Search results for: amine-sulphonic acid additives
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3652

Search results for: amine-sulphonic acid additives

1222 An Evaluation of the Impact of Epoxidized Neem Seed Azadirachta indica Oil on the Mechanical Properties of Polystyrene

Authors: Salihu Takuma

Abstract:

Neem seed oil has high contents of unsaturated fatty acids which can be converted to epoxy fatty acids. The vegetable oil – based epoxy material are sustainable, renewable and biodegradable materials replacing petrochemical – based epoxy materials in some applications. Polystyrene is highly brittle with limited mechanical applications. Raw neem seed oil was obtained from National Research Institute for Chemical Technology (NARICT), Zaria, Nigeria. The oil was epoxidized at 60 0C for three (3) hours using formic acid generated in situ. The epoxidized oil was characterized using Fourier Transform Infrared spectroscopy (FTIR). The disappearance of C = C stretching peak around 3011.7 cm-1and formation of a new absorption peak around 943 cm-1 indicate the success of epoxidation. The epoxidized oil was blended with pure polystyrene in different weight percent compositions using solution casting in chloroform. The tensile properties of the blends demonstrated that the addition of 5 wt % ENO to PS led to an increase in elongation at break, but a decrease in tensile strength and modulus. This is in accordance with the common rule that plasticizers can decrease the tensile strength of the polymer.

Keywords: biodegradable, elongation at break, epoxidation, epoxy fatty acids, sustainable, tensile strength and modulus

Procedia PDF Downloads 234
1221 Molecular Profiling of an Oleaginous Trebouxiophycean Alga Parachlorella kessleri Subjected to Nutrient Deprivation

Authors: Pannaga Pavan Jutur

Abstract:

Parachlorella kessleri, a marine unicellular green alga belonging to class Trebouxiophyceae, accumulates large amounts of oil, i.e., lipids under nutrient-deprived (-N, -P, and -S) conditions. Understanding their metabolic imprints is important for elucidating the physiological mechanisms of lipid accumulations in this microalga subjected to nutrient deprivation. Metabolic and lipidomic profiles were obtained respectively using gas chromatography-mass spectrometry (GC-MS) of P. kessleri under nutrient starvation (-N, -P and -S) conditions. Relative quantities of more than 100 metabolites were systematically compared in all these three starvation conditions. Our results demonstrate that in lipid metabolism, the quantities of neutral lipids increased significantly followed by the decrease in other metabolites involved in photosynthesis, nitrogen assimilation, etc. In conclusion, the metabolomics and lipidomic profiles have identified a few common metabolites such as citric acid, valine, and trehalose to play a significant role in the overproduction of oil by this microalga subjected to nutrient deprivation. Understanding the entire system through untargeted metabolome profiling will lead to identifying relevant metabolites involved in the biosynthesis and degradation of precursor molecules that may have the potential for biofuel production, aiming towards the vision of tomorrow’s bioenergy needs.

Keywords: algae, biofuels, nutrient stress, omics

Procedia PDF Downloads 275
1220 Plant Cell Culture to Produce Valuable Natural Products

Authors: Jehad Dumireih, Malak Dmirieh, Michael Wink

Abstract:

The present work is aimed to use plant cell suspension cultures of Crataegus monogyna for biosynthesis of valuable natural products by using quercetin as an inexpensive precursor. Suspension cell cultures of C. monogyna were established by using Murashige and Skoog medium (MS) supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid and 1 mg/L kinetin. Cells were harvested from the cultures and extracted by using methanol and ethyl acetate; then the extracts were used for the identification of isoquercetin by HPLC and by mass spectrometry. The incubation of the cells with 0.24 mM quercetin for one week resulted in an 16 fold increase of isoquercetin biosynthesis; the growth rate of the cells increased by 20%. Moreover, the biosynthesis of isoquercetin was enhanced by 40% when we divided the added quercetin into three portions each one with concentration 0.12 mM supplied at 3 days intervals. In addition, we didn’t find any positive effects of adding different concentrations the precursors phenylalanine (0.2 mM) and galactose to the cell cultures. In conclusion, the efficiency of the biotransformation of quercetin into isoquercetin depended on the concentration quercetin, its incubation time and the way of its administration. The results of the present work suggest that the biotechnological methods such as cell suspension cultures could be successfully used to obtain highly valuable natural product starting from inexpensive compound.

Keywords: biosynthesis, biotransformation, Crataegus, isoquercetin

Procedia PDF Downloads 499
1219 Development of a Miniature Laboratory Lactic Goat Cheese Model to Study the Expression of Spoilage by Pseudomonas Spp. In Cheeses

Authors: Abirami Baleswaran, Christel Couderc, Loubnah Belahcen, Jean Dayde, Hélène Tormo, Gwénaëlle Jard

Abstract:

Cheeses are often reported to be spoiled by Pseudomonas spp., responsible for defects in appearance, texture, taste, and smell, leading to their non-marketing and even their destruction. Despite preventive actions, problems linked to Pseudomonas spp. are difficult to control by the lack of knowledge and control of these contaminants during the cheese manufacturing. Lactic goat cheese producers are not spared by this problem and are looking for solutions to decrease the number of spoiled cheeses. To explore different hypotheses, experiments are needed. However, cheese-making experiments at the pilot scale are expensive and time consuming. Thus, there is a real need to develop a miniature cheeses model system under controlled conditions. In a previous study, several miniature cheese models corresponding to different type of commercial cheeses have been developed for different purposes. The models were, for example, used to study the influence of milk, starters cultures, pathogen inhibiting additives, enzymatic reactions, microflora, freezing process on cheese. Nevertheless, no miniature model was described on the lactic goat cheese. The aim of this work was to develop a miniature cheese model system under controlled laboratory conditions which resembles commercial lactic goat cheese to study Pseudomonas spp. spoilage during the manufacturing and ripening process. First, a protocol for the preparation of miniature cheeses (3.5 times smaller than a commercial one) was designed based on the cheese factorymanufacturing process. The process was adapted from “Rocamadour” technology and involves maturation of pasteurized milk, coagulation, removal of whey by centrifugation, moulding, and ripening in a little scale cellar. Microbiological (total bacterial count, yeast, molds) and physicochemical (pH, saltinmoisture, moisture in fat-free)analyses were performed on four key stages of the process (before salting, after salting, 1st day of ripening, and end of ripening). Factory and miniature cheeses volatilomewere also obtained after full scan Sift-MS cheese analysis. Then, Pseudomonas spp. strains isolated from contaminated cheeses were selected on their origin, their ability to produce pigments, and their enzymatic activities (proteolytic, lecithinasic, and lipolytic). Factory and miniature curds were inoculated by spotting selected strains on the cheese surface. The expression of cheese spoilage was evaluated by counting the level of Pseudomonas spp. during the ripening and by visual observation and under UVlamp. The physicochemical and microbiological compositions of miniature cheeses permitted to assess that miniature process resembles factory process. As expected, differences involatilomes were observed, probably due to the fact that miniature cheeses are made usingpasteurized milk to better control the microbiological conditions and also because the little format of cheese induced probably a difference during the ripening even if the humidity and temperature in the cellar were quite similar. The spoilage expression of Pseudomonas spp. was observed in miniature and factory cheeses. It confirms that the proposed model is suitable for the preparation of miniature cheese specimens in the spoilage study of Pseudomonas spp. in lactic cheeses. This kind of model could be deployed for other applications and other type of cheese.

