Search results for: multiple distribution supply chain network
13791 Demonstration of Powering up Low Power Wireless Sensor Network by RF Energy Harvesting System
Authors: Lim Teck Beng, Thiha Kyaw, Poh Boon Kiat, Lee Ngai Meng
Abstract:
This work presents discussion on the possibility of merging two emerging technologies in microwave; wireless power transfer (WPT) and RF energy harvesting. The current state of art of the two technologies is discussed and the strength and weakness of the two technologies is also presented. The equivalent circuit of wireless power transfer is modeled and explained as how the range and efficiency can be further increased by controlling certain parameters in the receiver. The different techniques of harvesting the RF energy from the ambient are also extensive study. Last but not least, we demonstrate that a low power wireless sensor network (WSN) can be power up by RF energy harvesting. The WSN is designed to transmit every 3 minutes of information containing the temperature of the environment and also the voltage of the node. One thing worth mention is both the sensors that are used for measurement are also powering up by the RF energy harvesting system.Keywords: energy harvesting, wireless power transfer, wireless sensor network and magnetic coupled resonator
Procedia PDF Downloads 51913790 Biological Treatment of Bacterial Biofilms from Drinking Water Distribution System in Lebanon
Authors: A. Hamieh, Z. Olama, H. Holail
Abstract:
Drinking Water Distribution Systems provide opportunities for microorganisms that enter the drinking water to develop into biofilms. Antimicrobial agents, mainly chlorine, are used to disinfect drinking water, however, there are not yet standardized disinfection strategies with reliable efficacy and development of novel anti-biofilm strategies is still of major concern. In the present study the ability of Lactobacillus acidophilus and Streptomyces sp. cell free supernatants to inhibit the bacterial biofilm formation in Drinking Water Distribution System in Lebanon was investigated. Treatment with cell free supernatants of Lactobacillus acidophilus and Streptomyces sp. at 20% concentration resulted in average biofilm inhibition (52.89 and 39.66% respectively). A preliminary investigation about the mode of action of biofilm inhibition revealed that cell free supernatants showed no bacteriostatic or bactericidal activity against all the tested isolates. Pre-coating wells with supernatants revealed that Lactobacillus acidophilus cell free supernatant inhibited average biofilm formation (62.53%) by altering the adhesion of bacterial isolates to the surface, preventing the initial attachment step, which is important for biofilm production.Keywords: biofilm, cell free supernatant, distribution system, drinking water, lactobacillus acidophilus, streptomyces sp, adhesion
Procedia PDF Downloads 43413789 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery
Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong
Abstract:
The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition
Procedia PDF Downloads 29013788 Review of Energy Efficiency Routing in Ad Hoc Wireless Networks
Authors: P. R. Dushantha Chaminda, Peng Kai
Abstract:
In this review paper, we enclose the thought of wireless ad hoc networks and particularly mobile ad hoc network (MANET), their field of study, intention, concern, benefit and disadvantages, modifications, with relation of AODV routing protocol. Mobile computing is developing speedily with progression in wireless communications and wireless networking protocols. Making communication easy, we function most wireless network devices and sensor networks, movable, battery-powered, thus control on a highly constrained energy budget. However, progress in battery technology presents that only little improvements in battery volume can be expected in the near future. Moreover, recharging or substitution batteries is costly or unworkable, it is preferable to support energy waste level of devices low.Keywords: wireless ad hoc network, energy efficient routing protocols, AODV, EOAODV, AODVEA, AODVM, AOMDV, FF-AOMDV, AOMR-LM
Procedia PDF Downloads 21413787 Temperature Dependent Interaction Energies among X (=Ru, Rh) Impurities in Pd-Rich PdX Alloys
Authors: M. Asato, C. Liu, N. Fujima, T. Hoshino, Y. Chen, T. Mohri
Abstract:
We study the temperature dependence of the interaction energies (IEs) of X (=Ru, Rh) impurities in Pd, due to the Fermi-Dirac (FD) distribution and the thermal vibration effect by the Debye-Grüneisen model. The n-body (n=2~4) IEs among X impurities in Pd, being used to calculate the internal energies in the free energies of the Pd-rich PdX alloys, are determined uniquely and successively from the lower-order to higher-order, by the full-potential Korringa-Kohn-Rostoker Green’s function method (FPKKR), combined with the generalized gradient approximation in the density functional theory. We found that the temperature dependence of IEs due to the FD distribution, being usually neglected, is very important to reproduce the X-concentration dependence of the observed solvus temperatures of the Pd-rich PdX (X=Ru, Rh) alloys.Keywords: full-potential KKR-green’s function method, Fermi-Dirac distribution, GGA, phase diagram of Pd-rich PdX (X=Ru, Rh) alloys, thermal vibration effect
Procedia PDF Downloads 27513786 A Comparison of Methods for Neural Network Aggregation
Authors: John Pomerat, Aviv Segev
Abstract:
Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning
