Search results for: high density plasma deposition
20746 Electrical Characteristics of SiON/GaAs MOS Capacitor with Various Passivations
Authors: Ming-Kwei Lee, Chih-Feng Yen
Abstract:
The electrical characteristics of liquid phase deposited silicon oxynitride film on ammonium sulfide treated p-type (100) gallium arsenide substrate were investigated. Hydrofluosilicic acid, ammonia and boric acid aqueous solutions were used as precursors. The electrical characteristics of silicon oxynitride film are much improved on gallium arsenide substrate with ammonium sulfide treatment. With post-metallization annealing, hydrogen ions can further passivate defects in SiON/GaAs film and interface. The leakage currents can reach 7.1 × 10-8 and 1.8 × 10-7 at ± 2 V. The dielectric constant and effective oxide charges are 5.6 and -5.3 × 1010 C/cm2, respectively. The hysteresis offset of hysteresis loop is merely 0.09 V.Keywords: liquid phase deposition, SiON, GaAs, PMA, (NH4)2S
Procedia PDF Downloads 64620745 Sorption of Cesium Ions from Aqueous Solutions by Magnetic Multi-Walled Carbon Nanotubes Functionalized with Zinc Hexacyanoferrate
Authors: H. H. Lee, D. Y. Kim, S. W. Lee, J. H. Kim, J. H. Kim, W. Z. Oh, S. J. Choi
Abstract:
In recent years, carbon nanotubes (CNTs) have been widely employed as a sorbent for the removal of various metal ions from water due to their unique properties such as large surface area, light mass density, high porous and hollow structure, and strong interaction between the pollutant molecules and CNTs. To apply CNTs to the sorption of Cs+ from aqueous solutions, they must first be functionalized to increase their hydrophilicity and therefore, enhance their applicability to the sorption of polar and relatively low-molecular-weight species. The objective of this study is to investigate the preparation of magnetically separable multi-walled carbon nanotubes (MWCNTs-m) as a sorbents for the removal of Cs+ from aqueous solutions. The MWCNTs-m was prepared using pristine MWCNTs and iron precursor Fe(acac)3. For the selective removal of Cs+ from aqueous solutions, the MWCNTs-m was functionalized with zinc hexacyanoferrate (MWCNTs-m-ZnFC). The physicochemical properties of the synthesized sorbents were characterized with various techniques, including transmission electron microscopy (TEM), specific surface area analysis, Fourier transform-infrared (FT-IR) spectroscopy, and vibrating-sample magnetometer. The MWCNTs-m-ZnFC was found to be easily separated from aqueous solutions by using magnetic field. The MWCNTs-m-ZnFC exhibited a high capacity for sorbing Cs+ from aqueous solutions because of their strong affinity for Cs+ and specific surface area. The sorption ability of the MWCNTs-m-ZnFC for Cs+ was maintained even in the presence of co-existing ions (Na+). Considering these results, the CNT-m-ZnFCs have great potential for use as an effective sorbent for the selective removal of radioactive Cs+ ions from aqueous solutions.Keywords: multi-walled carbon nanotubes, magnetic materials, cesium, zinc hexacyanoferrate, sorption
Procedia PDF Downloads 32620744 Comparison of Student Grades in Dual-Enrollment Courses Taken Inside and Outside of Texas High Schools
Authors: Cynthia A. Gallardo, Kelly S. Hall, Kristopher Garza, Linda Challoo, Mais Nijim
Abstract:
Dual-enrollment programs have become more prevalent in college and high school settings. Also known as early college programs, dual-enrollment programs help students acquire a head start in earning college credit for post-secondary studies. The number and percentage of high school students who take college courses while in high school is growing. However, little is known about how dual-enrolled students fare. The classroom environment is important to learning. This study compares dually enrolled high school students who take courses that yield college credit either within their high school or at some other location. Mann-Whitney U was the statistical test used. Mean proportions were compared for each of the five standard letter grades earned across the state of Texas. Results indicated that students earn similar passing A, B, and C grades when they take dual-enrollment courses at their high school location but are more likely to fail if they take dual-enrollment courses at non-high school locations. Implications of results are that student success rate of dual-enrollment college courses may have a significant difference between the locations and student performance.Keywords: educational leadership, dual-enrollment, student performance, college
Procedia PDF Downloads 10120743 Excitation and Active Control of Charge Density Waves at Degenerately Doped PN++ Junctions
Authors: R. K. Vinnakota, D. A. Genov, Z. Dong, A. F. Briggs, L. Nordin, S. R. Bank, D. Wasserman
Abstract:
We present a semiconductor-based plasmonic electro-optic modulator based on excitation and active control of surface plasmon polaritons (SPPs) at the interface of degenerately doped In₀.₅₃Ga₀.₄₇As pn++ junctions. Set of devices, which we refer to as a surface plasmon polariton diode (SPPD), are fabricated and characterized electrically and optically. Optical characterization predicts far-field voltage-aided reflectivity modulation for mid-IR wavelengths. Numerical device characterizations using a self-consistent electro-optic multiphysics model have been performed to confirm the experimental findings were predicting data rates up to 1Gbits/s and 3dB bandwidth as high as 2GHz. Our findings also show that decreasing the device dimensions can potentially lead to data rates of more than 50Gbits/s, thus potentially providing a pathway toward fast all-semiconductor-based plasmotronic devices.Keywords: plasmonics, optoelectronics, PN junctions, surface plasmon polaritons
Procedia PDF Downloads 11320742 Clean Sky 2 – Project PALACE: Aeration’s Experimental Sound Velocity Investigations for High-Speed Gerotor Simulations