Keywords: cheese, miniature, model, pseudomonas spp, spoilage

Procedia PDF Downloads 133
1218 Production and Evaluation of Mango Pulp by Using Ohmic Heating Process

Authors: Sobhy M. Mohsen, Mohamed M. El-Nikeety, Tarek G. Mohamed, Michael Murkovic

Abstract:

The present work aimed to study the use of ohmic heating in the processing of mango pulp comparing to conventional method. Mango pulp was processed by using ohmic heating under the studied suitable conditions. Physical, chemical and microbiological properties of mango pulp were studied. The results showed that processing of mango pulp by using either ohmic heating or conventional method caused a decrease in the contents of TSS, total carbohydrates, total acidity, total sugars (reducing and non-reducing sugar) and an increase in phenol content, ascorbic acid and carotenoids compared to the conventional process. The increase in electric conductivity of mango pulp during ohmic heating was due to the addition of some electrolytes (salts) to increase the ions and enhance the process. The results also indicate that mango pulp processed by ohmic heating contained more phenols, carbohydrates and vitamin C and less HMF compared to that produced by conventional one. Total pectin and its fractions had slightly reduced by ohmic heating compared to conventional method. Enzymatic activities showed a reduction in poly phenoloxidase (PPO) and polygalacturonase (PG) activity in mango pulp processed by conventional method. However, ohmic heating completely inhibited PPO and PG activities.

Keywords: ohmic heating, mango pulp, phenolic, sarotenoids

Procedia PDF Downloads 455
1217 Production of Gluten-Free Bread Using Emulsifying Salts and Rennet Casein

Authors: A. Morina, S. Ö. Muti, M. Öztürk

Abstract:

Celiac disease is a chronic intestinal disease observed in individuals with gluten intolerance. In this study, our aim was to create a protein matrix to mimic the functional properties of gluten. For this purpose, rennet casein and four emulsifying salts (disodium phosphate (DSP), tetrasodium pyrophosphate (TSPP), sodium acid pyrophosphate (SAPP), and sodium hexametaphosphate (SHMP)) were investigated in gluten-free bread manufacture. Compositional, textural, and visual properties of the gluten-free bread dough and gluten-free breads were investigated by a two–level factorial experimental design with two-star points (α = 1.414) and two replicates of the center point. Manufacturing gluten-free bread with rennet casein and SHMP significantly increased the bread volume (P < 0.0001, R² = 97.8). In general, utilization of rennet casein with DSP and SAPP increased bread hardness while no difference was observed in samples manufactured with TSPP and SHMP. Except for TSPP, bread color was improved by the utilization of rennet casein and DSP, SAPP, and SHMP combinations. In conclusion, it is possible to manufacture gluten-free bread with acceptable texture and color by rennet casein and SHMP.

Keywords: celiac disease, gluten-free bread, emulsified salts, rennet casein, rice flour

Procedia PDF Downloads 167
1216 Stability Indicating Method Development and Validation for Estimation of Antiasthmatic Drug in Combined Dosages Formed by RP-HPLC

Authors: Laxman H. Surwase, Lalit V. Sonawane, Bhagwat N. Poul

Abstract:

A simple stability indicating high performance liquid chromatographic method has been developed for the simultaneous determination of Levosalbutamol Sulphate and Ipratropium Bromide in bulk and pharmaceutical dosage form using reverse phase Zorbax Eclipse Plus C8 column (250mm×4.6mm), with mobile phase phosphate buffer (0.05M KH2PO4): acetonitrile (55:45v/v) pH 3.5 adjusted with ortho-phosphoric acid, the flow rate was 1.0 mL/min and the detection was carried at 212 nm. The retention times of Levosalbutamol Sulphate and Ipratropium Bromide were 2.2007 and 2.6611 min respectively. The correlation coefficient of Levosalbutamol Sulphate and Ipratropium Bromide was found to be 0.997 and 0.998.Calibration plots were linear over the concentration ranges 10-100µg/mL for both Levosalbutamol Sulphate and Ipratropium Bromide. The LOD and LOQ of Levosalbutamol Sulphate were 2.520µg/mL and 7.638µg/mL while for Ipratropium Bromide was 1.201µg/mL and 3.640 µg/mL. The accuracy of the proposed method was determined by recovery studies and found to be 100.15% for Levosalbutamol Sulphate and 100.19% for Ipratropium Bromide respectively. The method was validated for accuracy, linearity, sensitivity, precision, robustness, system suitability. The proposed method could be utilized for routine analysis of Levosalbutamol Sulphate and Ipratropium Bromide in bulk and pharmaceutical capsule dosage form.

