scenarios, using Surat’s transportation ecological footprint was done. A multi-modal simulation model was developed in Biogeme environment to explicitly consider private users behaviors and non-linear environmental impact. The data of the different factors (variables) and its impact that might cause modal shift of private mode users to proposed BRTS were collected through home-interview survey using revealed and stated preference approach. A multi modal logit model of mode-choice was then calibrated using the collected data and validated using proposed sample. From this study, a set of perception factors, with reliable and predictable data base, to explain the variation in modal shift behaviour and their impact on Surat’s ecological environment has been identified. A case study of the proposed BRTS connecting the Surat Industrial Hub to the coastal area is provided to illustrate the approach.

Keywords: BRTS, private modes, mode choice models, ecological footprint

Procedia PDF Downloads 516
1915 Correlation of Material Mechanical Characteristics Obtained by Means of Standardized and Miniature Test Specimens

Authors: Vaclav Mentl, P. Zlabek, J. Volak

Abstract:

New methods of mechanical testing were developed recently that are based on making use of miniature test specimens (e.g. Small Punch Test). The most important advantage of these method is the nearly non-destructive withdrawal of test material and small size of test specimen what is interesting in cases of remaining lifetime assessment when a sufficient volume of the representative material cannot be withdrawn of the component in question. In opposite, the most important disadvantage of such methods stems from the necessity to correlate test results with the results of standardised test procedures and to build up a database of material data in service. The correlations among the miniature test specimen data and the results of standardised tests are necessary. The paper describes the results of fatigue tests performed on miniature tests specimens in comparison with traditional fatigue tests for several steels applied in power producing industry. Special miniature test specimens fixtures were designed and manufactured for the purposes of fatigue testing at the Zwick/Roell 10HPF5100 testing machine. The miniature test specimens were produced of the traditional test specimens. Seven different steels were fatigue loaded (R = 0.1) at room temperature.

Keywords: mechanical properties, miniature test specimens, correlations, small punch test, micro-tensile test, mini-charpy impact test

Procedia PDF Downloads 532
1914 Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins

Authors: F. A. Gdhaidh, K. Hussain, H. S. Qi

Abstract:

A numerical study of natural convection heat transfer in water filled cavity has been examined in 3D for single phase liquid cooling system by using an array of parallel plate fins mounted to one wall of a cavity. The heat generated by a heat source represents a computer CPU with dimensions of 37.5×37.5 mm mounted on substrate. A cold plate is used as a heat sink installed on the opposite vertical end of the enclosure. The air flow inside the computer case is created by an exhaust fan. A turbulent air flow is assumed and k-ε model is applied. The fins are installed on the substrate to enhance the heat transfer. The applied power energy range used is between 15- 40W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the number of the parallel plate fins are investigated. The results illustrate that as the fin number increases the maximum heat source temperature decreases. However, when the fin number increases to critical value the temperature start to increase due to the fins are too closely spaced and that cause the obstruction of water flow. The introduction of parallel plate fins reduces the maximum heat source temperature by 10% compared to the case without fins. The cooling system maintains the maximum chip temperature at 64.68℃ when the heat input was at 40 W which is much lower than the recommended computer chips limit temperature of no more than 85℃ and hence the performance of the CPU is enhanced.

Keywords: chips limit temperature, closed enclosure, natural convection, parallel plate, single phase liquid

Procedia PDF Downloads 259
1913 The Use of Building Energy Simulation Software in Case Studies: A Literature Review

Authors: Arman Ameen, Mathias Cehlin

Abstract:

The use of Building Energy Simulation (BES) software has increased in the last two decades, parallel to the development of increased computing power and easy to use software applications. This type of software is primarily used to simulate the energy use and the indoor environment for a building. The rapid development of these types of software has raised their level of user-friendliness, better parameter input options and the increased possibility of analysis, both for a single building component or an entire building. This, in turn, has led to many researchers utilizing BES software in their research in various degrees. The aim of this paper is to carry out a literature review concerning the use of the BES software IDA Indoor Climate and Energy (IDA ICE) in the scientific community. The focus of this paper will be specifically the use of the software for whole building energy simulation, number and types of articles and publications dates, the area of application, types of parameters used, the location of the studied building, type of building, type of analysis and solution methodology. Another aspect that is examined, which is of great interest, is the method of validations regarding the simulation results. The results show that there is an upgoing trend in the use of IDA ICE and that researchers use the software in their research in various degrees depending on case and aim of their research. The satisfactory level of validation of the simulations carried out in these articles varies depending on the type of article and type of analysis.