Authors: Benoît Mary, Thibaut Gras, Gaëtan Fagot, Yvon Goth, Ilyes Mnassri-Cetim
Abstract:
A Gerotor pump is composed of an external and internal gear with conjugate cycloidal profiles. From suction to delivery ports, the fluid is transported inside cavities formed by teeth and driven by the shaft. From a geometric and conceptional side it is worth to note that the internal gear has one tooth less than the external one. Simcenter Amesim v.16 includes a new submodel for modelling the hydraulic Gerotor pumps behavior (THCDGP0). This submodel considers leakages between teeth tips using Poiseuille and Couette flows contributions. From the 3D CAD model of the studied pump, the “CAD import” tool takes out the main geometrical characteristics and the submodel THCDGP0 computes the evolution of each cavity volume and their relative position according to the suction or delivery areas. This module, based on international publications, presents robust results up to 6 000 rpm for pressure greater than atmospheric level. For higher rotational speeds or lower pressures, oil aeration and cavitation effects are significant and highly drop the pump’s performance. The liquid used in hydraulic systems always contains some gas, which is dissolved in the liquid at high pressure and tends to be released in a free form (i.e. undissolved as bubbles) when pressure drops. In addition to gas release and dissolution, the liquid itself may vaporize due to cavitation. To model the relative density of the equivalent fluid, modified Henry’s law is applied in Simcenter Amesim v.16 to predict the fraction of undissolved gas or vapor. Three parietal pressure sensors have been set up upstream from the pump to estimate the sound speed in the oil. Analytical models have been compared with the experimental sound speed to estimate the occluded gas content. Simcenter Amesim v.16 model was supplied by these previous analyses marks which have successfully improved the simulations results up to 14 000 rpm. This work provides a sound foundation for designing the next Gerotor pump generation reaching high rotation range more than 25 000 rpm. This improved module results will be compared to tests on this new pump demonstrator.Keywords: gerotor pump, high speed, numerical simulations, aeronautic, aeration, cavitation
Procedia PDF Downloads 13620741 The Preparation of High Surface Area Ni/MgAl2O4 Catalysts for Syngas Methanation
Authors: Jingyu Zhou, Hongfang Ma, Haitao Zhang, Weiyong Ying
Abstract:
High surface area MgAl2O4 supported Nickel catalysts with PVA loadings varying from 0% to 15% were prepared by precipitation and impregnation method. The catalysts were characterized by low temperature N2 adsorption/desorption, X-ray diffraction and H2 temperature programmed reduction. Compared with Ni/γ-Al2O3 catalyst, Ni/MgAl2O4 catalysts exhibited higher activity and selectivity in high temperature. Among the catalysts, Ni/MgAl2O4-5P with 5 wt% PVA showed the best performance, and achieved 95% CO conversion and 96% CH4 selectivity at 600°C, 2.0 MPa, and a WHSV of 12,000 mL·g⁻¹.h⁻¹. It also maintained good stability in 50h life test.Keywords: methanation, MgAl2O4 support, PVA, high surface area
Procedia PDF Downloads 33820740 Invalidation of the Start of Lunar Calendars Based on Sighting of Crescent: A Survey of 101 Years of Data between 1938 and 2038
Authors: Rafik Ouared
Abstract:
The purpose of this paper is to invalidate decisions made by the Islamic conference led at Istanbul in 2016, which had defined two basic criteria to determine the start of the lunar month: (1)they are all based on the sighting of the crescent, be it observed or computed with modern methods, and (2) they've strongly recommended the adoption of the principle of 'unification of sighting', by which any occurrence of sighting anywhere would be applicable everywhere. To demonstrate the invalidation of those statements, a survey of 101 years of data, from 1938 to 2038, have been analyzed to compare the probability density function (PDF) of time difference between different types of fajr and new moon. Two groups of fajr have been considered: the 'natural fajr', which is the very first fajr following new moon, and the 'biased fajr', which is defined by human being inclusively of all chosen definitions. The parametric and non-parametric statistical comparisons between the different groups have shown the all the biased PDFs are significantly different from the unbiased (natural) PDF with probability value (p-value) less than 0.001. The significance level was fixed to 0.05. Conclusion: the on-going reference to sighting of crescent is inducing an significant bias in defining lunar calendar. Therefore, 'natural' calendar would be more applicable requiring a more contextualized revision of issue in fiqh.Keywords: biased fajr, lunar calendar, natural fajr, probability density function, sighting of crescent, time difference between fajr and new moon
Procedia PDF Downloads 21420739 Numerical Studying the Real Analysis of the Seismic Response of the Soil
Authors: Noureddine Litim
Abstract:
This work is to theoretical and numerical studying the real analysis of the seismic response of the soil with an Elasto-plastic behavior. To perform this analysis, we used different core drilling performed at the tunnel T4 in El Horace section of the highway east-west. The two-dimensional model (2d) was established by the code of finite element plaxis to estimate the displacement amplification and accelerations caused by the seismic wave in the different core drilling and compared with the factor of acceleration given by the RPA (2003) in the area studying. Estimate the displacement amplification and accelerations caused by the seismic wave.Keywords: seismic response, deposition of soil, plaxis, elasto-plastic