Keywords: levosalbutamol sulphate, ipratropium bromide, RP-HPLC, phosphate buffer, acetonitrile

Procedia PDF Downloads 351
1215 Electrospun Nanofibrous Scaffolds Modified with Collagen-I and Fibronectin with LX-2 Cells to Study Liver Fibrosis in vitro

Authors: Prativa Das, Lay Poh Tan

Abstract:

Three-dimensional microenvironment is a need to study the event cascades of liver fibrosis in vitro. Electrospun nanofibers modified with essential extracellular matrix proteins can closely mimic the random fibrous structure of native liver extracellular matrix (ECM). In this study, we fabricate a series of 3D electrospun scaffolds by wet electrospinning process modified with different ratios of collagen-I to fibronectin to achieve optimized distribution of these two ECM proteins on the fiber surface. A ratio of 3:1 of collagen-I to fibronectin was found to be optimum for surface modification of electrospun poly(lactic-co-glycolic acid) (PLGA) fibers by chemisorption process. In 3:1 collagen-I to fibronectin modified scaffolds the total protein content increased by ~2 fold compared to collagen-I modified and ~1.5 fold compared to 1:1/9:1 collagen-I to fibronectin modified scaffolds. We have cultured LX-2 cells on this scaffold over 14 days and found that LX-2 cells acquired more quiescent phenotype throughout the culture period and shown significantly lower expression of alpha smooth muscle actin and collagen-I. Thus, this system can be used as a model to study liver fibrosis by using different fibrogenic mediators in vitro.

Keywords: electrospinning, collagen-I and fibronectin, surface modification of fiber, LX-2 cells, liver fibrosis

Procedia PDF Downloads 126
1214 Detection of PCD-Related Transcription Factors for Improving Salt Tolerance in Plant

Authors: A. Bahieldin, A. Atef, S. Edris, N. O. Gadalla, S. M. Hassan, M. A. Al-Kordy, A. M. Ramadan, A. S. M. Al- Hajar, F. M. El-Domyati

Abstract:

The idea of this work is based on a natural exciting phenomenon suggesting that suppression of genes related to the program cell death (or PCD) mechanism might help the plant cells to efficiently tolerate abiotic stresses. The scope of this work was the detection of PCD-related transcription factors (TFs) that might also be related to salt stress tolerance in plant. Two model plants, e.g., tobacco and Arabidopsis, were utilized in order to investigate this phenomenon. Occurrence of PCD was first proven by Evans blue staining and DNA laddering after tobacco leaf discs were treated with oxalic acid (OA) treatment (20 mM) for 24 h. A number of 31 TFs up regulated after 2 h and co-expressed with genes harboring PCD-related domains were detected via RNA-Seq analysis and annotation. These TFs were knocked down via virus induced gene silencing (VIGS), an RNA interference (RNAi) approach, and tested for their influence on triggering PCD machinery. Then, Arabidopsis SALK knocked out T-DNA insertion mutants in selected TFs analogs to those in tobacco were tested under salt stress (up to 250 mM NaCl) in order to detect the influence of different TFs on conferring salt tolerance in Arabidopsis. Involvement of a number of candidate abiotic-stress related TFs was investigated.

Keywords: VIGS, PCD, RNA-Seq, transcription factors

Procedia PDF Downloads 274
1213 Selective Extraction of Couple Nickel(II) / Cobalt(II) by a Series of Schiff Bases in Sulfate Medium, in the Chloroforme-Water

Authors: N. Belhadj, M. Hadj Youcef, T. Benabdallah, Belbachir Ibtissem, N. Boceiri

Abstract:

This work deals with the synthesis, the structural elucidation and the exploration the extracting properties of a series of ortho-hydroxy Schiff base in sulfate medium. After the synthesis and characterization of their structures, the study of their behavior in solution was carried out by pH-metric titration in different media homogeneous and heterogeneous solution. This allowed to explore and to quantify in each of these media, some of their properties in solution such as, their acid-base behavior (determination and comparison of pKa), their distribution powers (determination and comparison of logKd), and their thermodynamic constants (determining ∆H°, ΔS° and ∆G°moy) by optimizing both the temperature and ionic strength. Study of the extraction of nickel (II) and cobalt(II) separately was undertaken in the aqueous-organic system, chloroform-water. Different extraction parameters have been thus optimized such, the pH, the concentration of extractant and the ionic strength, and the extraction constants established in each case. The extracted metal complexes have been isolated and their spatial configurations elucidated. The selective extraction of the couple cobalt (II)/nickel (II) was finally performed by our series of Schiff base in the chloroforme/water.

Keywords: selective extraction, Schiff base, distribution, cobalt(II), nickel(II)

Procedia PDF Downloads 459
1212 Alterations of Gut Microbiota and Its Metabolomics in Child with 6PPDQ, PBDE, PCB, and Metal (Loid) Exposure

Authors: Xia Huo

Abstract:

The composition and metabolites of the gut microbiota can be altered by environmental pollutants. However, the effect of co-exposure to multiple pollutants on the human gut microbiota has not been sufficiently studied. In this study, gut microorganisms and their metabolites were compared between 33 children from Guiyu and 34 children from Haojiang. The exposure level was assessed by estimating the daily intake (EDI) of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 6PPD-quinone (6PPDQ), and metal(loid)s in dust. Significant correlations were found between the EDIs of 6PPDQ, BDE28, PCB52, Ni, Cu, and both the alpha diversity index and specific metabolites in single-element models. The study found that the Bayesian kernel machine regression (BKMR) model showed a negative correlation between the EDIs of five pollutants (6PPDQ, BDE28, PCB52, Ni, and Cu) and the Chao 1 index, particularly beyond the 55th percentile. Furthermore, the EDIs of these five pollutants were positively correlated with the levels of the metabolite 2,4-diaminobutyric acid while negatively correlated with the levels of d-erythro-sphingosine and d-threitol. Our research suggests that exposure to 6PPDQ, BDE28, PCB52, Ni, and Cu in kindergarten dust is associated with alterations in the gut microbiota and its metabolites. These alterations may be associated with neurodevelopmental abnormalities in children.