Keywords: building simulation, IDA ICE, literature review, validation

Procedia PDF Downloads 128
1912 An Intergenerational Study of Iranian Migrant Families in Australia: Exploring Language, Identity, and Acculturation

Authors: Alireza Fard Kashani

Abstract:

This study reports on the experiences and attitudes of six Iranian migrant families, from two groups of asylum seekers and skilled workers, with regard to their language, identity, and acculturation in Australia. The participants included first generation parents and 1.5-generation adolescents, who had lived in Australia for a minimum of three years. For this investigation, Mendoza’s (1984, 2016) acculturation model, as well as poststructuralist views of identity, were employed. The semi-structured interview results have highlighted that Iranian parents and adolescents face low degrees of intergenerational conflicts in most domains of their acculturation. However, the structural and lawful patterns in Australia have caused some internal conflicts for the parents, especially fathers (e.g., their power status within the family or their children’s freedom). Furthermore, while most participants reported ‘cultural eclecticism’ as their preferred acculturation orientation, female participants seemed to be more eclectic than their male counterparts who showed inclination towards keeping more aspects of their home culture. This finding, however, highlights a meaningful effort on the part of husbands that in order to make their married lives continue well in Australia they need to re-consider the traditional male-dominated customs they used to have in Iran. As for identity, not only the parents but also the adolescents proudly identified themselves as Persians. In addition, with respect to linguistic behaviour, almost all adolescents showed enthusiasm to retain the Persian language at home to be able to maintain contacts with their relatives and friends in Iran and to enjoy many other benefits the language may offer them in the future.

Keywords: acculturation, asylum seekers, identity, intergenerational conflicts, language, skilled workers, 1.5 generation

Procedia PDF Downloads 236
1911 Sensitivity, Specificity and Efficiency Real-Time PCR Using SYBR Green Method to Determine Porcine and Bovine DNA Using Specific Primer Cytochrome B Gene

Authors: Ahlam Inayatullah Badrul Munir, M. Husaini A. Rahman, Mohd Sukri Hassan

Abstract:

Real-time PCR is a molecular biology technique that is currently being widely used for halal services to differentiating between porcine and bovine DNA. The useful of technique become very important for student or workers (who works in the laboratory) to learn how the technique could be run smoothly without fail. Same concept with conventional PCR, real-time PCR also needed DNA template, primer, enzyme polymerase, dNTP, and buffer. The difference is in real-time PCR, have additional component namely fluorescent dye. The most common use of fluorescent dye in real-time PCR is SYBR green. The purpose of this study was to find out how sensitive, specific and efficient real-time PCR technique was combined with SYBR green method and specific primers of CYT b. The results showed that real-time PCR technique using SYBR Green, capable of detecting porcine and bovine DNA concentrations up to 0.0001 µl/ng. The level of efficiency for both types of DNA was 91% (90-110). Not only that in specific primer CYT b bovine primer could detect only bovine DNA, and porcine primer could detect only porcine primer. So, from the study could be concluded that real-time PCR technique that was combined with specific primer CYT b and SYBR green method, was sensitive, specific and efficient to detect porcine and bovine DNA.