Procedia PDF Downloads 10820738 Experimental Study of Vibration Isolators Made of Expanded Cork Agglomerate
Authors: S. Dias, A. Tadeu, J. Antonio, F. Pedro, C. Serra
Abstract:
The goal of the present work is to experimentally evaluate the feasibility of using vibration isolators made of expanded cork agglomerate. Even though this material, also known as insulation cork board (ICB), has mainly been studied for thermal and acoustic insulation purposes, it has strong potential for use in vibration isolation. However, the adequate design of expanded cork blocks vibration isolators will depend on several factors, such as excitation frequency, static load conditions and intrinsic dynamic behavior of the material. In this study, transmissibility tests for different static and dynamic loading conditions were performed in order to characterize the material. Since the material’s physical properties can influence the vibro-isolation performance of the blocks (in terms of density and thickness), this study covered four mass density ranges and four block thicknesses. A total of 72 expanded cork agglomerate specimens were tested. The test apparatus comprises a vibration exciter connected to an excitation mass that holds the test specimen. The test specimens under characterization were loaded successively with steel plates in order to obtain results for different masses. An accelerometer was placed at the top of these masses and at the base of the excitation mass. The test was performed for a defined frequency range, and the amplitude registered by the accelerometers was recorded in time domain. For each of the signals (signal 1- vibration of the excitation mass, signal 2- vibration of the loading mass) a fast Fourier transform (FFT) was applied in order to obtain the frequency domain response. For each of the frequency domain signals, the maximum amplitude reached was registered. The ratio between the amplitude (acceleration) of signal 2 and the amplitude of signal 1, allows the calculation of the transmissibility for each frequency. Repeating this procedure allowed us to plot a transmissibility curve for a certain frequency range. A number of transmissibility experiments were performed to assess the influence of changing the mass density and thickness of the expanded cork blocks and the experimental conditions (static load and frequency of excitation). The experimental transmissibility tests performed in this study showed that expanded cork agglomerate blocks are a good option for mitigating vibrations. It was concluded that specimens with lower mass density and larger thickness lead to better performance, with higher vibration isolation and a larger range of isolated frequencies. In conclusion, the study of the performance of expanded cork agglomerate blocks presented herein will allow for a more efficient application of expanded cork vibration isolators. This is particularly relevant since this material is a more sustainable alternative to other commonly used non-environmentally friendly products, such as rubber.Keywords: expanded cork agglomerate, insulation cork board, transmissibility tests, sustainable materials, vibration isolators
Procedia PDF Downloads 33720737 Roadway Infrastructure and Bus Safety
Authors: Richard J. Hanowski, Rebecca L. Hammond
Abstract:
Very few studies have been conducted to investigate safety issues associated with motorcoach/bus operations. The current study investigates the impact that roadway infrastructure, including locality, roadway grade, traffic flow and traffic density, have on bus safety. A naturalistic driving study was conducted in the U.S.A that involved 43 motorcoaches. Two fleets participated in the study and over 600,000 miles of naturalistic driving data were collected. Sixty-five bus drivers participated in this study; 48 male and 17 female. The average age of the drivers was 49 years. A sophisticated data acquisition system (DAS) was installed on each of the 43 motorcoaches and a variety of kinematic and video data were continuously recorded. The data were analyzed by identifying safety critical events (SCEs), which included crashes, near-crashes, crash-relevant conflicts, and unintentional lane deviations. Additionally, baseline (normative driving) segments were also identified and analyzed for comparison to the SCEs. This presentation highlights the need for bus safety research and the methods used in this data collection effort. With respect to elements of roadway infrastructure, this study highlights the methods used to assess locality, roadway grade, traffic flow, and traffic density. Locality was determined by manual review of the recorded video for each event and baseline and was characterized in terms of open country, residential, business/industrial, church, playground, school, urban, airport, interstate, and other. Roadway grade was similarly determined through video review and characterized in terms of level, grade up, grade down, hillcrest, and dip. The video was also used to make a determination of the traffic flow and traffic density at the time of the event or baseline segment. For traffic flow, video was used to assess which of the following best characterized the event or baseline: not divided (2-way traffic), not divided (center 2-way left turn lane), divided (median or barrier), one-way traffic, or no lanes. In terms of traffic density, level-of-service categories were used: A1, A2, B, C, D, E, and F. Highlighted in this abstract are only a few of the many roadway elements that were coded in this study. Other elements included lighting levels, weather conditions, roadway surface conditions, relation to junction, and roadway alignment. Note that a key component of this study was to assess the impact that driver distraction and fatigue have on bus operations. In this regard, once the roadway elements had been coded, the primary research questions that were addressed were (i) “What environmental condition are associated with driver choice of engagement in tasks?”, and (ii) “what are the odds of being in a SCE while engaging in tasks while encountering these conditions?”. The study may be of interest to researchers and traffic engineers that are interested in the relationship between roadway infrastructure elements and safety events in motorcoach bus operations.Keywords: bus safety, motorcoach, naturalistic driving, roadway infrastructure