Keywords: gut microbiota, 6PPDQ, PBDEs, PCBs, metal(loid)s, BKMR

Procedia PDF Downloads 56
1211 Use of Chemical Extractions to Estimate the Metals Availability in Bricks Made of Dredged Sediments

Authors: Fabienne Baraud, Lydia Leleyter, Sandra Poree, Melanie Lemoine

Abstract:

SEDIBRIC (valorization de SEDIments en BRIQues et tuiles) is a French project that aims to replace a part of natural clays with dredged sediments in the preparation of fired bricks in order to propose an alternative solution for the management of harbor dredged sediments. The feasibility of such re-use is explored from a technical, economic, and environmental point of view. The present study focuses on the potential environmental impact of various chemical elements (Al, Ca, Cd, Co, Cr, Cu, Fe, Ni, Mg, Mn, Pb, Ti, and Zn) that are initially present in the dredged sediments. The total content (after acid digestion) and the environmental availability (estimated by single extractions with various extractants) of these elements are determined in the raw sediments and in the obtained fired bricks. The possible influence of some steps of the manufacturing process (sediment pre-treatment, firing) is also explored. The first results show that the pre-treatment step, which uses tap water to desalinate the raw sediment, does not influence the environmental availability of the studied elements. However, the firing process, performed at 900°C, can affect the amount of some elements detected in the bricks, as well as their environmental availability. We note that for Cr, or Ni, the HCl or EDTA availability was increased in the brick (compared to the availability in the raw sediment). For Cd, Cu, Pb, and Zn, the HCl and EDTA availability was reduced in the bricks, meaning that these elements were stabilized within the bricks.

Keywords: bricks, chemical extraction, metals, sediment

Procedia PDF Downloads 150
1210 Impact of Zn/Cr Ratio on ZnCrOx-SAPO-34 Bifunctional Catalyst for Direct Conversion of Syngas to Light Olefins

Authors: Yuxuan Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying

Abstract:

Light olefins are important building blocks for chemical industry. Direct conversion of syngas to light olefins has been investigated for decades. Meanwhile, the limit for light olefins selectivity described by Anderson-Schulz-Flory (ASF) distribution model is still a great challenge to conventional Fischer-Tropsch synthesis. The emerging strategy called oxide-zeolite concept (OX-ZEO) is a promising way to get rid of this limit. ZnCrOx was prepared by co-precipitation method and (NH4)2CO3 was used as precipitant. SAPO-34 was prepared by hydrothermal synthesis, and Tetraethylammonium hydroxide (TEAOH) was used as template, while silica sol, pseudo-boehmite, and phosphoric acid were Al, Si and P source, respectively. The bifunctional catalyst was prepared by mechanical mixing of ZnCrOx and SAPO-34. Catalytic reactions were carried out under H2/CO=2, 380 ℃, 1 MPa and 6000 mL·gcat-1·h-1 in a fixed-bed reactor with a quartz lining. Catalysts were characterized by XRD, N2 adsorption-desorption, NH3-TPD, H2-TPR, and CO-TPD. The addition of Al as structure promoter enhances CO conversion and selectivity to light olefins. Zn/Cr ratio, which decides the active component content and chemisorption property of the catalyst, influences CO conversion and selectivity to light olefins at the same time. C2-4= distribution of 86% among hydrocarbons at CO conversion of 14% was reached when Zn/Cr=1.5.

Keywords: light olefins, OX-ZEO, Syngas, ZnCrOₓ

Procedia PDF Downloads 180
1209 Templating Copper on Polymer/DNA Hybrid Nanowires

Authors: Mahdi Almaky, Reda Hassanin, Benjamin Horrocks, Andrew Houlton

Abstract:

DNA-templated poly(N-substituted pyrrole)bipyridinium nanowires were synthesised at room temperature using the chemical oxidation method. The resulting CPs/DNA hybrids have been characterised using electronic and vibrational spectroscopic methods especially Ultraviolet-Visible (UV-Vis) spectroscopy and FTIR spectroscpy. The nanowires morphology was characterised using Atomic Force Microscopy (AFM). The electrical properties of the prepared nanowires were characterised using Electrostatic Force Microscopy (EFM), and measured using conductive AFM (c-AFM) and two terminal I/V technique, where the temperature dependence of the conductivity was probed. The conductivities of the prepared CPs/DNA nanowires are generally lower than PPy/DNA nanowires showingthe large effect on N-alkylation in decreasing the conductivity of the polymer, butthese are higher than the conductivity of their corresponding bulk films.This enhancement in conductivity could be attributed to the ordering of the polymer chains on DNA during the templating process. The prepared CPs/DNA nanowires were used as templates for the growth of copper nanowires at room temperature using aqueous solution of Cu(NO3)2as a source of Cu2+ and ascorbic acid as reducing agent. AFM images showed that these nanowires were uniform and continuous compared to copper nanowires prepared using the templating method directly onto DNA. Electrical characterization of the nanowires by c AFM revealed slight improvement in conductivity of these nanowires (Cu-CPs/DNA) compared to CPs/DNA nanowires before metallisation.

Keywords: templating, copper nanowires, polymer/DNA hybrid, chemical oxidation method

Procedia PDF Downloads 363
1208 Synthesis of 2-Aminoisocoumarinoselenazoles via Transition Metal-Free Alkylation and Ru(II)-Catalyzed [4+2] Alkyne Annulation

Authors: Sunil Kumar, Sandip Dhole, Deepak Salunke, Chung-ming Sun

Abstract:

Heterocycles bearing nitrogen, oxygen, and selenium are present in innumerable biologically active compounds. For instance, coumarin containing dicoumarol acts as naturally occurring anticoagulant. 2-Acylamido selenazole works as Store-Operated Calcium (SOC) channel regulator. Therefore, due to biologically significance of selenazole and coumarin and our quest to develop efficient methodologies for the synthesis of complex heterocycles, the trisubstituted angular isocoumarinoselenazole synthesis was proposed and achieved by starting from nitrobenzoic acid derivative, available commercially. Synthetic procedure involves three steps: i) the construction of 2-aminobenzoselenazoles, ii) their regioselective N-alkylation at position-2 and iii) alkyne insertion via Ru catalyzed C-H activation. Transition metal free synthesis of benzoselenazoles was successfully brought about by the addition/elimination reaction via intramolecular C-Se bond formation. In the next step, N-alkylation of selenazole furnished two regioisomers. Both the isomers exhibited different reactivity towards [4+2] alkyne annulation reaction. The fusion of α-pyrone ring on the benzo[1,3-d]selenazole skeleton was achieved via Ru(II)-catalyzed C-H activation and alkyne insertion. As evident from mechanism, the selenazole 'N' plays an important role for the experiential selectivity.