Procedia PDF Downloads 16213785 An Introductory Study on Optimization Algorithm for Movable Sensor Network-Based Odor Source Localization
Authors: Yossiri Ariyakul, Piyakiat Insom, Poonyawat Sangiamkulthavorn, Takamichi Nakamoto
Abstract:
In this paper, the method of optimization algorithm for sensor network comprised of movable sensor nodes which can be used for odor source localization was proposed. A sensor node is composed of an odor sensor, an anemometer, and a wireless communication module. The odor intensity measured from the sensor nodes are sent to the processor to perform the localization based on optimization algorithm by which the odor source localization map is obtained as a result. The map can represent the exact position of the odor source or show the direction toward it remotely. The proposed method was experimentally validated by creating the odor source localization map using three, four, and five sensor nodes in which the accuracy to predict the position of the odor source can be observed.Keywords: odor sensor, odor source localization, optimization, sensor network
Procedia PDF Downloads 29913784 Numerical Modeling to Validate Theoretical Models of Toppling Failure in Rock Slopes
Authors: Hooman Dabirmanesh, Attila M. Zsaki
Abstract:
Traditionally, rock slope stability is carried out using limit equilibrium analysis when investigating toppling failure. In these equilibrium methods, internal forces exerted between columns are not clearly defined, and to the authors’ best knowledge, there is no consensus in literature with respect to the results of analysis. A discrete element method-based numerical model was developed and applied to simulate the behavior of rock layers subjected to toppling failure. Based on this calibrated numerical model, a study of the location and distribution of internal forces that result in equilibrium was carried out. The sum of side forces was applied at a point on a block which properly represents the force to determine the inter-column force distribution. In terms of the side force distribution coefficient, the result was compared to those obtained from laboratory centrifuge tests. The results of the simulation show the suitable criteria to select the correct position for the internal exerted force between rock layers. In addition, the numerical method demonstrates how a theoretical method could be reliable by considering the interaction between the rock layers.Keywords: contact bond, discrete element, force distribution, limit equilibrium, tensile stress
Procedia PDF Downloads 14313783 A Challenge to Acquire Serious Victims’ Locations during Acute Period of Giant Disasters
Authors: Keiko Shimazu, Yasuhiro Maida, Tetsuya Sugata, Daisuke Tamakoshi, Kenji Makabe, Haruki Suzuki
Abstract:
In this paper, we report how to acquire serious victims’ locations in the Acute Stage of Large-scale Disasters, in an Emergency Information Network System designed by us. The background of our concept is based on the Great East Japan Earthquake occurred on March 11th, 2011. Through many experiences of national crises caused by earthquakes and tsunamis, we have established advanced communication systems and advanced disaster medical response systems. However, Japan was devastated by huge tsunamis swept a vast area of Tohoku causing a complete breakdown of all the infrastructures including telecommunications. Therefore, we noticed that we need interdisciplinary collaboration between science of disaster medicine, regional administrative sociology, satellite communication technology and systems engineering experts. Communication of emergency information was limited causing a serious delay in the initial rescue and medical operation. For the emergency rescue and medical operations, the most important thing is to identify the number of casualties, their locations and status and to dispatch doctors and rescue workers from multiple organizations. In the case of the Tohoku earthquake, the dispatching mechanism and/or decision support system did not exist to allocate the appropriate number of doctors and locate disaster victims. Even though the doctors and rescue workers from multiple government organizations have their own dedicated communication system, the systems are not interoperable.Keywords: crisis management, disaster mitigation, messing, MGRS, military grid reference system, satellite communication system
Procedia PDF Downloads 23613782 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area
Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim
Abstract:
In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.Keywords: data estimation, link data, machine learning, road network
Procedia PDF Downloads 51013781 Corporate Governance in Network Marketing Organizations: The Role of Ethics and CSR
Authors: Venugopal Kummamuru
Abstract:
Corporate Governance (CG) is of utmost importance for running a company ethically. It is essential for the growth and success of the corporation. It is intended to increase the accountability of an organization to the larger context of the business environment. The general principles of CG include and are related to Shareholder recognition, Stakeholder interests, and focus on Corporate Social Responsibility (CSR), Clear Board responsibilities, Ethical behavior, and Business transparency. Network Marketing Organizations (NMOs) focus on marketing through direct-sales using people who are associated with the organization but are not their employees. This paper tries to study the importance of Ethics and CSR in an NMO and suggest a basic guideline for CG in NMO(s). This paper could be used as a basis or starting point for conducting an in-depth research to understand the difference in CG practices between NMO(s) and other organizations and define a standard set of guidelines for CG practice.Keywords: corporate governance, corporate responsibility, direct selling, network marketing