Procedia PDF Downloads 18220736 Alterations of Molecular Characteristics of Polyethylene under the Influence of External Effects
Authors: Vigen Barkhudaryan
Abstract:
The influence of external effects (γ-, UV–radiations, high temperature) in presence of air oxygen on structural transformations of low-density polyethylene (LDPE) have been investigated dependent on the polymers’ thickness, the intensity and the dose of external actions. The methods of viscosimetry, light scattering, turbidimetry and gelation measuring were used for this purpose. The comparison of influence of external effects on LDPE shows, that the destruction and cross-linking processes of macromolecules proceed simultaneously with all kinds of external effects. A remarkable growth of average molecular mass of LDPE along with the irradiation doses and heat treatment exposure growth was established. It was linear for the mass average molecular mass and at the initial doses is mainly the result of the increase of the macromolecular branching. As a result, the macromolecular hydrodynamic volumes have been changed, and therefore the dependence of viscosity average molecular mass on the doses was going through the minimum at initial doses. A significant change of molecular mass, sizes and shape of macromolecules of LDPE occurs under the influence of external effects. The influence is limited only by diffusion of oxygen during -irradiation and heat treatment. At UV–irradiation the influence is limited both by diffusion of oxygen and penetration of radiation. Consequently, the molecular transformations are deeper and evident in case of -irradiation, as soon as the polymer is transformed in a whole volume. It was also established, that the mechanism of molecular transformations in polymers from the surface layer distinctly differs from those of the sample deeper layer. A comparison of the results of these investigations allows us to conclude, that the mechanisms of influence of investigated external effects on polyethylene are similar.Keywords: cross-linking, destruction, high temperature, LDPE, γ-radiations, UV-radiations
Procedia PDF Downloads 32020735 Improving Carbon Fiber Structural Battery Performance with Polymer Interface
Authors: Kathleen Moyer, Nora Ait Boucherbil, Murtaza Zohair, Janna Eaves-Rathert, Cary Pint
Abstract:
This study demonstrates the significance of interface engineering in the field of structural energy by being the first case where the performance of the system with the structural battery is greater than the performance of the same system with a battery separate from the system. The benefits of improving the interface in the structural battery were tested by creating carbon fiber composite batteries (and independent graphite electrodes and lithium iron phosphate electrodes) with and without an improved interface. Mechanical data on the structural batteries were collected using tensile tests and electrochemical data was collected using scanning electron microscopy equipment. The full-cell lithium-ion structural batteries had capacity retention of over 80% exceeding 100 cycles with an average energy density of 52 W h kg−1 and a maximum energy density of 58 W h kg−1. Most scientific developments in the field of structural energy have been done with supercapacitors. Most scientific developments with structural batteries have been done where batteries are simply incorporated into the structural element. That method has limited advantages and can create mechanical disadvantages. This study aims to show that a large improvement in structure energy research can be made by improving the interface between the structural device and the battery.Keywords: composite materials, electrochemical performance, mechanical properties, polymer interface, structural batteries
Procedia PDF Downloads 11220734 Thermoelectric Properties of Spark Plasma Sintered Te Doped Cu₃SbSe₄: Promising Thermoelectric Material
Authors: Kriti Tyagi, Bhasker Gahtori
Abstract:
Various groups have attempted on enhancing the thermoelectric figure-of-merit (ZT) of the Cu₃SbSe₄ compound by employing doping process. Efforts are made to study the thermoelectric performance of Cu₃SbSe₄ material doped with Te in different compositions (i. e. Cu₃Sb₁₋ₓTeₓSe₄, x = 0.005, 0.01, 0.015, 0.02). The different doping concentration has been selected to identify the suitable doping to increase the thermoelectric performance. Compared to pristine Cu₃SbSe₄, an enhancement of thermoelectric figure-of-merit was achieved for 0.005 Te doped Cu₃SbSe₄. This improvement can be attributed to the reduction of thermal conductivity for 0.005 Te doped Cu₃SbSe₄.Keywords: figure-of-merit, polycrystalline, thermal conductivity, thermoelectric
Procedia PDF Downloads 24720733 Effect of Upper Face Sheet Material on Flexural Strength of Polyurethane Foam Hybrid Sandwich Material
Authors: M. Atef Gabr, M. H. Abdel Latif, Ramadan El Gamsy
Abstract:
Sandwich panels comprise a thick, light-weight plastic foam such as polyurethane (PU) sandwiched between two relatively thin faces. One or both faces may be flat, lightly profiled or fully profiled. Until recently sandwich panel construction in Egypt has been widely used in cold-storage buildings, cold trucks, prefabricated buildings and insulation in construction. Recently new techniques are used in mass production of Sandwich Materials such as Reaction Injection Molding (RIM) and Vacuum bagging technique. However, in recent times their use has increased significantly due to their widespread structural applications in building systems. Structural sandwich panels generally used in Egypt comprise polyurethane foam core and thinner (0.42 mm) and high strength about 550 MPa (yield strength) flat steel faces bonded together using separate adhesives and By RIM technique. In this paper, we will use a new technique in sandwich panel preparation by using different face sheet materials in combination with polyurethane foam to form sandwich panel structures. Previously, PU Foam core with same thin 2 faces material was used, but in this work, we use different face materials and thicknesses for the upper face sheet such as Galvanized steel sheets (G.S),Aluminum sheets (Al),Fiberglass sheets (F.G) and Aluminum-Rubber composite sheets (Al/R) with polyurethane foam core 10 mm thickness and 45 Kg/m3 Density and Galvanized steel as lower face sheet. Using Aluminum-Rubber composite sheets as face sheet is considered a hybrid composite sandwich panel which is built by Hand-Layup technique by using PU glue as adhesive. This modification increases the benefits of the face sheet that will withstand different working environments with relatively small increase in its weight and will be useful in several applications. In this work, a 3-point bending test is used assistant professor to measure the most important factor in sandwich materials that is strength to weight ratio(STW) for different combinations of sandwich structures and make a comparison to study the effect of changing the face sheet material on the mechanical behavior of PU sandwich material. Also, the density of the different prepared sandwich materials will be measured to obtain the specific bending strength.Keywords: hybrid sandwich panel, mechanical behavior, PU foam, sandwich panel, 3-point bending, flexural strength
Procedia PDF Downloads 31920732 Microwave-Assisted Torrefaction of Teakwood Biomass Residues: The Effect of Power Level and Fluid Flows
Authors: Lukas Kano Mangalla, Raden Rinova Sisworo, Luther Pagiling
Abstract:
Torrefaction is an emerging thermo-chemical treatment process that aims to improve the quality of biomass fuels. This study focused on upgrading the waste teakwood through microwave torrefaction processes and investigating the key operating parameters to improve energy density for the quality of biochar production. The experiments were carried out in a 250 mL reactor placed in a microwave cavity on two different media, inert and non-inert. The microwave was operated at a frequency of 2.45GHz with power level variations of 540W, 720W, and 900W, respectively. During torrefaction processes, the nitrogen gas flows into the reactor at a rate of 0.125 mL/min, and the air flows naturally. The temperature inside the reactor was observed every 0.5 minutes for 20 minutes using a K-Type thermocouple. Changes in the mass and the properties of the torrefied products were analyzed to predict the correlation between calorific value, mass yield, and level power of the microwave. The results showed that with the increase in the operating power of microwave torrefaction, the calorific value and energy density of the product increased significantly, while mass and energy yield tended to decrease. Air can be a great potential media for substituting the expensive nitrogen to perform the microwave torrefaction for teakwood biomass.Keywords: torrefaction, microwave heating, energy enhancement, mass and energy yield
Procedia PDF Downloads 9520731 Studies on Biojetfuel Obtained from Vegetable Oil: Process Characteristics, Engine Performance and Their Comparison with Mineral Jetfuel
Authors: F. Murilo T. Luna, Vanessa F. Oliveira, Alysson Rocha, Expedito J. S. Parente, Andre V. Bueno, Matheus C. M. Farias, Celio L. Cavalcante Jr.
Abstract:
Aviation jetfuel used in aircraft gas-turbine engines is customarily obtained from the kerosene distillation fraction of petroleum (150-275°C). Mineral jetfuel consists of a hydrocarbon mixture containing paraffins, naphthenes and aromatics, with low olefins content. In order to ensure their safety, several stringent requirements must be met by jetfuels, such as: high energy density, low risk of explosion, physicochemical stability and low pour point. In this context, aviation fuels eventually obtained from biofeedstocks (which have been coined as ‘biojetfuel’), must be used as ‘drop in’, since adaptations in aircraft engines are not desirable, to avoid problems with their operation reliability. Thus, potential aviation biofuels must present the same composition and physicochemical properties of conventional jetfuel. Among the potential feedtstocks for aviation biofuel, the babaçu oil, extracted from a palm tree extensively found in some regions of Brazil, contains expressive quantities of short chain saturated fatty acids and may be an interesting choice for biojetfuel production. In this study, biojetfuel was synthesized through homogeneous transesterification of babaçu oil using methanol and its properties were compared with petroleum-based jetfuel through measurements of oxidative stability, physicochemical properties and low temperature properties. The transesterification reactions were carried out using methanol and after decantation/wash procedures, the methyl esters were purified by molecular distillation under high vacuum at different temperatures. The results indicate significant improvement in oxidative stability and pour point of the products when compared to the fresh oil. After optimization of operational conditions, potential biojetfuel samples were obtained, consisting mainly of C8 esters, showing low pour point and high oxidative stability. Jet engine tests are being conducted in an automated test bed equipped with pollutant emissions analysers to study the operational performance of the biojetfuel that was obtained and compare with a mineral commercial jetfuel.Keywords: biojetfuel, babaçu oil, oxidative stability, engine tests