Keywords: alkylation, alkyne insertion, coumarin, selenazole

Procedia PDF Downloads 125
1207 Effect of Varying Stocking Densities and Vitamin C (Ascorbic Acid) Supplementation on Growth Performance of Japanese Quails

Authors: T. S. Olugbemi, T. S. Friday, O. O. Olusola

Abstract:

This experiment was carried out to assess the effect of different stocking densities and vitamin C supplementation on the performance of Japanese quails. Five hundred and twenty (520) unsexed quail birds of two (2) weeks of age were allotted randomly into nine (9) groups with 3 replicates each in a 3x3 factorial arrangement (3 stocking density levels and 3 graded vitamin C levels) with densities of 150, 120, 90 cm2/bird(11, 16, 21 birds). During the five weeks growing trial (2- 6 weeks), results showed that stocking density had significant effects on final weight (131.59g compared to 111.10g for the lowest), total and daily weight gain. No significance difference was observed for feed conversion ratio, age at first lay and first egg weight. Observations on haematological parameters (packed cell volume (PCV), total protein (TP), haemoglobin, red blood cell (RBC), lymphocyte, heterophil) on stocking density showed no significant differences. Vitamin C supplementation at 50mg/kg and 100mg/kg did not have any significant effect on the growth performance parameters of growing quails. Stocking density at 150cm2/bird had a better performance with or without vitamin C supplementation hence it is recommended that stocking rates of quails between the ages of 2 – 6 weeks should not be below 150cm2/bird.

Keywords: anti-oxidants, performance, stress, stocking density

Procedia PDF Downloads 646
1206 Nutritional Potentials of Two Nigerian Green Leafy Vegetables

Authors: Philippa C. Ojimelukwe, Felix C. Okpalanma, Emmanuel A. Mazi

Abstract:

The carotenoid content, vitamins (ascorbic acid, riboflavin, thiamin, niacin and vitamin K) and mineral contents (K, Ca, Mg, Zn and Fe) of raw, cooked (moist heat treatment) and stored Gnetum africanum and Pterocarpus mildbraedii leaves were investigated in the present research. Raw G. africanum contained higher total carotenoids (246.93µg/g edible portion) than P. mildbraedii (83.53µg/g edible portion) However, moist heat treatment significantly improved the total carotenoid content of P. mildbraedii. The carotenoid profiles of P. mildbraedii and G. africanum showed improved contents of beta cryptoxanthin , 9-cis, 11-cis and 13 cis beta carotenes due to moist heat treatment. Lutein contents of the two green leafy vegetables were quite high in raw, heat treated and stored samples. The two green leafy vegetables were good sources of vitamin K (118-120 µg). Moist heat treatment significantly (p < 0.05) increased the mineral contents of P.mildbraedii and G. africanum. The vitamin contents were reduced. Storage at ambient temperature (30oC) in the dark led to good retention of the minerals but not the vitamins.

Keywords: Gnetum africanum, Pterocarpus mildbraedii, carotenoid profile, vitamins, minerals

Procedia PDF Downloads 490
1205 Prediction of Metals Available to Maize Seedlings in Crude Oil Contaminated Soil

Authors: Stella O. Olubodun, George E. Eriyamremu

Abstract:

The study assessed the effect of crude oil applied at rates, 0, 2, 5, and 10% on the fractional chemical forms and availability of some metals in soils from Usen, Edo State, with no known crude oil contamination and soil from a crude oil spill site in Ubeji, Delta State, Nigeria. Three methods were used to determine the bioavailability of metals in the soils: maize (Zea mays) plant, EDTA and BCR sequential extraction. The sequential extract acid soluble fraction of the BCR extraction (most labile fraction of the soils, normally associated with bioavailability) were compared with total metal concentration in maize seedlings as a means to compare the chemical and biological measures of bioavailability. Total Fe was higher in comparison to other metals for the crude oil contaminated soils. The metal concentrations were below the limits of 4.7% Fe, 190mg/kg Cu and 720mg/kg Zn intervention values and 36mg/kg Cu and 140mg/kg Zn target values for soils provided by the Department of Petroleum Resources (DPR) guidelines. The concentration of the metals in maize seedlings increased with increasing rates of crude oil contamination. Comparison of the metal concentrations in maize seedlings with EDTA extractable concentrations showed that EDTA extracted more metals than maize plant.

Keywords: availability, crude oil contamination, EDTA, maize, metals

Procedia PDF Downloads 228
1204 Important role of HLA-B*58:01 Allele and Distribution Among Healthy Thais: Avoid Severe Cutaneous Adverse Reactions

Authors: Jaomai Tungsiripat, Patompong Satapornpong

Abstract:

Allopurinol have been used to treat diseases that relating with the reduction of uric acid and be a treatment preventing the severity of, including gout, chronic kidney disease, chronic heart failure, and diabetes mellitus (type 2). However, allopurinol metabolites can cause a severe cutaneous adverse reaction (SCARs) consist of Drug Rash with Eosinophilia and Systemic Symptoms (DRESS) and Stevens-Johnson Syndrome(SJS)/Toxic Epidermal Necrolysis (TEN). Previous studies, we found only HLA-B*58:01 allele has a strongly association with allopurinol-induced SCARs in many populations: Han Chinese [P value = 4.7 x 10−24], European [P value <10−6], and Thai [P value <0.001].However, there was no update the frequency of HLA-B alleles and pharmacogenetics markers distribution in healthy Thais and support for screening before the initiation of treatment. The aim of this study was to investigate the prevalence of HLA-B*58:01 allele associated with allopurinol-induced SCARs in healthy Thai population. A retrospective study of 260 individual healthy subjects who living in Thailand. HLA-B were genotyped using sequence-specific oligonucleotides (PCR-SSOs).In this study, we identified the prevalence of HLA-B alleles consist ofHLA-B*46:01 (12.69%), HLA-B*15:02 (8.85%), HLA-B*13:01 (6.35%), HLA-B*40:01 (6.35%), HLA-B*38:02 (5.00%), HLA-B*51:01 (5.00%), HLA-B*58:01 (4.81%), HLA-B*44:03 (4.62%), HLA-B*18:01 (3.85%) and HLA-B*15:25 (3.08%). Therefore, the distribution of HLA-B*58:01 will support the clinical implementation and screening usage of allopurinol in Thai population.