Keywords: sensitivity, specificity, efficiency, real-time PCR, SYBR green, Cytochrome b, porcine DNA, bovine DNA

Procedia PDF Downloads 312
1910 An Axiomatic Model for Development of the Allocated Architecture in Systems Engineering Process

Authors: Amir Sharahi, Reza Tehrani, Ali Mollajan

Abstract:

The final step to complete the “Analytical Systems Engineering Process” is the “Allocated Architecture” in which all Functional Requirements (FRs) of an engineering system must be allocated into their corresponding Physical Components (PCs). At this step, any design for developing the system’s allocated architecture in which no clear pattern of assigning the exclusive “responsibility” of each PC for fulfilling the allocated FR(s) can be found is considered a poor design that may cause difficulties in determining the specific PC(s) which has (have) failed to satisfy a given FR successfully. The present study utilizes the Axiomatic Design method principles to mathematically address this problem and establishes an “Axiomatic Model” as a solution for reaching good alternatives for developing the allocated architecture. This study proposes a “loss Function”, as a quantitative criterion to monetarily compare non-ideal designs for developing the allocated architecture and choose the one which imposes relatively lower cost to the system’s stakeholders. For the case-study, we use the existing design of U. S. electricity marketing subsystem, based on data provided by the U.S. Energy Information Administration (EIA). The result for 2012 shows the symptoms of a poor design and ineffectiveness due to coupling among the FRs of this subsystem.

Keywords: allocated architecture, analytical systems engineering process, functional requirements (FRs), physical components (PCs), responsibility of a physical component, system’s stakeholders

Procedia PDF Downloads 401
1909 Research Project of National Interest (PRIN-PNRR) DIVAS: Developing Methods to Assess Tree Vitality after a Wildfire through Analyses of Cambium Sugar Metabolism

Authors: Claudia Cocozza, Niccolò Frassinelli, Enrico Marchi, Cristiano Foderi, Alessandro Bizzarri, Margherita Paladini, Maria Laura Traversi, Eleftherious Touloupakis, Alessio Giovannelli

Abstract:

The development of tools to quickly identify the fate of injured trees after stress is highly relevant when biodiversity restoration of damaged sites is based on nature-based solutions. In this context, an approach to assess irreversible physiological damages within trees could help to support planning management decisions of perturbed sites to restore biodiversity, for the safety of the environment and understanding functionality adjustments of the ecosystems. Tree vitality can be estimated by a series of physiological proxies like cambium activity, starch, and soluble sugars amount in C-sinks whilst the accumulation of ethanol within the cambial cells and phloem is considered an alert of cell death. However, their determination requires time-consuming laboratory protocols, which makes the approach unfeasible as a practical option in the field. The project aims to develop biosensors to assess the concentration of soluble sugars and ethanol in stem tissues. Soluble sugars and ethanol concentrations will be used to define injured trees to discriminate compromised and recovering trees in the forest directly. To reach this goal, we select study sites subjected to prescribed fires or recent wildfires as experimental set-ups. Indeed, in Mediterranean countries, forest fire is a recurrent event that must be considered as a central component of regional and global strategies in forest management and biodiversity restoration programs. A biosensor will be developed through a multistep process related to target analytes characterization, bioreceptor selection, and, finally, calibration/testing of the sensor. To validate biosensor signals, soluble sugars and ethanol will be quantified by HPLC and GC using synthetic media (in lab) and phloem sap (in field) whilst cambium vitality will be assessed by anatomical observations. On burnt trees, the stem growth will be monitored by dendrometers and/or estimated by tree ring analyses, whilst the tree response to past fire events will be assessed by isotopic discrimination. Moreover, the fire characterization and the visual assessment procedure will be used to assign burnt trees to a vitality class. At the end of the project, a well-defined procedure combining biosensor signal and visual assessment will be produced and applied to a study case. The project outcomes and the results obtained will be properly packaged to reach, engage and address the needs of the final users and widely shared with relevant stakeholders involved in the optimal use of biosensors and in the management of post-fire areas. This project was funded by National Recovery and Resilience Plan (NRRP), Mission 4, Component C2, Investment 1.1 - Call for tender No. 1409 of 14 September 2022 – ‘Progetti di Ricerca di Rilevante interesse Nazionale – PRIN’ of Italian Ministry of University and Research funded by the European Union – NextGenerationEU; Grant N° P2022Z5742, CUP B53D23023780001.