Procedia PDF Downloads 31813780 The Vision Baed Parallel Robot Control
Abstract:
In this paper, we describe the control strategy of high speed parallel robot system with EtherCAT network. This work deals the parallel robot system with centralized control on the real-time operating system such as window TwinCAT3. Most control scheme and algorithm is implemented master platform on the PC, the input and output interface is ported on the slave side. The data is transferred by maximum 20usecond with 1000byte. EtherCAT is very high speed and stable industrial network. The control strategy with EtherCAT is very useful and robust on Ethernet network environment. The developed parallel robot is controlled pre-design nonlinear controller for 6G/0.43 cycle time of pick and place motion tracking. The experiment shows the good design and validation of the controller.Keywords: parallel robot control, etherCAT, nonlinear control, parallel robot inverse kinematic
Procedia PDF Downloads 57113779 Symmetric Polymerization with Dynamical Resolution
Authors: Muddser Ghaffar
Abstract:
In material science, synthetic chiral polymers are becoming increasingly significant due to their distinct properties that distinguish them from other polymer materials. One special technique for producing well-defined chiral polymers is asymmetric kinetic resolution polymerization (AKRP), which adds stereo regularity to a polymer chain by the kinetic resolution of a race mate preferentially polymerizing one enantiomer. Apart from making it possible to characterize chiral polymers enantioselective, AKRP can synthesize chiral polymers with high stereo selectivity. This review includes the literature on the use of enzymes, chiral metal complexes, and organ catalysts as AKRP promoters. One enantiomer reacts more quickly than the other in this kind of polymerisation, quickly entering the expanding polymer chain, while the kinetically less reactive enantiomer stays unreactive and is readily separated using straightforward purification techniques. The degree of chiral induction and overall chirality of the chiral polymers that are generated may be assessed using the enantiomeric excess (ee) of the initial monomer, which is frequently determined by chiral HPLC analysis, throughout the polymerisation process.Keywords: stereo regularity, polymers, dynamical, symmetric
Procedia PDF Downloads 1313778 Pattern of Stress Distribution in Different Ligature-Wire-Brackets Systems: A FE and Experimental Analysis
Authors: Afef Dridi, Salah Mezlini
Abstract:
Since experimental devices cannot calculate stress and deformation of complex structures. The Finite Element Method FEM has been widely used in several fields of research. One of these fields is orthodontics. The advantage of using such a method is the use of an accurate and non invasive method that allows us to have a sufficient data about the physiological reactions can happening in soft tissues. Most of researches done in this field were interested in the study of stresses and deformations induced by orthodontic apparatus in soft tissues (alveolar tissues). Only few studies were interested in the distribution of stress and strain in the orthodontic brackets. These studies, although they tried to be as close as possible to real conditions, their models did not reproduce the clinical cases. For this reason, the model generated by our research is the closest one to reality. In this study, a numerical model was developed to explore the stress and strain distribution under the application of real conditions. A comparison between different material properties was also done.Keywords: visco-hyperelasticity, FEM, orthodontic treatment, inverse method
Procedia PDF Downloads 25913777 Design and Analysis of Adaptive Type-I Progressive Hybrid Censoring Plan under Step Stress Partially Accelerated Life Testing Using Competing Risk
Authors: Ariful Islam, Showkat Ahmad Lone
Abstract:
Statistical distributions have long been employed in the assessment of semiconductor devices and product reliability. The power function-distribution is one of the most important distributions in the modern reliability practice and can be frequently preferred over mathematically more complex distributions, such as the Weibull and the lognormal, because of its simplicity. Moreover, it may exhibit a better fit for failure data and provide more appropriate information about reliability and hazard rates in some circumstances. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests for competing risk based on adoptive type-I progressive hybrid censoring criteria. The life data of the units under test is assumed to follow Mukherjee-Islam distribution. The point and interval maximum-likelihood estimations are obtained for distribution parameters and tampering coefficient. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.Keywords: adoptive progressive hybrid censoring, competing risk, mukherjee-islam distribution, partially accelerated life testing, simulation study
Procedia PDF Downloads 34713776 Germplasm Collections and Morphological Studies of Andropogongayanus-Andropogon tectorum Complex in Southwestern Nigeria
Authors: Ojo F. M., Nwekeocha C. C., Faluyi J. O.