Procedia PDF Downloads 26020730 Investigation of Chip Formation Characteristics during Surface Finishing of HDPE Samples
Authors: M. S. Kaiser, S. Reaz Ahmed
Abstract:
Chip formation characteristics are investigated during surface finishing of high density polyethylene (HDPE) samples using a shaper machine. Both the cutting speed and depth of cut are varied continually to enable observations under various machining conditions. The generated chips are analyzed in terms of their shape, size, and deformation. Their physical appearances are also observed using digital camera and optical microscope. The investigation shows that continuous chips are obtained for all the cutting conditions. It is observed that cutting speed is more influential than depth of cut to cause dimensional changes of chips. Chips curl radius is also found to increase gradually with the increase of cutting speed. The length of continuous chips remains always smaller than the job length, and the corresponding discrepancies are found to be more prominent at lower cutting speed. Microstructures of the chips reveal that cracks are formed at higher cutting speeds and depth of cuts, which is not that significant at low depth of cut.Keywords: HDPE, surface-finishing, chip formation, deformation, roughness
Procedia PDF Downloads 14820729 Comparison of Methods for the Synthesis of Eu+++, Tb+++, and Tm+++ Doped Y2O3 Nanophosphors by Sol-Gel and Hydrothermal Methods for Bioconjugation
Authors: Ravindra P. Singh, Drupad Ram, Dinesh K. Gupta
Abstract:
Rare earth ions doped metal oxides are a class of luminescent materials which have been proved to be excellent for applications in field emission displays and cathode ray tubes, plasma display panels. Under UV irradiation Eu+++ doped Y2O3 is a red phosphor and Tb+++ doped Y 2O3 is a green phosphor. It is possible that, due to their high quantum efficiency, they might serve as improved luminescent markers for identification of biomolecules, as already reported for CdSe and CdSe/ZnS nanocrystals. However, for any biological applications these particle powders must be suspended in water while retaining their phosphorescence. We hereby report synthesis and characterization of Eu+++ and Tb+++ doped yttrium oxide nanoparticles by sol-gel and hydrothermal processes. Eu+++ and Tb+++ doped Y2O3 nanoparticles have been synthesized by hydrothermal process using yttrium oxo isopropoxide [Y5O(OPri)13] (crystallized twice) and it’s acetyl acetone modified product [Y(O)(acac)] as precursors. Generally the sol-gel derived metal oxides are required to be annealed to the temperature ranging from 400°C-800°C in order to develop crystalline phases. However, this annealing also results in the development of aggregates which are undesirable for bio-conjugation experiments. In the hydrothermal process, we have achieved crystallinity of the nanoparticles at 300°C and the development of crystalline phases has been found to be proportional to the time of heating of the reactor. The average particle sizes as calculated from XRD were found to be 28 nm, 32 nm, and 34 nm by hydrothermal process. The particles were successfully suspended in chloroform in the presence of trioctyl phosphene oxide and TEM investigations showed the presence of single particles along with agglomerates.Keywords: nanophosphors, Y2O3:Eu+3, Y2O3:Tb+3, sol-gel, hydrothermal method, TEM, XRD
Procedia PDF Downloads 40520728 The Role of Secondary Filler on the Fracture Toughness of HDPE/Clay Nanocomposites
Authors: R. Kamarudzaman, A. Kalam, N. A. Mohd Fadzil
Abstract:
Oil Palm Fruit Bunch Fiber (OPEFB) was used as secondary filler in HDPE/clay nanocomposites. The composites were prepared by melt compounding which contains High Density Polyethylene (HDPE), OPEFB fibers, Maleic Anhydride Graft Polyethylene (MAPE) and four different clay loading (3, 5, 7 and 10 PE nanoclay pellets per hundred of HDPE pellets). Four OPEFB sizes (180 µm, 250 µm, 300 µm and 355 µm) were added in the composites to investigate their effects on fracture toughness. Fracture toughness of the composites were determined according to ASTM D5045 and Single Edge Notch Bending (SENB) been employed during the test. The effects of alkali treatment were also investigated in this study. The results indicate that the fracture toughness slightly increased as clay loading increased. The highest value of fracture toughness was 0.47 and 1.06 MPa.m1/2 at 5 phr for both types of clay loading. The presence of filler as reinforcement with the matrix indicates the enhancement of composites compared to those without the filler.Keywords: oil palm empty fruit bunch, fiber, polyethylene, polymer nanocomposite, impact strength
Procedia PDF Downloads 58820727 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings
Authors: Gaelle Candel, David Naccache
Abstract:
t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embeddings. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n²) to O(n²=k), and the memory requirement from n² to 2(n=k)², which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution, and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.Keywords: concept drift, data visualization, dimension reduction, embedding, monitoring, reusability, t-SNE, unsupervised learning
Procedia PDF Downloads 14520726 Effect of Halloysite on Heavy Metals Fate during Solid Waste Pyrolysis: A Combinatorial Experimental/Computational Study
Authors: Tengfei He, Mengjie Zhang, Baosheng Jin
Abstract:
In this study, the low-cost halloysite (Hal) was utilized for the first time to enhance the solid-phase enrichment and stability of heavy metals (HMs) during solid waste pyrolysis through experimental and theoretical methods, and compared with kaolinite (Kao). Experimental results demonstrated that Hal was superior to Kao in improving the solid-phase enrichment of HMs. Adding Hal reduced the proportion of HMs in the unstable fraction (F1+F2), consequently lowering the environmental risk of biochar and the extractable state of HMs. Through Grand canonical Monte Carlo and Density Functional Theory (DFT) simulations, the adsorption amounts and adsorption mechanisms of Cd/Pb compound on Hal/Kao surfaces were analyzed. The adsorption amounts of HMs by Hal were significantly higher than Kao and decreased with increasing temperature, and the difference in adsorption performance caused by structural bending was negligible. The DFT results indicated that Cd/Pb monomers were stabilized by establishing covalent bonds with OH or reactive O atoms on the Al-(0 0 1) surface, whereas the covalent bonds with ionic bonding properties formed between Cl atoms and unsaturated Al atoms played a crucial role in stabilizing HM chlorides. This study highlights the potential of Hal in stabilizing HMs during pyrolysis without requiring any modifications.Keywords: heavy metals, halloysite, density functional theory, grand canonical Monte Carlo
Procedia PDF Downloads 7720725 The Effect of Nanofiber Web on Thermal Conductivity, Air and Water Vapor Permeability
Authors: Ilkay Ozsev Yuksek, Nuray Ucar, Zeynep Esma Soygur, Yasemin Kucuk
Abstract:
In this study, composite fabrics with polyacrylonitrile electrospun nanofiber deposited onto quilted polyester fabric have been produced in order to control the isolation properties such as water vapor permeability, air permeability and thermal conductivity. Different nanofiber webs were manufactured by changing polymer concentration from 10% to 16% and by changing the deposition time from 1 to 3 hours. Presence of nanofiber layer on the quilted fabric results to an increase of an isolation, i.e., a decrease of the moisture vapor transport rates at 20%, decrease of thermal conductivity at 15% and a decrease of air permeability values at 50%.Keywords: nanofiber/fabric composites, electrospinning, isolation, thermal conductivity, moisture vapor transport, air permeability
Procedia PDF Downloads 31620724 Wear Behavior and Microstructure of Eutectic Al - Si Alloys Manufactured by Selective Laser Melting
Authors: Nan KANG, Pierre Coddet, Hanlin Liao, Christian Coddet
Abstract:
In this study, the almost dense eutectic Al-12Si alloys were fabricated by selective laser melting (SLM) from the powder mixture of pure Aluminum and pure Silicon, which show the mean particle sizes of 30 μm and 5μm respectively, under the argon environment. The image analysis shows that the highest value of relative density (95 %) was measured for the part obtained at the laser power of 280 W. X ray diffraction (XRD), Optical microscope (OM) and scanning electron microscope (SEM) equipped with X-ray energy dispersive spectroscopy (EDS) were employed to determine the microstructures of the SLM-processed Al-Si alloy, which illustrate that the SLM samples present the ultra-fine microstructure. The XRD results indicate that no clearly phase transformation happened during the SLM process. Additionally, the vaporization behavior of Aluminum was detected for the parts obtained at high laser power. Besides, the maximum microhardness value, about 95 Hv, was measured for the samples obtained at laser power of 280 W, and which shows the highest wear resistance.Keywords: al-Si alloy, selective laser melting, wear behavior, microstructure
Procedia PDF Downloads 40320723 Application of Generalized Autoregressive Score Model to Stock Returns
Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke
Abstract:
The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.Keywords: generalized autoregressive score model, South Africa, stock returns, time-varying
Procedia PDF Downloads 50420722 A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer
Authors: Partha Sarathi Majee, S. Bhattacharyya
Abstract:
Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented.Keywords: debye length, double layer polarization, electrophoresis, mobility reversal, soft particle
Procedia PDF Downloads 34820721 Graphene/ZnO/Polymer Nanocomposite Thin Film for Separation of Oil-Water Mixture
Authors: Suboohi Shervani, Jingjing Ling, Jiabin Liu, Tahir Husain
Abstract:
Offshore oil-spill has become the most emerging problem in the world. In the current paper, a graphene/ZnO/polymer nanocomposite thin film is coated on stainless steel mesh via layer by layer deposition method. The structural characterization of materials is determined by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The total petroleum hydrocarbons (TPHs) and separation efficiency have been measured via gas chromatography – flame ionization detector (GC-FID). TPHs are reduced to 2 ppm and separation efficiency of the nanocomposite coated mesh is reached ≥ 99% for the final sample. The nanocomposite coated mesh acts as a promising candidate for the separation of oil- water mixture.Keywords: oil spill, graphene, oil-water separation, nanocomposite
Procedia PDF Downloads 17620720 An Investigation on Fresh and Hardened Properties of Concrete While Using Polyethylene Terephthalate (PET) as Aggregate
Authors: Md. Jahidul Islam, A. K. M. Rakinul Islam, M. Salamah Meherier
Abstract:
This study investigates the suitability of using plastic, such as polyethylene terephthalate (PET), as a partial replacement of natural coarse and fine aggregates (for example, brick chips and natural sand) to produce lightweight concrete for load bearing structural members. The plastic coarse aggregate (PCA) and plastic fine aggregate (PFA) were produced from melted polyethylene terephthalate (PET) bottles. Tests were conducted using three different water–cement (w/c) ratios, such as 0.42, 0.48, and 0.57, where PCA and PFA were used as 50% replacement of coarse and fine aggregate respectively. Fresh and hardened properties of concrete have been compared for natural aggregate concrete (NAC), PCA concrete (PCC) and PFA concrete (PFC). The compressive strength of concrete at 28 days varied with the water–cement ratio for both the PCC and PFC. Between PCC and PFC, PFA concrete showed the highest compressive strength (23.7 MPa) at 0.42 w/c ratio and also the lowest compressive strength (13.7 MPa) at 0.57 w/c ratio. Significant reduction in concrete density was mostly observed for PCC samples, ranging between 1977–1924 kg/m³. With the increase in water–cement ratio PCC achieved higher workability compare to both NAC and PFC. It was found that both the PCA and PFA contained concrete achieved the required compressive strength to be used for structural purpose as partial replacement of the natural aggregate; but to obtain the desired lower density as lightweight concrete the PCA is most suited.Keywords: polyethylene terephthalate, plastic aggregate, concrete, fresh and hardened properties
Procedia PDF Downloads 44220719 Performance of an Anaerobic Baffled Reactor (ABR) Treating High-Strength Food Industrial Wastewater with Fluctuating pH
Authors: D. M. Bassuney, W. A. Ibrahim, Medhat A. E. Moustafa
Abstract:
As awareness of the variable nature of food industrial wastewater and its environmental impact grows, a more stable treatment reactor is needed to treat such wastewater. In this paper, a performance of 5-compartment lab-scale Anaerobic Baffled Reactor (ABR) treating high strength wastewater with high pH variation was studied under three organic loading rates (OLRs). The reactor showed high COD removal efficiencies: 92.67, 97.44, and 98.19% corresponding to OLRs of 2.0, 3.0, and 4.8 KgCOD/m3 d, respectively. The first compartment showed a good buffering capacity and a distinct phase separation occurred in the ABR.Keywords: anaerobic baffled reactor, food industrial wastewater, high strength wastewater, organic loading, pH
Procedia PDF Downloads 40420718 High-Rises and Urban Design: The Reasons for Unsuccessful Placemaking with Residential High-Rises in England
Authors: E. Kalcheva, A. Taki, Y. Hadi
Abstract:
High-rises and placemaking is an understudied combination which receives more and more interest with the proliferation of this typology in many British cities. The reason for studying three major cities in England: London, Birmingham and Manchester, is to learn from the latest advances in urban design in well-developed and prominent urban environment. The analysis of several high-rise sites reveals the weaknesses in urban design of contemporary British cities and presents an opportunity to study from the implemented examples. Therefore, the purpose of this research is to analyze design approaches towards creating a sustainable and varied urban environment when high-rises are involved. The research questions raised by the study are: what is the quality of high-rises and their surroundings; what facilities and features are deployed in the research area; what is the role of the high-rise buildings in the placemaking process; what urban design principles are applicable in this context. The methodology utilizes observation of the researched area by structured questions, developed by the author to evaluate the outdoor qualities of the high-rise surroundings. In this context, the paper argues that the quality of the public realm around the high-rises is quite low, missing basic but vital elements such as plazas, public art, and seating, along with landscaping and pocket parks. There is lack of coherence, the rhythm of the streets is often disrupted, and even though the high-rises are very aesthetically appealing, they fail to create a sense of place on their own. The implications of the study are that future planning can take into consideration the critique in this article and provide more opportunities for urban design interventions around high-rise buildings in the British cities.Keywords: high-rises, placemaking, urban design, townscape
Procedia PDF Downloads 32320717 Two-Dimensional Transition Metal Dichalcogenides for Photodetection and Biosensing
Authors: Mariam Badmus, Bothina Manasreh
Abstract:
Transition metal dichalcogenides (TMDs) have gained significant attention as two-dimensional (2D) materials due to their intrinsic band gaps and unique properties, which make them ideal candidates for electronic and photonic applications. Unlike graphene, which lacks a band gap, TMDs (MX₂, where M is a transition metal and X is a chalcogen such as sulfur, selenium, or tellurium) exhibit semiconductor behavior and can be exfoliated into monolayers, enhancing their properties. The properties of these materials are investigated using density functional theory, a quantum mechanical computational method to solve Schrodinger equation for many body problems to calculate electron density of the atoms involved on which the energy and properties of a system depend. They show promise for use in photodetectors, biosensors, memory devices, and other technologies in communications, health, and energy sectors. In particular, metallic TMDs, which lack an intrinsic band gap, benefit from doping with transition metals, this improves their electronic and optical properties. Doping monolayer TMDs yields more significant improvements than doping bulk materials. Notably, doping with metals such as vanadium enhances the magnetization of TMDs, expanding their potential applications in spintronics. This work highlights the effects of doping on TMDs and explores strategies for optimizing their performance for advanced technological applications.Keywords: concentration, doping, magnetization, monolayer
Procedia PDF Downloads 18