Keywords: allopurinol, HLA-B*58: 01, Thai population, SCARs

Procedia PDF Downloads 140
1203 Sorption of Crystal Violet from Aqueous Solution Using Chitosan−Charcoal Composite

Authors: Kingsley Izuagbe Ikeke, Abayomi O. Adetuyi

Abstract:

The study investigated the removal efficiency of crystal violet from aqueous solution using chitosan-charcoal composite as adsorbent. Deproteination was carried out by placing 200g of powdered snail shell in 4% w/v NaOH for 2hours. The sample was then placed in 1% HCl for 24 hours to remove CaCO3. Deacetylation was done by boiling in 50% NaOH for 2hours. 10% Oxalic acid was used to dissolve the chitosan before mixing with charcoal at 55°C to form the composite. The composite was characterized by Fourier Transform Infra-Red and Scanning Electron Microscopy measurements. The efficiency of adsorption was evaluated by varying pH of the solution, contact time, initial concentration and adsorbent dose. Maximum removal of crystal violet by composite and activated charcoal was attained at pH10 while maximum removal of crystal violet by chitosan was achieved at pH 8. The results showed that adsorption of both dyes followed the pseudo-second-order rate equation and fit the Langmuir and Freundlich isotherms. The data showed that composite was best suited for crystal violet removal and also did relatively well in the removal of alizarin red. Thermodynamic parameters such as enthalpy change (ΔHº), free energy change (ΔGº) and entropy change (ΔSº) indicate that adsorption process of Crystal Violet was endothermic, spontaneous and feasible respectively.

Keywords: crystal violet, chitosan−charcoal composite, extraction process, sorption

Procedia PDF Downloads 439
1202 Revolutionizing RNA Extraction: A Unified, Sustainable, and Rapid Protocol for High-Quality Isolation from Diverse Tissues

Authors: Ying Qi Chan, Chunyu Li, Xu Rou Yoyo Ma, Yaya Li, Saber Khederzadeh

Abstract:

In the ever-evolving landscape of genome extraction protocols, the existing methodologies grapple with issues ranging from sub-optimal yields and compromised quality to time-intensive procedures and reliance on hazardous reagents, often necessitating substantial tissue quantities. This predicament is particularly challenging for scientists in developing countries, where resources are limited. Our investigation presents a protocol for the efficient extraction of high-yield RNA from various tissues such as muscle, insect, and plant samples. Noteworthy for its advantages, our protocol stands out as the safest, swiftest (completed in just 38 minutes), most cost-effective (coming in at a mere US$0.017), and highly efficient method in comparison to existing protocols. Notably, our method avoids the use of hazardous or toxic chemicals such as chloroform and phenol and enzymatic agents like RNase and Proteinase K. Our RNA extraction protocol has demonstrated clear advantages over other methods, including commercial kits, in terms of yield. This nucleic acid extraction protocol is more environmentally and research-friendly, suitable for a range of tissues, even in tiny volumes, hence facilitating various genetic diagnosis and researches across the globe.

Keywords: RNA extraction, rapid protocol, universal method, diverse tissues

Procedia PDF Downloads 74
1201 The Chewing Gum Confectionary Development for Oral Hygiene with Nine Hour Oral Antibacterial Activity

Authors: Yogesh Bacchaw, Ashish Dabade

Abstract:

Nowadays oral health is raising concern in society. Acid producing microorganisms changes the oral pH and creates a favorable environment for microbial growth. This growth not only promotes dental decay but also bad breath. Generally Recognized As Safe (GRAS) listed component was incorporated in chewing gum as an antimicrobial agent. The chewing gum produced exhibited up to 9 hours of antimicrobial activity against oral microflora. The toxicity of GRAS component per RACC value of chewing gum was negligible as compared to actual toxicity level of GRAS component. The antibacterial efficiency of chewing gum was tested by using total plate count (TPC) and colony forming unit (CFU). Nine hours were required to microflora to reach TPC/CFU of before chewing gum consumption. This chewing gum not only provides mouth freshening activity but also helps in lowering dental decay, bad breath, and enamel whitening.

Keywords: colony forming unit (CFU), chewing gum, generally recognized as safe (GRAS), microbial growth, microorganisms, oral health, RACC, total plate count (TPC), antimicrobial agent, enamel whitening, oral pH

Procedia PDF Downloads 313
1200 Fast Reductive Defluorination of Branched Perfluorooctane Sulfonic Acids by Cobalt Phthalocyanine: Electrochemical Studies and Mechanistic Insights

Authors: Maryam Mirabediny, Tsz Tin Yu, Jun Sun, Matthew Lee, Denis M. O’Carroll, Michael J. Manefield, Björn Akermark, Biswanath Das, Naresh Kumar

Abstract:

Branched perfluorooctane sulfonic acid (PFOS) is recognized as a threatening environmental pollutant due to its high persistence and bioaccumulation in various environmental matrices as well as for its toxic effects on humans and wildlife, even at very low concentrations. This study reports the first investigation of branched PFOS defluorination catalyzed by metal phthalocyanines. The reaction conditions were optimized using the different reductants and temperatures. Cobalt phthalocyanine, when combined with Ti citrate as a reducing agent, was able to defluorinate 10.9% of technical PFOS within 8 hours. In contrast, vitamin B12 only showed 2.4% defluorination during the same period under similar conditions. The defluorination mediated by cobalt phthalocyanine and Ti citrate system corresponds to 54.5% of all branched PFOS isomers (br-PFOS isomers). Isomer-specific degradation was also investigated via high-resolution LC-orbitrap, followed by their relative rates. The difference in catalytic efficacy of various phthalocyanine complexes is rationalized by their structures and electrochemical response. Lastly, a new defluorination mechanism is proposed based on the newly detected degradation products after the phthalocyanines treatment and the previous studies.