Abstract:
Morphological studies were carried out on Andropogongayanus-Andropogontectorum complex collected in Southwestern Nigeria to provide full characterizationof the two species of Andropogon; elucidating their population dynamics. Morphological data from selected accessions of A. gayanus and A. tectorum from different parts of Southwestern Nigeria were collected and characterized using an adaptation of the Descriptors for Wild and Cultivated Rice (Oryza spp). Preliminary morphological descriptions were carried out at the points of collection. Garden populations were raised from the vegetative parts of some accessions, and hybrids were maintained in Botanical Garden of the Obafemi Awolowo University, Ile- Ife. The data obtained were subjected to inferential tests and Duncan’s multiple range test. This study has revealed distribution pattern of the two species in the area of study, which suggests a south-ward migration of Andropogongayanus from the northern vegetational zones of Nigeria to the southern ecological zones. The migration of A. gayanus around Igbeti with occasional occurrence of A. tectorum along the roadsides without any distinct phenotypic hybrid and Budo-Ode in Oyo State has been established as the southern limit of the spread of A. gayanus, the migration of A. gayanus to the South is not an invasion but a slow process. A. gayanus was not encountered in Osun, Ondo, Ekiti, and Ogun States. Andropogongayanus and Andropogon tectorum not only emerge from the rootstocks rapidly but can also produce independent propagules by rooting at some nodes. The plants can spread by means of these propagules even if it does not produce sexual or apomictic seeds. This potential for vegetative propagation, in addition to the perennial habit, confer considerable advantage for colonization by the Andropogongayanus-AndropogontectorumComplex.Keywords: accessions, distribution, migration, propagation
Procedia PDF Downloads 11613775 A Study on the Relationship Between Adult Videogaming and Wellbeing, Health, and Labor Supply
Authors: William Marquis, Fang Dong
Abstract:
There has been a growing concern in recent years over the economic and social effects of adult video gaming. It has been estimated that the number of people who played video games during the COVID-19 pandemic is close to three billion, and there is evidence that this form of entertainment is here to stay. Many people are concerned that this growing use of time could crowd out time that could be spent on alternative forms of entertainment with family, friends, sports, and other social activities that build community. For example, recent studies of children suggest that playing videogames crowds out time that could be spent on homework, watching TV, or in other social activities. Similar studies of adults have shown that video gaming is negatively associated with earnings, time spent at work, and socializing with others. The primary objective of this paper is to examine how time adults spend on video gaming could displace time they could spend working and on activities that enhance their health and well-being. We use data from the American Time Use Survey (ATUS), maintained by the Bureau of Labor Statistics, to analyze the effects of time-use decisions on three measures of well-being. We pool the ATUS Well-being Module for multiple years, 2010, 2012, 2013, and 2021, along with the ATUS Activity and Who files for these years. This pooled data set provides three broad measures of well-being, e.g., health, life satisfaction, and emotional well-being. Seven variants of each are used as a dependent variable in different multivariate regressions. We add to the existing literature in the following ways. First, we investigate whether the time adults spend in video gaming crowds out time spent working or in social activities that promote health and life satisfaction. Second, we investigate the relationship between adult gaming and their emotional well-being, also known as negative or positive affect, a factor that is related to depression, health, and labor market productivity. The results of this study suggest that the time adult gamers spend on video gaming has no effect on their supply of labor, a negligible effect on their time spent socializing and studying, and mixed effects on their emotional well-being, such as increasing feelings of pain and reducing feelings of happiness and stress.Keywords: online gaming, health, social capital, emotional wellbeing
Procedia PDF Downloads 4513774 Mathematical Model for Progressive Phase Distribution of Ku-band Reflectarray Antennas
Authors: M. Y. Ismail, M. Inam, A. F. M. Zain, N. Misran
Abstract:
Progressive phase distribution is an important consideration in reflect array antenna design which is required to form a planar wave in front of the reflect array aperture. This paper presents a detailed mathematical model in order to determine the required reflection phase values from individual element of a reflect array designed in Ku-band frequency range. The proposed technique of obtaining reflection phase can be applied for any geometrical design of elements and is independent of number of array elements. Moreover the model also deals with the solution of reflect array antenna design with both centre and off-set feed configurations. The theoretical modeling has also been implemented for reflect arrays constructed on 0.508 mm thickness of different dielectric substrates. The results show an increase in the slope of the phase curve from 4.61°/mm to 22.35°/mm by varying the material properties.Keywords: mathematical modeling, progressive phase distribution, reflect array antenna, reflection phase