Keywords: phloem, scorched crown, conifers, prescribed burning, biosensors

Procedia PDF Downloads 0
1908 Estimation of Transition and Emission Probabilities

Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi

Abstract:

Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.

Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics

Procedia PDF Downloads 476
1907 Modelling and Simulation of Cascaded H-Bridge Multilevel Single Source Inverter Using PSIM

Authors: Gaddafi Sani Shehu, Tankut Yalcınoz, Abdullahi Bala Kunya

Abstract:

Multilevel inverters such as flying capacitor, diode-clamped, and cascaded H-bridge inverters are very popular particularly in medium and high power applications. This paper focuses on a cascaded H-bridge module using a single direct current (DC) source in order to generate an 11-level output voltage. The noble approach reduces the number of switches and gate drivers, in comparison with a conventional method. The anticipated topology produces more accurate result with an isolation transformer at high switching frequency. Different modulation techniques can be used for the multilevel inverter, but this work features modulation techniques known as selective harmonic elimination (SHE).This modulation approach reduces the number of carriers with reduction in Switching Losses, Total Harmonic Distortion (THD), and thereby increasing Power Quality (PQ). Based on the simulation result obtained, it appears SHE has the ability to eliminate selected harmonics by chopping off the fundamental output component. The performance evaluation of the proposed cascaded multilevel inverter is performed using PSIM simulation package and THD of 0.94% is obtained.

Keywords: cascaded H-bridge multilevel inverter, power quality, selective harmonic elimination

Procedia PDF Downloads 414
1906 Communicative Values of Yoruba Traditional Music on Adulthood Socialisation between the Late 20th and Early 21st Centuries

Authors: Odukunle Adebayo Atewolara-Odule

Abstract:

Music is an electronic medium and an integral content of the broadcast media, which has communicative values even in the process of entertaining listeners. The communicative values of music could have implications on what adults learn about culture and society. This study aimed at examining the communicative values of Yoruba traditional music and adulthood socialisation by comparing the situation of the late 20th with early 21st centuries. From the population of literate adults of between the ages of 30 years and 65 years in Ijebu North Local Government area of Ogun state, a sample of 200 respondents was drawn into the study through the stratified technique. A descriptive survey was conducted on the sample with the use of a structured questionnaire as the research instrument. Findings showed a significant relationship between what adults learned about the society and its culture from this category of music (p=0.000<0.05) but there was a higher significant relationship between Yoruba traditional music and adulthood socialisation in the late 20th than in early 21st centuries. Results also showed a significant communicative influence of Yoruba traditional music of the late 20th and early 21st centuries on adulthood socialisation (p=0.000<0.05). Respondents’ demographic characteristics were observed to play significant intervening roles on the communicative influence of Yoruba traditional music on socialisation among the adults between the late 20th and early 21st centuries (p=0.000<0.05). The study recommends that stakeholders should take cognisance of the lyrical contents of Yoruba traditional music due to its implications to inculcate values into people and shape their behaviour.

Keywords: adulthood socialisation, communicative values, traditional music, Voruba

Procedia PDF Downloads 175
1905 Sustainable Packaging and Consumer Behavior in a Customer Experience: A Neuromarketing Perspective

Authors: Francesco Pinci

Abstract:

This study focuses on sustainability and consumer behavior in relation to packaging aesthetics. It investigates the significance of product packaging as a potent marketing tool with a specific emphasis on commercially available pasta as a case study. The research delves into the visual components of packaging, encompassing aspects such as color, shape, packaging material, and logo design. The findings of this study hold particular relevance for food and beverage companies as they seek to gain a comprehensive understanding of the factors influencing consumer purchasing decisions. Furthermore, the study places a significant emphasis on the sustainability aspects of packaging, exploring how eco-friendly and environmentally conscious packaging choices can impact consumer preferences and behaviors. The insights generated from this research contribute to a more sustainable approach to packaging practices and inform marketers on the effective integration of sustainability principles in their branding strategies. Overall, this study provides valuable insights into the dynamic interplay between aesthetics, sustainability, and consumer behavior, offering practical implications for businesses seeking to align their packaging practices with sustainable and consumer-centric approaches. In this study, packaging designs and images from the website of Eataly US.Eataly is one of the leading distributors of authentic Italian pasta worldwide, and its website serves as a rich source of packaging visuals and product representations. By analyzing the packaging and images showcased on the Eataly website, the study gained valuable insights into consumer behavior and preferences regarding pasta packaging in the context of sustainability and aesthetics.