Keywords: branched isomers, catalyst, reductive defluorination, water remediation

Procedia PDF Downloads 100
1199 UV-Reactive Electrospinning: Preparation, Characterization and Cell Culture Applications of Nanofiber Scaffolds Containing Keratin

Authors: Duygu Yüksel Deniz, Memet Vezir Kahraman, Serap Erdem Kuruca, Mediha Süleymanoğlu

Abstract:

Our first aim was to synthesize Hydroxy Apatite (HAP) and then modify its surface by adding 4-Vinylbenzene boronic acid (4-VBBA). The characterization was done by FT-IR. By adding Polyvinyl alcohol (PVA) to 4- VBBA-HAP, we obtained a suitable electrospinning solution. PVA solution which was also modified by using alkoxy silanes, in order to prevent the scaffolds from being damaged by aqueous cell medium, was added. Keratin was dissolved and then added into the electrospinning solution. Keratin containing 4-VBBA- HAP/PVA composite was used to fabricate nanofiber scaffolds with the simultaneous UV-reactive electrospinning technique. The structural characterization was done by FT-IR. Thermal gravimetric analysis was also performed by using TGA. The morphological characterization was determined by SEM analyses. Our second aim was to create a scaffold where cells could grow. With this purpose, suitable nanofibers were choosen according to their SEM analysis. Keratin containing nanofibers were seeded with 3T3, ECV and SAOS cells and their cytotoxicity and cell proliferation were investigated by using MTT assay. After cell culturing process morphological characterization was determined by SEM analyses. These scaffolds were designed to be nontoxic biomaterials. Here, a comparision was made between keratin containing 3T3, ECV and SAOS seeded nanofiber scaffolds and the results were presented and discussed.

Keywords: cell culture, keratin, nanofibers, UV-reactive electrospinning

Procedia PDF Downloads 454
1198 Synthesis of New Anti-Tuberculosis Drugs

Authors: M. S. Deshpande, Snehal D. Bomble

Abstract:

Tuberculosis (TB) is a deadly contagious disease that is caused by a bacterium called Mycobacterium tuberculosis. More than sixty years ago, the introduction of the first anti-TB drugs for the treatment of TB (streptomycin (STR), p-aminosalcylic acid (PAS), isoniazid (INH), and then later ethambutol (EMB) and rifampicin (RIF)) gave optimism to the medical community, and it was believed that the disease would be completely eradicated soon. Worldwide, the number of TB cases has continued to increase, but the incidence rate has decreased since 2003. Recently, highly drug-resistant forms of TB have emerged worldwide. The prolonged use of classical drugs developed a growing resistance and these drugs have gradually become less effective and incapable to meet the challenges, especially those of multi drug resistant (MDR)-TB, extensively drug resistant (XDR)-TB, and HIV-TB co-infections. There is an unmet medical need to discover newer synthetic molecules and new generation of potent drugs for the treatment of tuberculosis which will shorten the time of treatment, be potent and safe while effective facing resistant strains and non-replicative, latent forms, reduce adverse side effect and not interfere in the antiretroviral therapy. This paper attempts to bring out the review of anti-TB drugs, and presents a novel method of synthesizing new anti-tuberculosis drugs and potential compounds to overcome the bacterial resistance and combat the re-emergence of tuberculosis.

Keywords: tuberculosis, mycobacterium, multi-drug resistant (MDR)-TB, extensively drug resistant (XDR)-TB

Procedia PDF Downloads 380
1197 Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment

Authors: J. Bolobajev, M. Trapido, A. Goi

Abstract:

The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification.

Keywords: ferric sludge recycling, ferric iron reductant, water treatment, organic pollutant

Procedia PDF Downloads 294
1196 Impact of Stress and Protein Malnutrition on the Potential Role of Epigallocatechin-3-Gallate in Providing Protection from Nephrotoxicity and Hepatotoxicity Induced by Aluminum in Rats

Authors: Azza A. Ali, Mona G. Khalil, Hemat A. Elariny, Shereen S. El Shaer

Abstract:

Background: Aluminium (Al) is very abundant metal in the earth’s crust. It is a constituent of cooking utensils, medicines, cosmetics, some foods and food additives. Salts of Al are widely used in the treatment of drinking water for purification purposes. Excessive and prolonged exposure to Al causes oxidative stress and impairment of many physiological functions. Its accumulation in liver and kidney causes hepatotoxicity and nephrotoxicity. Social isolation (SI) or Protein malnutrition (PM) also increases oxidative stress and may enhance the toxicity of Al as well as the degeneration in liver and kidney. Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea and has strong antioxidant as well as anti-inflammatory activities and can protect against oxidative stress-induced degenerations. Objective: To study the influence of stress or PM on Al-induced nephrotoxicity and hepatotoxicity in rats, as well as on the potential role of EGCG in providing protection. Methods: Rats received daily AlCl3 (70 mg/kg, IP) for three weeks (Al-toxicity groups) except one normal control group received saline. Al-toxicity groups were divided into four treated and four untreated groups; treated rats received EGCG (10 mg/kg, IP) together with AlCl3. One group of both treated and untreated rats served as control for each of them, and the others were subjected to either stress (mild using isolation or high using electric shock) or to PM (10% casein diet). Specimens of liver and kidney were used for assessment of levels of inflammatory mediators as TNF-α, IL6β, nuclear factor kappa B (NF-κB), oxidative stress (MDA, SOD, TAC, NO), Caspase-3 and for DNA fragmentation as well as for histopathological examinations. Biochemical changes were also measured in the serum as total lipids, cholesterol, triglycerides, glucose, proteins, bilirubin, creatinine and urea as well as the level of Alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate deshydrogenase (LDH). Results: Nephrotoxicity and hepatotoxicity induced by Al were enhanced in rats exposed to stress and to PM. The influence of stress was more pronounced than PM. Al-toxicity was indicated by the increase in liver and kidney MDA, NO, TNF-α, IL-6β, NF-κB, caspase-3, DNA fragmentation and in ALT, AST, ALP, LDH and total lipids, cholesterol, triglycerides, glucose, proteins, bilirubin, creatinine and urea levels, together with the decrease in total proteins, SOD, TAC. EGCG provided protection against hazards of Al as indicated by the decrease in MDA, NO, TNF-α, IL-6β, NF-κB, caspase-3 and DNA fragmentation as well as in levels of ALT, AST, ALP, LDH and total lipids, cholesterol, triglycerides, glucose, proteins, bilirubin, creatinine and urea in liver and kidney, together with the increase in total proteins, SOD, TAC and confirmed by histopathological examinations. It provided more pronounced protection in high stressful conditions than in mild one than in PM. Conclusion: Stress have a bad impact on Al-induced nephrotoxicity and hepatotoxicity more than PM. Thus it can clarify and maximize the role of EGCG in providing protection. Consequently, administration of EGCG is advised with excessive Al-exposure to avoid nephrotoxicity and hepatotoxicity especially in populations more subjected to stress or PM.