Procedia PDF Downloads 38313773 Transforming Water-Energy-Gas Industry through Smart Metering and Blockchain Technology
Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang
Abstract:
Advanced metering technologies coupled with informatics creates an opportunity to form digital multi-utility service providers. These providers will be able to concurrently collect a customers’ medium-high resolution water, electricity and gas demand data and provide user-friendly platforms to feed this information back to customers and supply/distribution utility organisations. With the emergence of blockchain technology, a new research area has been explored which helps bring this multi-utility service provider concept to a much higher level. This study aims at introducing a breakthrough system architecture where smart metering technology in water, energy, and gas (WEG) are combined with blockchain technology to provide customer a novel real-time consumption report and decentralized resource trading platform. A pilot study on 4 properties in Australia has been undertaken to demonstrate this system, where benefits for customers and utilities are undeniable.Keywords: blockchain, digital multi-utility, end use, demand forecasting
Procedia PDF Downloads 17113772 The Territorial Expression of Religious Identity: A Case Study of Catholic Communities
Authors: Margarida Franca
Abstract:
The influence of the ‘cultural turn’ movement and the consequent deconstruction of scientific thought allowed geography and other social sciences to open or deepen their studies based on the analysis of multiple identities, on singularities, on what is particular or what marks the difference between individuals. In the context of postmodernity, the geography of religion has gained a favorable scientific, thematic and methodological focus for the qualitative and subjective interpretation of various religious identities, sacred places, territories of belonging, religious communities, among others. In the context of ‘late modernity’ or ‘net modernity’, sacred places and the definition of a network of sacred territories allow believers to attain the ‘ontological security’. The integration on a religious group or a local community, particularly a religious community, allows human beings to achieve a sense of belonging, familiarity or solidarity and to overcome, in part, some of the risks or fears that society has discovered. The importance of sacred places comes not only from their inherent characteristics (eg transcendent, mystical and mythical, respect, intimacy and abnegation), but also from the possibility of adding and integrating members of the same community, creating bonds of belonging, reference and individual and collective memory. In addition, the formation of different networks of sacred places, with multiple scales and dimensions, allows the human being to identify and structure his times and spaces of daily life. Thus, each individual, due to his unique identity and life and religious paths, creates his own network of sacred places. The territorial expression of religious identity allows to draw a variable and unique geography of sacred places. Through the case study of the practicing Catholic population in the diocese of Coimbra (Portugal), the aim is to study the territorial expression of the religious identity of the different local communities of this city. Through a survey of six parishes in the city, we sought to identify which factors, qualitative or not, define the different territorial expressions on a local, national and international scale, with emphasis on the socioeconomic profile of the population, the religious path of the believers, the religious group they belong to and the external interferences, religious or not. The analysis of these factors allows us to categorize the communities of the city of Coimbra and, for each typology or category, to identify the specific elements that unite the believers to the sacred places, the networks and religious territories that structure the religious practice and experience and also the non-representational landscape that unifies and creates memory. We conclude that an apparently homogeneous group, the Catholic community, incorporates multitemporalities and multiterritorialities that are necessary to understand the history and geography of a whole country and of the Catholic communities in particular.Keywords: geography of religion, sacred places, territoriality, Catholic Church
Procedia PDF Downloads 32313771 Bayesian Variable Selection in Quantile Regression with Application to the Health and Retirement Study
Authors: Priya Kedia, Kiranmoy Das
Abstract:
There is a rich literature on variable selection in regression setting. However, most of these methods assume normality for the response variable under consideration for implementing the methodology and establishing the statistical properties of the estimates. In many real applications, the distribution for the response variable may be non-Gaussian, and one might be interested in finding the best subset of covariates at some predetermined quantile level. We develop dynamic Bayesian approach for variable selection in quantile regression framework. We use a zero-inflated mixture prior for the regression coefficients, and consider the asymmetric Laplace distribution for the response variable for modeling different quantiles of its distribution. An efficient Gibbs sampler is developed for our computation. Our proposed approach is assessed through extensive simulation studies, and real application of the proposed approach is also illustrated. We consider the data from health and retirement study conducted by the University of Michigan, and select the important predictors when the outcome of interest is out-of-pocket medical cost, which is considered as an important measure for financial risk. Our analysis finds important predictors at different quantiles of the outcome, and thus enhance our understanding on the effects of different predictors on the out-of-pocket medical cost.Keywords: variable selection, quantile regression, Gibbs sampler, asymmetric Laplace distribution
Procedia PDF Downloads 15613770 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.Keywords: autism disease, neural network, CPU, GPU, transfer learning
Procedia PDF Downloads 11813769 Story-Wise Distribution of Slit Dampers for Seismic Retrofit of RC Shear Wall Structures
Authors: Minjung Kim, Hyunkoo Kang, Jinkoo Kim
Abstract:
In this study, a seismic retrofit scheme for a reinforced concrete shear wall structure using steel slit dampers was presented. The stiffness and the strength of the slit damper used in the retrofit were verified by cyclic loading test. A genetic algorithm was applied to find out the optimum location of the slit dampers. The effects of the slit dampers on the seismic retrofit of the model were compared with those of jacketing shear walls. The seismic performance of the model structure with optimally positioned slit dampers was evaluated by nonlinear static and dynamic analyses. Based on the analysis results, the simple procedure for determining required damping ratio using capacity spectrum method along with the damper distribution pattern proportional to the inter-story drifts was validated. The analysis results showed that the seismic retrofit of the model structure using the slit dampers was more economical than the jacketing of the shear walls and that the capacity spectrum method combined with the simple damper distribution pattern led to satisfactory damper distribution pattern compatible with the solution obtained from the genetic algorithm.Keywords: seismic retrofit, slit dampers, genetic algorithm, jacketing, capacity spectrum method
Procedia PDF Downloads 27513768 A Proposal for a Combustion Model Considering the Lewis Number and Its Evaluation
Authors: Fujio Akagi, Hiroaki Ito, Shin-Ichi Inage
Abstract:
The aim of this study is to develop a combustion model that can be applied uniformly to laminar and turbulent premixed flames while considering the effect of the Lewis number (Le). The model considers the effect of Le on the transport equations of the reaction progress, which varies with the chemical species and temperature. The distribution of the reaction progress variable is approximated by a hyperbolic tangent function, while the other distribution of the reaction progress variable is estimated using the approximated distribution and transport equation of the reaction progress variable considering the Le. The validity of the model was evaluated under the conditions of propane with Le > 1 and methane with Le = 1 (equivalence ratios of 0.5 and 1). The estimated results were found to be in good agreement with those of previous studies under all conditions. A method of introducing a turbulence model into this model is also described. It was confirmed that conventional turbulence models can be expressed as an approximate theory of this model in a unified manner.Keywords: combustion model, laminar flame, Lewis number, turbulent flame
Procedia PDF Downloads 12313767 A Review of the Future of Sustainable Urban Water Supply in South Africa
Authors: Jeremiah Mutamba
Abstract:
Water is a critical resource for sustainable economic growth and social development. It enables societies to thrive and influences every urban center’s future. Thus, water must always be available in the right quantity and quality. However, in South Africa - a known physically water scarce nation – the future of sustainable urban supply of water may be in jeopardy. The country facing a water crisis influenced by insufficient infrastructure investment and maintenance, recurrent droughts and climate variation, human induced water quality deterioration, as well as growing lack of technical capacity in water institutions, particularly local municipalities. Aside of the eight metropolitan municipalities for the country, most municipalities struggle with provision of reliable water to their citizens. These municipalities contend with having now capable engineers, aging infrastructure with concomitant high system water losses (of 30% and upwards), coupled with growing water demand from expanding industries and population growth. Also, a significant portion (44%) of national water treatment plants are in critically poor condition, requiring urgent rehabilitation. Municipalities also struggle to raise funding to instate projects. All these factors militate against sustainable urban water