Search results for: neural interface
798 Analysis of Linguistic Disfluencies in Bilingual Children’s Discourse
Authors: Sheena Christabel Pravin, M. Palanivelan
Abstract:
Speech disfluencies are common in spontaneous speech. The primary purpose of this study was to distinguish linguistic disfluencies from stuttering disfluencies in bilingual Tamil–English (TE) speaking children. The secondary purpose was to determine whether their disfluencies are mediated by native language dominance and/or on an early onset of developmental stuttering at childhood. A detailed study was carried out to identify the prosodic and acoustic features that uniquely represent the disfluent regions of speech. This paper focuses on statistical modeling of repetitions, prolongations, pauses and interjections in the speech corpus encompassing bilingual spontaneous utterances from school going children – English and Tamil. Two classifiers including Hidden Markov Models (HMM) and the Multilayer Perceptron (MLP), which is a class of feed-forward artificial neural network, were compared in the classification of disfluencies. The results of the classifiers document the patterns of disfluency in spontaneous speech samples of school-aged children to distinguish between Children Who Stutter (CWS) and Children with Language Impairment CLI). The ability of the models in classifying the disfluencies was measured in terms of F-measure, Recall, and Precision.Keywords: bi-lingual, children who stutter, children with language impairment, hidden markov models, multi-layer perceptron, linguistic disfluencies, stuttering disfluencies
Procedia PDF Downloads 218797 A Neurofeedback Learning Model Using Time-Frequency Analysis for Volleyball Performance Enhancement
Authors: Hamed Yousefi, Farnaz Mohammadi, Niloufar Mirian, Navid Amini
Abstract:
Investigating possible capacities of visual functions where adapted mechanisms can enhance the capability of sports trainees is a promising area of research, not only from the cognitive viewpoint but also in terms of unlimited applications in sports training. In this paper, the visual evoked potential (VEP) and event-related potential (ERP) signals of amateur and trained volleyball players in a pilot study were processed. Two groups of amateur and trained subjects are asked to imagine themselves in the state of receiving a ball while they are shown a simulated volleyball field. The proposed method is based on a set of time-frequency features using algorithms such as Gabor filter, continuous wavelet transform, and a multi-stage wavelet decomposition that are extracted from VEP signals that can be indicative of being amateur or trained. The linear discriminant classifier achieves the accuracy, sensitivity, and specificity of 100% when the average of the repetitions of the signal corresponding to the task is used. The main purpose of this study is to investigate the feasibility of a fast, robust, and reliable feature/model determination as a neurofeedback parameter to be utilized for improving the volleyball players’ performance. The proposed measure has potential applications in brain-computer interface technology where a real-time biomarker is needed.Keywords: visual evoked potential, time-frequency feature extraction, short-time Fourier transform, event-related spectrum potential classification, linear discriminant analysis
Procedia PDF Downloads 143796 MhAGCN: Multi-Head Attention Graph Convolutional Network for Web Services Classification
Authors: Bing Li, Zhi Li, Yilong Yang
Abstract:
Web classification can promote the quality of service discovery and management in the service repository. It is widely used to locate developers desired services. Although traditional classification methods based on supervised learning models can achieve classification tasks, developers need to manually mark web services, and the quality of these tags may not be enough to establish an accurate classifier for service classification. With the doubling of the number of web services, the manual tagging method has become unrealistic. In recent years, the attention mechanism has made remarkable progress in the field of deep learning, and its huge potential has been fully demonstrated in various fields. This paper designs a multi-head attention graph convolutional network (MHAGCN) service classification method, which can assign different weights to the neighborhood nodes without complicated matrix operations or relying on understanding the entire graph structure. The framework combines the advantages of the attention mechanism and graph convolutional neural network. It can classify web services through automatic feature extraction. The comprehensive experimental results on a real dataset not only show the superior performance of the proposed model over the existing models but also demonstrate its potentially good interpretability for graph analysis.Keywords: attention mechanism, graph convolutional network, interpretability, service classification, service discovery
Procedia PDF Downloads 139795 Modification of Electrical and Switching Characteristics of a Non Punch-Through Insulated Gate Bipolar Transistor by Gamma Irradiation
Authors: Hani Baek, Gwang Min Sun, Chansun Shin, Sung Ho Ahn
Abstract:
Fast neutron irradiation using nuclear reactors is an effective method to improve switching loss and short circuit durability of power semiconductor (insulated gate bipolar transistors (IGBT) and insulated gate transistors (IGT), etc.). However, not only fast neutrons but also thermal neutrons, epithermal neutrons and gamma exist in the nuclear reactor. And the electrical properties of the IGBT may be deteriorated by the irradiation of gamma. Gamma irradiation damages are known to be caused by Total Ionizing Dose (TID) effect and Single Event Effect (SEE), Displacement Damage. Especially, the TID effect deteriorated the electrical properties such as leakage current and threshold voltage of a power semiconductor. This work can confirm the effect of the gamma irradiation on the electrical properties of 600 V NPT-IGBT. Irradiation of gamma forms lattice defects in the gate oxide and Si-SiO2 interface of the IGBT. It was confirmed that this lattice defect acts on the center of the trap and affects the threshold voltage, thereby negatively shifted the threshold voltage according to TID. In addition to the change in the carrier mobility, the conductivity modulation decreases in the n-drift region, indicating a negative influence that the forward voltage drop decreases. The turn-off delay time of the device before irradiation was 212 ns. Those of 2.5, 10, 30, 70 and 100 kRad(Si) were 225, 258, 311, 328, and 350 ns, respectively. The gamma irradiation increased the turn-off delay time of the IGBT by approximately 65%, and the switching characteristics deteriorated.Keywords: NPT-IGBT, gamma irradiation, switching, turn-off delay time, recombination, trap center
Procedia PDF Downloads 159794 The Methodology of Hand-Gesture Based Form Design in Digital Modeling
Authors: Sanghoon Shim, Jaehwan Jung, Sung-Ah Kim
Abstract:
As the digital technology develops, studies on the TUI (Tangible User Interface) that links the physical environment utilizing the human senses with the virtual environment through the computer are actively being conducted. In addition, there has been a tremendous advance in computer design making through the use of computer-aided design techniques, which enable optimized decision-making through comparison with machine learning and parallel comparison of alternatives. However, a complex design that can respond to user requirements or performance can emerge through the intuition of the designer, but it is difficult to actualize the emerged design by the designer's ability alone. Ancillary tools such as Gaudí's Sandbag can be an instrument to reinforce and evolve emerged ideas from designers. With the advent of many commercial tools that support 3D objects, designers' intentions are easily reflected in their designs, but the degree of their reflection reflects their intentions according to the proficiency of design tools. This study embodies the environment in which the form can be implemented by the fingers of the most basic designer in the initial design phase of the complex type building design. Leapmotion is used as a sensor to recognize the hand motions of the designer, and it is converted into digital information to realize an environment that can be linked in real time in virtual reality (VR). In addition, the implemented design can be linked with Rhino™, a 3D authoring tool, and its plug-in Grasshopper™ in real time. As a result, it is possible to design sensibly using TUI, and it can serve as a tool for assisting designer intuition.Keywords: design environment, digital modeling, hand gesture, TUI, virtual reality
Procedia PDF Downloads 369793 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment
Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar
Abstract:
Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors
Procedia PDF Downloads 17792 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning
Abstract:
Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.Keywords: machine learning, ETF prediction, dynamic trading, asset allocation
Procedia PDF Downloads 105791 Frequency Modulation Continuous Wave Radar Human Fall Detection Based on Time-Varying Range-Doppler Features
Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou
Abstract:
The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-doppler features
Procedia PDF Downloads 127790 Investigation on the Structure of Temperature-Responsive N-isopropylacrylamide Microgels Containing a New Hydrophobic Crosslinker
Authors: G. Roshan Deen, J. S. Pedersen
Abstract:
Temperature-responsive poly(N-isopropyl acrylamide) PNIPAM microgels crosslinked with a new hydrophobic chemical crosslinker was prepared by surfactant-mediated precipitation emulsion polymerization. The temperature-responsive property of the microgel and the influence of the crosslinker on the swelling behaviour was studied systematically by light scattering and small-angle X-ray scattering (SAXS). The radius of gyration (Rg) and the hydrodynamic radius (Rh) of the microgels decreased with increase in temperature due to the volume phase transition from a swollen to a collapsed state. The ratio of Rg/Rh below the transition temperature was lower than that of hard-spheres due to the lower crosslinking density of the microgels. The SAXS data was analysed by a model in which the microgels were modelled as core-shell particles with a graded interface. The model at intermediate temperatures included a central core and a more diffuse outer layer describing pending polymer chains with a low crosslinking density. In the fully swollen state, the microgels were modelled with a single component with a broad graded surface. In the collapsed state they were modelled as homogeneous and relatively compact particles. The polymer volume fraction inside the microgel was also derived based on the model and was found to increase with increase in temperature as a result of collapse of the microgel to compact particles. The polymer volume fraction in the core of the microgel in the collapsed state was about 60% which is higher than that of similar microgels crosslinked with hydrophilic and flexible cross-linkers.Keywords: microgels, SAXS, hydrophobic crosslinker, light scattering