Keywords: aluminum, stress, protein malnutrition, nephrotoxicity, hepatotoxicity, epigallocatechin-3-gallate, rats

Procedia PDF Downloads 307
1195 The Impact of Initiators on Fast Drying Traffic Marking Paint

Authors: Maryam Taheri, Mehdi Jahanfar, Kenji Ogino

Abstract:

Fast drying traffic marking paint comprising a solvent-borne resin, a filler, a pigment and a solvent that is especially suitable for colder ambient (temperatures near freezing) applications, where waterborne traffic paint cannot be used. Acrylic resins based on methyl methacrylate, butyl acrylate, acrylic acid, and styrene were synthesized in different solvents using organic peroxide initiators such as peroxyester, peroxyketal, dialkylperoxide and azo. After polymerization, the molecular weight (Mw), polydispersity index= PDI (Mw/Mn), viscosity, total residual monomer and APHA color were evaluated and results of organic peroxide initiators (t- butyl and t-amyl derivatives) were also compared with the azo initiator. The Mw, PDI, viscosity, mass conversation and APHA color of resins with t-amyl derivatives of organic peroxide initiators are very proper. The results of the traffic marking paints test such as non-volatile matter, no- pick- up time, hiding power, resistance to wear and water resistance study that produced with these resins also confirm this.

Keywords: fast drying traffic marking paint, acrylic resin, organic peroxide initiator, peroxyester, peroxyketal, dialkylperoxide and azo initiator

Procedia PDF Downloads 208
1194 Inclusion Body Refolding at High Concentration for Large-Scale Applications

Authors: J. Gabrielczyk, J. Kluitmann, T. Dammeyer, H. J. Jördening

Abstract:

High-level expression of proteins in bacteria often causes production of insoluble protein aggregates, called inclusion bodies (IB). They contain mainly one type of protein and offer an easy and efficient way to get purified protein. On the other hand, proteins in IB are normally devoid of function and therefore need a special treatment to become active. Most refolding techniques aim at diluting the solubilizing chaotropic agents. Unfortunately, optimal refolding conditions have to be found empirically for every protein. For large-scale applications, a simple refolding process with high yields and high final enzyme concentrations is still missing. The constructed plasmid pASK-IBA63b containing the sequence of fructosyltransferase (FTF, EC 2.4.1.162) from Bacillus subtilis NCIMB 11871 was transformed into E. coli BL21 (DE3) Rosetta. The bacterium was cultivated in a fed-batch bioreactor. The produced FTF was obtained mainly as IB. For refolding experiments, five different amounts of IBs were solubilized in urea buffer with protein concentration of 0.2-8.5 g/L. Solubilizates were refolded with batch or continuous dialysis. The refolding yield was determined by measuring the protein concentration of the clear supernatant before and after the dialysis. Particle size was measured by dynamic light scattering. We tested the solubilization properties of fructosyltransferase IBs. The particle size measurements revealed that the solubilization of the aggregates is achieved at urea concentration of 5M or higher and confirmed by absorption spectroscopy. All results confirm previous investigations that refolding yields are dependent upon initial protein concentration. In batch dialysis, the yields dropped from 67% to 12% and 72% to 19% for continuous dialysis, in relation to initial concentrations from 0.2 to 8.5 g/L. Often used additives such as sucrose and glycerol had no effect on refolding yields. Buffer screening indicated a significant increase in activity but also temperature stability of FTF with citrate/phosphate buffer. By adding citrate to the dialysis buffer, we were able to increase the refolding yields to 82-47% in batch and 90-74% in the continuous process. Further experiments showed that in general, higher ionic strength of buffers had major impact on refolding yields; doubling the buffer concentration increased the yields up to threefold. Finally, we achieved corresponding high refolding yields by reducing the chamber volume by 75% and the amount of buffer needed. The refolded enzyme had an optimal activity of 12.5±0.3 x104 units/g. However, detailed experiments with native FTF revealed a reaggregation of the molecules and loss in specific activity depending on the enzyme concentration and particle size. For that reason, we actually focus on developing a process of simultaneous enzyme refolding and immobilization. The results of this study show a new approach in finding optimal refolding conditions for inclusion bodies at high concentrations. Straightforward buffer screening and increase of the ionic strength can optimize the refolding yield of the target protein by 400%. Gentle removal of chaotrope with continuous dialysis increases the yields by an additional 65%, independent of the refolding buffer applied. In general time is the crucial parameter for successful refolding of solubilized proteins.

Keywords: dialysis, inclusion body, refolding, solubilization

Procedia PDF Downloads 294
1193 Albumin-Induced Turn-on Fluorescence in Molecular Engineered Fluorescent Probe for Biomedical Application

Authors: Raja Chinnappan, Huda Alanazi, Shanmugam Easwaramoorthi, Tanveer Mir, Balamurugan Kanagasabai, Ahmed Yaqinuddin, Sandhanasamy Devanesan, Mohamad S. AlSalhi

Abstract:

Serum albumin (SA) is a highly rich water-soluble protein in plasma. It is known to maintain the living organisms' health and help to maintain the proper liver function, kidney function, and plasma osmolality in the body. Low levels of serum albumin are an indication of liver failure and chronic hepatitis. Therefore, it is important to have a low-cost, accurate and rapid method. In this study, we designed a fluorescent probe, triphenylamine rhodanine-3-acetic acid (mRA), which triggers the fluorescence signal upon binding with serum albumin (SA). mRA is a bifunctional molecule with twisted intramolecular charge transfer (TICT)-induced emission characteristics. An aqueous solution of mRA has an insignificant fluorescence signal; however, when mRA binds to SA, it undergoes TICT and turns on the fluorescence emission. A SA dose-dependent fluorescence signal was performed, and the limit of detection was found to be less than ng/mL. The specific binding of SA was tested from the cross-reactivity study using similar structural or functional proteins.

Keywords: serum albumin, fluorescent sensing probe, liver diseases, twisted intramolecular charge transfer

Procedia PDF Downloads 18