supply in the country. Urgent mitigation measures are required. This paper seeks to review the extent of the current water supply challenges in South Africa’s urban centers, including searching for practical and cost-effective measures. The study followed a qualitative approach, combining desktop literature research, interviews with key sector stakeholders, and a workshop. Phenomenological data analysis technique was used to study and examine interview data and secondary desktop data. Preliminary findings established the building of technical or engineering capacity, reversal of the high physical water losses, rehabilitation of poor condition and dysfunctional water treatment works, diversification of water resource mix, and water scarcity awareness programs as possible practical solutions. Other proposed solutions include the use of performance-based or value-based contracting to fund initiatives to reduce high system water losses. Out-come based arrangements for revenue increasing water loss reduction projects were considered more practical in funding-stressed local municipalities. If proactively implemented in an integrated manner, these proposed solutions are likely to ensure sustainable urban water supply in South African urban centers in the future.Keywords: sustainable, water scarcity, water supply, South Africa
Procedia PDF Downloads 12313766 Maximaxing the Usage of Solar Energy in an Area of Low Peak Sunlight Hours
Authors: Ohabuiro John Uwabunkeonye
Abstract:
Source of green energy is becoming a concern in developing countries where most energy source in use emits high level of carbon (IV) oxide which contributes to global warming. More so, even with the generation of energy from fossil fuel, the electricity supply is still very inadequate. Therefore, this paper examines different ways of designing and installing photovoltaic (PV) system in terms of optimal sizing of PV array and battery storage in an area of very low peak sunlight hours (PSH) and inadequate supply of electricity from utility companies. Different sample of Peak sunlight hour for selected areas in Nigeria are considered and the lowest of it all is taken. Some means of ensuring that the available solar energy is harnessed properly and converted into electrical energy are discussed for usage in such areas as mentioned above.Keywords: green energy, fossil fuel, peak sunlight hour, photovoltaic
Procedia PDF Downloads 64213765 Septin 11, Cytoskeletal Protein Involved in the Regulation of Lipid Metabolism in Adipocytes
Authors: Natalia Moreno-Castellanos, Amaia Rodriguez, Gema Frühbeck
Abstract:
Introduction: In adipocytes, the cytoskeleton undergoes important expression and distribution in adipocytes rearrangements during adipogenesis and in obesity. Indeed, a role for these proteins in the regulation of adipocyte differentiation and response to insulin has been demonstrated. Recently, septins have been considered as new components of the cytoskeletal network that interact with other cytoskeletal elements (actin and tubulin) profoundly modifying their dynamics. However, these proteins have not been characterized as yet in adipose tissue. In this work, were examined the cellular, molecular and functional features of a member of this family, septin 11 (SEPT11), in adipocytes and evaluated the impact of obesity on the expression of this protein in human adipose tissue. Methods: Adipose gene and protein expression levels of SEPT11 were analysed in human samples. SEPT11 distribution was evaluated by immunocytochemistry, electronic microscopy, and subcellular fractionation techniques. GST-pull down, immunoprecipitation and a Yeast-Two Hybrid (Y2H) screening were used to identify the SEPT11 interactome. Gene silencing was employed to assess the role of SEPT11 in the regulation of insulin signaling and lipid metabolism in adipocytes. Results: SEPT11 is expressed in human adipocytes, and its levels increased in both omental and subcutaneous adipose tissue in obesity, with SEPT11 mRNA content positively correlating with parameters of insulin resistance in subcutaneous fat. In non-stimulated adipocytes, SEPT11 immunoreactivity showed a ring-like distribution at the cell surface and associated to caveolae. Biochemical analyses showed that SEPT11 interacted with the main component of caveolae, caveolin-1 (CAV1) as well as with the fatty acid-binding protein, FABP5. Notably, the three proteins redistributed and co-localized at the surface of lipid droplets upon exposure of adipocytes to oleate. In this line, SEPT11 silencing in 3T3-L1 adipocytes impaired insulin signaling and decreased insulin-induced lipogenesis. Conclusions: Those findings demonstrate that SEPT11 is a novel component of the adipocyte cytoskeleton that plays an important role in the regulation of lipid traffic, metabolism and can thus represent a potential biomarker of insulin resistance in obesity in adipocytes through its interaction with both CAV1 and FABP5.Keywords: caveolae, lipid metabolism, obesity, septins
Procedia PDF Downloads 21413764 John Cunningham Virus Interaction with Multiple Sclerosis Disease Progression
Authors: Sina Mahdavi
Abstract:
Background and Objective: Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the central nervous system (CNS) that affects the myelination process in the CNS. Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially the John Cunningham virus (JCV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on JCV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis", " John Cunningham virus ", and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2019 and 2022 were searched, and 12 articles were chosen, studied, and analyzed. Results: MS patients are candidates for natalizumab therapy, which inhibits lymphocyte migration and increases the risk of progressive multifocal leukoencephalopathy (PML), a rare lytic infection of glial cells caused by JCV. Oligodendrocytes may be the target of JCV infection in the central nervous system (CNS). Conclusion: There is a high expression of JCV during the natalizumab treatment period for MS patients, suggesting that the virus may play a role in the development of MS by inducing an inflammatory state. Therefore, it is necessary to evaluate anti-JCV antibody serum as an important risk factor for the development of PML before deciding on the treatment course for these patients.Keywords: multiple sclerosis, John Cunningham virus, central nervous system, autoimmunity
Procedia PDF Downloads 13613763 The First Trocar Placement After Multiple Open Abdominal Surgeries in Children: A Preliminary Report
Authors: Öykü Barutçu, Mehmet Özgür Kuzdan
Abstract:
Aim: Laparoscopy is very risky in patients undergoing, multiple open abdominal surgeries. The aim of this study, to define a safe method for the first trocar placement in children with a history of multiple open abdominal surgeries. Methods: Children who underwent laparoscopic surgery between March 2019 and April 2020 with a history of three or more open abdominal surgeries were included in the retrospective study. Patient information was obtained from the hospital automation system. Ultrasonography was used to determine the location of adhesions preoperatively. The first trocar was placed according to ultrasonography findings, using the Hasson technique to create an air pocket with finger dissection. The patient's preoperative, perioperative, and postoperative findings are reported. Results: A total of 10 patients were included in the study. The median number of operations before laparoscopy was three. The most common site for the first trocar entry was Palmer's point (40%). No mortality or morbidity was observed amongst any patients. The average number of adhesions detected by USG and observed on laparoscopy were significantly positively correlated. Conclusion: In children with a history of multiple abdominal surgeries, abdominal wall ultrasonography for visualization of adhesions and finger dissection for the formation of an air pocket appears to be a safe method for the first trocar insertion.Keywords: abdominal wall, child, laparoscopy, ultrasonography
Procedia PDF Downloads 11113762 Analysis of Co2 Emission from Thailand's Thermal Power Sector by Divisia Decomposition Approach
Authors: Isara Muangthai, Lin Sue Jane
Abstract:
Electricity is vital to every country’s economy in the world. For Thailand, the electricity generation sector plays an important role in the economic system, and it is the largest source of CO2 emissions. The aim of this paper is to use the decomposition analysis to investigate the key factors contributing to the changes of CO2 emissions from the electricity sector. The decomposition analysis has been widely used to identify and assess the contributors to the changes in emission trends. Our study adopted the Divisia index decomposition to identify the key factors affecting the evolution of CO2 emissions from Thailand’s thermal power sector during 2000-2011. The change of CO2 emissions were decomposed into five factors, including: Emission coefficient, heat rate, fuel intensity, electricity intensity, and economic growth. Results have shown that CO2 emission in Thailand’s thermal power sector increased 29,173 thousand tons during 2000-2011. Economic growth was found to be the primary factor for increasing CO2 emissions, while the electricity intensity played a dominant role in decreasing CO2 emissions. The increasing effect of economic growth was up to 55,924 million tons of CO2 emissions because the growth and development of the economy relied on a large electricity supply. On the other hand, the shifting of fuel structure towards a lower-carbon content resulted in CO2 emission decline. Since the CO2 emissions released from Thailand’s electricity generation are rapidly increasing, the Thailand government will be required to implement a CO2 reduction plan in the future. In order to cope with the impact of CO2 emissions related to the power sector and to achieve sustainable development, this study suggests that Thailand’s government should focus on restructuring the fuel supply in power generation towards low carbon fuels by promoting the use of renewable energy for electricity, improving the efficiency of electricity use by reducing electricity transmission and the distribution of line losses, implementing energy conservation strategies by enhancing the purchase of energy-saving products, substituting the new power plant technology in the old power plants, promoting a shift of economic structure towards less energy-intensive services and orienting Thailand’s power industry towards low carbon electricity generation.Keywords: co2 emission, decomposition analysis, electricity generation, energy consumption
Procedia PDF Downloads 482