Procedia PDF Downloads 431789 Experimental Study of Al₂O₃ and SiC Nano Particles on Tensile Strength of Al 1100 Sheet Produced by Accumulative Press Bonding Process
Authors: M. Zadshakoyan, H. Marassem Bonab, P. M. Keshtiban
Abstract:
The SPD process widely used to optimize microstructure, strength and mechanical properties of the metals. Processes such as ARB and APB could have a considerable impact on improving the properties of metals. The aluminum material after steel, known as the most used metal, Because of its low strength, there are restrictions on the use of this metal, it is required to spread further studies to increase strength and improve the mechanical properties of this light weight metal. In this study, Annealed aluminum material, with yield strength of 85 MPa and tensile strength of 124 MPa, sliced into 2 sheets with dimensions of 30 and 25 mm and the thickness of 1.5 mm. then the sheets press bonded under 6 cycles, which increased the ultimate strength to 281 MPa. In addition, by adding 0.1%Wt of SiC particles to interface of the sheets, the sheets press bonded by 6 cycles to achieve a homogeneous composite. The same operation using Al2O3 particles and a mixture of SiC+Al2O3 particles was repeated and the amount of strength and elongation of produced composites compared with each other and with pure 6 cycle press bonded Aluminum. The results indicated that the ultimate strength of Al/SiC composite was 2.6 times greater than Annealed aluminum. And Al/Al2O3 and Al/Al2O3+SiC samples were low strength than Al/SiC sample. The pure 6 time press bonded Aluminum had lowest strength by 2.2 times greater than annealed aluminum. Strength of aluminum was increased by making the metal matrix composite. Also, it was found that the hardness of pure Aluminum increased 1.7 times after 6 cycles of APB process, hardness of the composite samples improved further, so that, the hardness of Al/SiC increased up to 2.51 times greater than annealed aluminum.Keywords: APB, nano composite, nano particles, severe plastic deformation
Procedia PDF Downloads 302788 Numerical Analysis of Core-Annular Blood Flow in Microvessels at Low Reynolds Numbers
Authors: L. Achab, F. Iachachene
Abstract:
In microvessels, red blood cells (RBCs) exhibit a tendency to migrate towards the vessel center, establishing a core-annular flow pattern. The core region, marked by a high concentration of RBCs, is governed by significantly non-Newtonian viscosity. Conversely, the annular layer, composed of cell-free plasma, is characterized by Newtonian low viscosity. This property enables the plasma layer to act as a lubricant for the vessel walls, efficiently reducing resistance to the movement of blood cells. In this study, we investigate the factors influencing blood flow in microvessels and the thickness of the annular plasma layer using a non-miscible fluids approach in a 2D axisymmetric geometry. The governing equations of an incompressible unsteady flow are solved numerically through the Volume of Fluid (VOF) method to track the interface between the two immiscible fluids. To model blood viscosity in the core region, we adopt the Quemada constitutive law which is accurately captures the shear-thinning blood rheology over a wide range of shear rates. Our results are then compared to an established theoretical approach under identical flow conditions, particularly concerning the radial velocity profile and the thickness of the annular plasma layer. The simulation findings for low Reynolds numbers, demonstrate a notable agreement with the theoretical solution, emphasizing the pivotal role of blood’s rheological properties in the core region in determining the thickness of the annular plasma layer.Keywords: core-annular flows, microvessels, Quemada model, plasma layer thickness, volume of fluid method
Procedia PDF Downloads 61787 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features
Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari
Abstract:
An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)
Procedia PDF Downloads 449786 Blockchain-Resilient Framework for Cloud-Based Network Devices within the Architecture of Self-Driving Cars
Authors: Mirza Mujtaba Baig
Abstract:
Artificial Intelligence (AI) is evolving rapidly, and one of the areas in which this field has influenced is automation. The automobile, healthcare, education, and robotic industries deploy AI technologies constantly, and the automation of tasks is beneficial to allow time for knowledge-based tasks and also introduce convenience to everyday human endeavors. The paper reviews the challenges faced with the current implementations of autonomous self-driving cars by exploring the machine learning, robotics, and artificial intelligence techniques employed for the development of this innovation. The controversy surrounding the development and deployment of autonomous machines, e.g., vehicles, begs the need for the exploration of the configuration of the programming modules. This paper seeks to add to the body of knowledge of research assisting researchers in decreasing the inconsistencies in current programming modules. Blockchain is a technology of which applications are mostly found within the domains of financial, pharmaceutical, manufacturing, and artificial intelligence. The registering of events in a secured manner as well as applying external algorithms required for the data analytics are especially helpful for integrating, adapting, maintaining, and extending to new domains, especially predictive analytics applications.Keywords: artificial intelligence, automation, big data, self-driving cars, machine learning, neural networking algorithm, blockchain, business intelligence
Procedia PDF Downloads 123785 An Investigation of the Fracture Behavior of Model MgO-C Refractories Using the Discrete Element Method
Authors: Júlia Cristina Bonaldo, Christophe L. Martin, Martiniano Piccico, Keith Beale, Roop Kishore, Severine Romero-Baivier
Abstract:
Refractory composite materials employed in steel casting applications are prone to cracking and material damage because of the very high operating temperature (thermal shock) and mismatched properties of the constituent phases. The fracture behavior of a model MgO-C composite refractory is investigated to quantify and characterize its thermal shock resistance, employing a cold crushing test and Brazilian test with fractographic analysis. The discrete element method (DEM) is used to generate numerical refractory composites. The composite in DEM is represented by an assembly of bonded particle clusters forming perfectly spherical aggregates and single spherical particles. For the stresses to converge with a low standard deviation and a minimum number of particles to allow reasonable CPU calculation time, representative volume element (RVE) numerical packings are created with various numbers of particles. Key microscopic properties are calibrated sequentially by comparing stress-strain curves from crushing experimental data. Comparing simulations with experiments also allows for the evaluation of crack propagation, fracture energy, and strength. The crack propagation during Brazilian experimental tests is monitored with digital image correlation (DIC). Simulations and experiments reveal three distinct types of fracture. The crack may spread throughout the aggregate, at the aggregate-matrix interface, or throughout the matrix.Keywords: refractory composite, fracture mechanics, crack propagation, DEM
Procedia PDF Downloads 83784 Comparative Study on Manet Using Soft Computing Techniques
Authors: Amarjit Singh, Tripatdeep Singh Dua, Vikas Attri
Abstract:
Mobile Ad-hoc Network is a combination of several nodes that create dynamically a specific network without using any base infrastructure. In this study all the mobile nodes can depended upon each other to send any data. Mobile host can pick up data and forwarding to their destination path. Basically MANET depend upon their Quality of Service which is highly constraints to the user. To give better services we need to improve the QOS. In these days MANET QOS requirement to use soft computing techniques. These techniques depend upon their specific requirement and which exists using MANET concepts. Using a soft computing techniques various protocol and algorithms may be considered. In this paper, we provide comparative study review of existing work done in MANET using various kind of soft computing techniques. Our review research is based on their specific protocol or algorithm which provide concern solution of QOS need. We discuss about various protocol through which routing in MANET. In Second section we clear the concepts of Soft Computing and their types. In third section we review the MANET using different kind of soft computing techniques work done before. In forth section we need to understand the concept of QoS requirement which exists in MANET and we done comparative study on different protocol used before and last we conclude the purpose of using MANET with soft computing techniques metrics.Keywords: mobile ad-hoc network, fuzzy improved genetic approach, neural network, routing protocol, wireless mesh network
Procedia PDF Downloads 354783 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph
Procedia PDF Downloads 26782 An Interactive Voice Response Storytelling Model for Learning Entrepreneurial Mindsets in Media Dark Zones
Authors: Vineesh Amin, Ananya Agrawal
Abstract:
In a prolonged period of uncertainty and disruptions in the pre-said normal order, non-cognitive skills, especially entrepreneurial mindsets, have become a pillar that can reform the educational models to inform the economy. Dreamverse Learning Lab’s IVR-based storytelling program -Call-a-Kahaani- is an evolving experiment with an aim to kindle entrepreneurial mindsets in the remotest locations of India in an accessible and engaging manner. At the heart of this experiment is the belief that at every phase in our life’s story, we have a choice which brings us closer to achieving our true potential. This interactive program is thus designed using real-time storytelling principles to empower learners, ages 24 and below, to make choices and take decisions as they become more self-aware, practice grit, try new things through stories, guided activities, and interactions, simply over a phone call. This research paper highlights the framework behind an ongoing scalable, data-oriented, low-tech program to kindle entrepreneurial mindsets in media dark zones supported by iterative design and prototyping to reach 13700+ unique learners who made 59000+ calls for 183900+min listening duration to listen to content pieces of around 3 to 4 min, with the last monitored (March 2022) record of 34% serious listenership, within one and a half years of its inception. The paper provides an in-depth account of the technical development, content creation, learning, and assessment frameworks, as well as mobilization models which have been leveraged to build this end-to-end system.Keywords: non-cognitive skills, entrepreneurial mindsets, speech interface, remote learning, storytelling
Procedia PDF Downloads 215781 An Application of Meta-Modeling Methods for Surrogating Lateral Dynamics Simulation in Layout-Optimization for Electric Drivetrains
Authors: Christian Angerer, Markus Lienkamp
Abstract:
Electric vehicles offer a high variety of possible drivetrain topologies with up to 4 motors. Multi-motor-designs can have several advantages regarding traction, vehicle dynamics, safety and even efficiency. With a rising number of motors, the whole drivetrain becomes more complex. All permutations of gearings, drivetrain-layouts, motor-types and –sizes lead up in a very large solution space. Single elements of this solution space can be analyzed by simulation methods. In addition to longitudinal vehicle behavior, which most optimization-approaches are restricted to, also lateral dynamics are important for vehicle dynamics, stability and efficiency. In order to compete large solution spaces and to find an optimal result, genetic algorithm based optimization is state-of-the-art. As lateral dynamics simulation is way more CPU-intensive, optimization takes much more time than in case of longitudinal-only simulation. Therefore, this paper shows an approach how to create meta-models from a 14-degree of freedom vehicle model in order to enable a numerically efficient drivetrain-layout optimization process under consideration of lateral dynamics. Different meta-modelling approaches such as neural networks or DoE are implemented and comparatively discussed.Keywords: driving dynamics, drivetrain layout, genetic optimization, meta-modeling, lateral dynamicx
Procedia PDF Downloads 421780 Gastronomy: The Preferred Digital Business Models and Impacts in Business Economics within Hospitality, Tourism, and Catering Sectors through Online Commerce
Authors: John Oupa Hlatshwayo
Abstract:
Background: There seem to be preferred digital business models with varying impacts within hospitality, tourism and catering sub-sectors explored through online commerce, as all are ingrained in the business economics domain. Aim: A study aims to establish if such phenomena (Digital Business Models) exist and to what extent if any, within the hospitality, tourism and catering industries, respectively. Setting: This is a qualitative study conducted by exploring several (Four) institutions globally through Case Studies. Method: This research explored explanatory case studies to answer questions about ‘how’ or ’why’ with little control by a researcher over the occurrence of events. It is qualitative research, deductive, and inductive methods. Hence, a comprehensive approach to analyzing qualitative data was attainable through immersion by reading to understand the information. Findings: The results corroborated the notion that digital business models are applicable, by and large, in business economics. Thus, three sectors wherein enterprises operate in the business economics sphere have been narrowed down i.e. hospitality, tourism and catering, are also referred to as triangular polygons due to the atypical nature of being ‘stand-alone’, yet ‘sub-sectors’, but there are confounding factors to consider. Conclusion: The significance of digital business models and digital transformation shows an inevitable merger between business and technology within Hospitality, Tourism, and Catering. Contribution: Such symbiotic relationship of business and technology, persistent evolution of clients’ interface with end-products, forever changing market, current adaptation as well as adjustment to ‘new world order’ by enterprises must be embraced constantly without fail by Business Practitioners, Academics, Business Students, Organizations and Governments.Keywords: digital business models, hospitality, tourism, catering, business economics
Procedia PDF Downloads 24779 Factors Affecting Internet Behavior and Life Satisfaction of Older Adult Learners with Use of Smartphone
Authors: Horng-Ji Lai
Abstract:
The intuitive design features and friendly interface of smartphone attract older adults. In Taiwan, many senior education institutes offer smartphone training courses for older adult learners who are interested in learning this innovative technology. It is expected that the training courses can help them to enjoy the benefits of using smartphone and increase their life satisfaction. Therefore, it is important to investigate the factors that influence older adults’ behavior of using smartphone. The purpose of the research was to develop and test a research model that investigates the factors (self-efficacy, social connection, the need to seek health information, and the need to seek financial information) affecting older adult learners’ Internet behaviour and their life satisfaction with use of smartphone. Also, this research sought to identify the relationship between the proposed variables. Survey method was used to collect research data. A Structural Equation Modeling was performed using Partial Least Squares (PLS) regression for data exploration and model estimation. The participants were 394 older adult learners from smartphone training courses in active aging learning centers located in central Taiwan. The research results revealed that self-efficacy significantly affected older adult learner’ social connection, the need to seek health information, and the need to seek financial information. The construct of social connection yielded a positive influence in respondents’ life satisfaction. The implications of these results for practice and future research are also discussed.Keywords: older adults, smartphone, internet behaviour, life satisfaction
Procedia PDF Downloads 195778 The Effect of the Environmental Activities of Organizations on Financial Performance
Authors: Fatemeh Khalili Varnamkhasti
Abstract:
Natural administration has outside impacts such that companies regularly respect natural input as a fetched with no clear advantage. In this manner, in case natural security can bring financial benefits, showing that natural security and financial interface are in concordance, companies will effectively fulfill their obligation to ensure the environment. Contamination is, for the most part, related to the squandering of assets, misplaced vitality, and crude materials not completely utilized. Contamination avoidance and clean innovation, as inner organizational hones, can offer assistance to play down taken toll and to develop economic aptitudes for the long run, whereas outside organizational hones (item stewardship and maintainability vision) can offer assistance to coordinated partner sees into trade operations and to define future commerce directions. Taken together, these practices can drive shareholder esteem while at the same time contributing to a more feasible world. On the off chance that the company's budgetary execution is nice, it'll draw in financial specialists to contribute and progress the company's execution. In this way, budgetary execution is additionally the determinant of the progression of a company. This can be because the monetary back gotten by the company gets to be the premise for the running of trade forms in the future. Moreover, A green picture can assist firms in pulling in more clients by influencing shopper choices and moving forward with buyer brand dependability. Numerous shoppers need to purchase items from ecologically inviting firms, in spite of the fact that there are, of course, a few who will not pay premium costs for green items.Keywords: environmental activities, financial performanance, advantage, clients
Procedia PDF Downloads 62777 Displacement Solution for a Static Vertical Rigid Movement of an Interior Circular Disc in a Transversely Isotropic Tri-Material Full-Space
Authors: D. Mehdizadeh, M. Rahimian, M. Eskandari-Ghadi
Abstract:
This article is concerned with the determination of the static interaction of a vertically loaded rigid circular disc embedded at the interface of a horizontal layer sandwiched in between two different transversely isotropic half-spaces called as tri-material full-space. The axes of symmetry of different regions are assumed to be normal to the horizontal interfaces and parallel to the movement direction. With the use of a potential function method, and by implementing Hankel integral transforms in the radial direction, the government partial differential equation for the solely scalar potential function is transformed to an ordinary 4th order differential equation, and the mixed boundary conditions are transformed into a pair of integral equations called dual integral equations, which can be reduced to a Fredholm integral equation of the second kind, which is solved analytically. Then, the displacements and stresses are given in the form of improper line integrals, which is due to inverse Hankel integral transforms. It is shown that the present solutions are in exact agreement with the existing solutions for a homogeneous full-space with transversely isotropic material. To confirm the accuracy of the numerical evaluation of the integrals involved, the numerical results are compared with the solutions exists for the homogeneous full-space. Then, some different cases with different degrees of material anisotropy are compared to portray the effect of degree of anisotropy.Keywords: transversely isotropic, rigid disc, elasticity, dual integral equations, tri-material full-space
Procedia PDF Downloads 443776 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits
Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.