Keywords: consumer behaviour, sustainability, food marketing, neuromarketing

Procedia PDF Downloads 108
1904 The Chromitites of the Collo Ultramafic Rocks (NE Algeria): Two Generations Evidenced From Petrological, Mineralogical and Isotopic Studies

Authors: Rabah Laouar, Yahia Boudra, Adel Satouh, Adrian Boyce

Abstract:

The ultramafic rocks of the Collo region crop out as « stratified » masses that cross-cut older metamorphic formation of the basement. These rocks are mainly peridotites and serpentinites. The peridotites are composed of olivine, orthopyroxene, clinopyroxene and spinel (chromite). The chemical composition of these lherzolites show a magnesian character with high MgO contents (34.4 to 37.5%), high Cr (0.14 to 0.27%), Ni (0.14 to 0.26%) and Co (34 to 133 ppm) and low CaO and Al₂O₃ (0.02 to 2.2 and 0.5 to 2.8 % respectively). They represent a residue (restite) of a mantle magmas partial melting. The chromite which represents about 2 to 3% of the rock is a ubiquitous mineral and shows two different generations: primary idiomorphic millimetric crystals and secondary very fine, xenomorphic and interstitial aggregates. The primary chromites are alumino-ferro-magnesian crystals. They show high Al₂O₃ (25.77% to 27.36%) and MgO (10.70% to 13.36%). Cr# (100*Cr/ (Al+Cr)) varies between 45 and 48, and Mg# (100*Mg/Mg+Fe₂+) varies between 49 and 59. On the other hand, the secondary interstitial grains are iron-rich chromites; they show low Al₂O₃ (4.67% to 9.54%) and MgO (4.60% to 4.65%). Cr# is relatively high (77 to 88) whereas Mg# show relatively low values, varying between 22 and 25. Oxygen isotopic composition of both types of chromites is consistent with their derivation from a mantle source (ð¹⁸O vary between +3.9 and +5.2‰), though a contribution of ¹⁶O-rich component to the secondary chromites is not ruled out.

Keywords: peridotites, serpentinites, chromite, partial melting, collo, Algeria

Procedia PDF Downloads 84
1903 Challenges and Opportunities in Modelling Energy Behavior of Household in Malaysia

Authors: Zuhaina Zakaria, Noraliza Hamzah, Siti Halijjah Shariff, Noor Aizah Abdul Karim

Abstract:

The residential sector in Malaysia has become the single largest energy sector accounting for 21% of the entire energy usage of the country. In the past 10 years, a number of energy efficiency initiatives in the residential sector had been undertaken by the government including. However, there is no clear evidence that the total residential energy consumption has been reduced substantially via these strategies. Household electrical appliances such as air conditioners, refrigerators, lighting and televisions are used depending on the consumers’ activities. The behavior of household occupants played an important role in energy consumption and influenced the operation of the physical devices. Therefore, in order to ensure success in energy efficiency program, it requires not only the technological aspect but also the consumers’ behaviors component. This paper focuses on the challenges and opportunities in modelling residential consumer behavior in Malaysia. A field survey to residential consumers was carried out and responses from the survey were analyzed to determine the consumers’ level of knowledge and awareness on energy efficiency. The analyses will be used in determining a right framework to explain household energy use intentions and behavior. These findings will be beneficial to power utility company and energy regulator in addressing energy efficiency related issues.

Keywords: consumer behavior theories, energy efficiency, household occupants, residential consumer

Procedia PDF Downloads 326