Abstract:
With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme
Procedia PDF Downloads 138775 Influence of Counterface and Environmental Conditions on the Lubricity of Multilayer Graphene Coatings Produced on Nickel by Chemical Vapour Deposition
Authors: Iram Zahra
Abstract:
Friction and wear properties of multilayer graphene coatings (MLG) on nickel substrate were investigated at the macroscale, and different failure mechanisms working at the interface of nickel-graphene coatings were evaluated. Multilayer graphene coatings were produced on a nickel substrate using the atmospheric chemical vapour deposition (CVD) technique. Wear tests were performed on the pin-on-disk tribometer apparatus under dry air conditions, and using the saltwater solution, distilled water, and mineral oil lubricants and counterparts used in these wear tests were fabricated of stainless steel, chromium, and silicon nitride. The wear test parameters such as rotational speed, wear track diameter, temperature, relative humidity, and load were 60 rpm, 6 mm, 22˚C, 45%, and 2N, respectively. To analyse the friction and wear behaviour, coefficient of friction (COF) vs time curves were plotted, and the sliding surfaces of the samples and counterparts were examined using the optical microscope. Results indicated that graphene-coated nickel in mineral oil lubrication and dry conditions gave the minimum average value of COP (0.05) and wear track width ( ̴151 µm) against the three different types of counterparts. In contrast, uncoated nickel samples indicated a maximum wear track width ( ̴411 µm) and COF (0.5). Thorough investigation and analysis concluded that graphene-coated samples have two times lower COF and three times lower wear than the bare nickel samples. Furthermore, mechanical failures were significantly lower in the case of graphene-coated nickel. The overall findings suggested that multilayer graphene coatings have drastically decreased wear and friction on nickel substrate at the macroscale under various lubricating conditions and against different counterparts.Keywords: friction, lubricity, multilayer graphene, sliding, wear
Procedia PDF Downloads 147774 Contextualizing Communication through Culture and Social Structure: An Exploration of Media Life
Authors: Jyoti Ranjan Sahoo
Abstract:
Communication is a social phenomenon which mediates to our everyday life and it creates, maintains, builds, circulates, and propagates for a common identity the society. The symbolic forms of communication such as aural, sounds, oral expressions, signs, and language as means of communication are being used in everyday life in helping to identify as construction of social reality. These symbolic forms of communication are treated as the social process in everyday life. Therefore, there is an intrinsic relationship between communication and culture to understand media life for village communities. Similarly, the interface of communication with social life is reflected upon it’s formulation of the notions of social structure and culture. It has been observed that there is an overlapping and new phenomenonal change of media life among marginalized communities in general and village communities in particular. Therefore, this paper is an outcome of decadal stock of literature and an empirical investigation on understanding of communication in a tribal village in India. It has examined the idea of American scientist Edward T. Hall “the culture is communication, and the communication is culture” in village society on understanding media life. Thus, the Harold Innis’s theoretical idea of “communication” has been critically examined in these contexts since author tries to explore and understand the inter-disciplinarity on understanding media life through communication and culture which is embedded in socio-cultural life bearing on epistemological and ontological implications. The paper tries to explore and understand the inter-disciplinary and historical trajectories of communication embedded with other social science disciplines; and also tries to map these studies relevant for the future directions and engagement which would have bearing on epistemological and ontological implications in the field of media and communication.Keywords: culture, communication, history, media, oral, tradition
Procedia PDF Downloads 365773 Valence Effects on Episodic Memory Retrieval Following Exposure to Arousing Stimuli in Young and Old Adults
Authors: Marianna Constantinou, Hana Burianova, Ala Yankouskaya
Abstract:
Episodic memory retrieval benefits from arousal, with better performance linked to arousing to-be-remembered information. However, the enduring impact of arousal on subsequent memory processes, particularly for non-arousing stimuli, remains unclear. This functional Magnetic Resonance Imaging (fMRI) study examined the effects of arousal on episodic memory processes in young and old adults, focusing on memory of neutral information following arousal exposure. Neural activity was assessed at three distinct timepoints: during exposure to arousing and non-arousing stimuli, memory consolidation (with or without arousing stimulus exposure), and during memory retrieval (with or without arousing stimulus exposure). Behavioural results show that across both age groups, participants performed worse when retrieving episodic memories about a video preceded by a highly arousing negative image. Our fMRI findings reveal three key findings: i) the extension of the influence of negative arousal beyond encoding; ii) the presence of this influence in both young and old adults; iii) and the differential treatment of positive arousal between these age groups. Our findings emphasise valence-specific effects on memory processes and support the enduring impact of negative arousal. We further propose an age-related alteration in the old adult brain in differentiating between positive and negative arousal.Keywords: episodic memory, ageing, fmri, arousal, valence
Procedia PDF Downloads 66772 Influence of Foundation Size on Seismic Response of Mid-rise Buildings Considering Soil-Structure-Interaction
Authors: Quoc Van Nguyen, Behzad Fatahi, Aslan S. Hokmabadi
Abstract:
Performance based seismic design is a modern approach to earthquake-resistant design shifting emphasis from “strength” to “performance”. Soil-Structure Interaction (SSI) can influence the performance level of structures significantly. In this paper, a fifteen storey moment resisting frame sitting on a shallow foundation (footing) with different sizes is simulated numerically using ABAQUS software. The developed three dimensional numerical simulation accounts for nonlinear behaviour of the soil medium by considering the variation of soil stiffness and damping as a function of developed shear strain in the soil elements during earthquake. Elastic-perfectly plastic model is adopted to simulate piles and structural elements. Quiet boundary conditions are assigned to the numerical model and appropriate interface elements, capable of modelling sliding and separation between the foundation and soil elements, are considered. Numerical results in terms of base shear, lateral deformations, and inter-storey drifts of the structure are compared for the cases of soil-structure interaction system with different foundation sizes as well as fixed base condition (excluding SSI). It can be concluded that conventional design procedures excluding SSI may result in aggressive design. Moreover, the size of the foundation can influence the dynamic characteristics and seismic response of the building due to SSI and should therefore be given careful consideration in order to ensure a safe and cost effective seismic design.Keywords: soil-structure-interaction, seismic response, shallow foundation, abaqus, rayleigh damping
Procedia PDF Downloads 512771 Performance Comparison of Outlier Detection Techniques Based Classification in Wireless Sensor Networks
Authors: Ayadi Aya, Ghorbel Oussama, M. Obeid Abdulfattah, Abid Mohamed
Abstract:
Nowadays, many wireless sensor networks have been distributed in the real world to collect valuable raw sensed data. The challenge is to extract high-level knowledge from this huge amount of data. However, the identification of outliers can lead to the discovery of useful and meaningful knowledge. In the field of wireless sensor networks, an outlier is defined as a measurement that deviates from the normal behavior of sensed data. Many detection techniques of outliers in WSNs have been extensively studied in the past decade and have focused on classic based algorithms. These techniques identify outlier in the real transaction dataset. This survey aims at providing a structured and comprehensive overview of the existing researches on classification based outlier detection techniques as applicable to WSNs. Thus, we have identified key hypotheses, which are used by these approaches to differentiate between normal and outlier behavior. In addition, this paper tries to provide an easier and a succinct understanding of the classification based techniques. Furthermore, we identified the advantages and disadvantages of different classification based techniques and we presented a comparative guide with useful paradigms for promoting outliers detection research in various WSN applications and suggested further opportunities for future research.Keywords: bayesian networks, classification-based approaches, KPCA, neural networks, one-class SVM, outlier detection, wireless sensor networks
Procedia PDF Downloads 502770 Roasting Degree of Cocoa Beans by Artificial Neural Network (ANN) Based Electronic Nose System and Gas Chromatography (GC)
Authors: Juzhong Tan, William Kerr
Abstract:
Roasting is one critical procedure in chocolate processing, where special favors are developed, moisture content is decreased, and better processing properties are developed. Therefore, determination of roasting degree of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products, and it also decides the commercial value of cocoa beans collected from cocoa farmers. The roasting degree of cocoa beans currently relies on human specialists, who sometimes are biased, and chemical analysis, which take long time and are inaccessible to many manufacturers and farmers. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was used to detecting the gas generated by cocoa beans with a different roasting degree (0min, 20min, 30min, and 40min) and the signals collected by gas sensors were used to train a three-layers ANN. Chemical analysis of the graded beans was operated by traditional GC-MS system and the contents of volatile chemical compounds were used to train another ANN as a reference to electronic nosed signals trained ANN. Both trained ANN were used to predict cocoa beans with a different roasting degree for validation. The best accuracy of grading achieved by electronic nose signals trained ANN (using signals from TGS 813 826 820 880 830 2620 2602 2610) turned out to be 96.7%, however, the GC trained ANN got the accuracy of 83.8%.Keywords: artificial neutron network, cocoa bean, electronic nose, roasting
Procedia PDF Downloads 237769 Turbulent Channel Flow Synthesis using Generative Adversarial Networks
Authors: John M. Lyne, K. Andrea Scott
Abstract:
In fluid dynamics, direct numerical simulations (DNS) of turbulent flows require large amounts of nodes to appropriately resolve all scales of energy transfer. Due to the size of these databases, sharing these datasets amongst the academic community is a challenge. Recent work has been done to investigate the use of super-resolution to enable database sharing, where a low-resolution flow field is super-resolved to high resolutions using a neural network. Recently, Generative Adversarial Networks (GAN) have grown in popularity with impressive results in the generation of faces, landscapes, and more. This work investigates the generation of unique high-resolution channel flow velocity fields from a low-dimensional latent space using a GAN. The training objective of the GAN is to generate samples in which the distribution of the generated samplesis ideally indistinguishable from the distribution of the training data. In this study, the network is trained using samples drawn from a statistically stationary channel flow at a Reynolds number of 560. Results show that the turbulent statistics and energy spectra of the generated flow fields are within reasonable agreement with those of the DNS data, demonstrating that GANscan produce the intricate multi-scale phenomena of turbulence.Keywords: computational fluid dynamics, channel flow, turbulence, generative adversarial network
Procedia PDF Downloads 209