Search results for: health data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30648

Search results for: health data

28248 Development of Risk Management System for Urban Railroad Underground Structures and Surrounding Ground

Authors: Y. K. Park, B. K. Kim, J. W. Lee, S. J. Lee

Abstract:

To assess the risk of the underground structures and surrounding ground, we collect basic data by the engineering method of measurement, exploration and surveys and, derive the risk through proper analysis and each assessment for urban railroad underground structures and surrounding ground including station inflow. Basic data are obtained by the fiber-optic sensors, MEMS sensors, water quantity/quality sensors, tunnel scanner, ground penetrating radar, light weight deflectometer, and are evaluated if they are more than the proper value or not. Based on these data, we analyze the risk level of urban railroad underground structures and surrounding ground. And we develop the risk management system to manage efficiently these data and to support a convenient interface environment at input/output of data.

Keywords: urban railroad, underground structures, ground subsidence, station inflow, risk

Procedia PDF Downloads 338
28247 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 263
28246 Effect of Noise at Different Frequencies on Heart Rate Variability - Experimental Study Protocol

Authors: A. Bortkiewcz, A. Dudarewicz, P. Małecki, M. Kłaczyński, T. Wszołek, Małgorzata Pawlaczyk-Łuszczyńska

Abstract:

Low-frequency noise (LFN) has been recognized as a special environmental pollutant. It is usually considered a broadband noise with the dominant content of low frequencies from 10 Hz to 250 Hz. A growing body of data shows that LFN differs in nature from other environmental noises, which are at comparable levels but not dominated by low-frequency components. The primary and most frequent adverse effect of LFN exposure is annoyance. Moreover, some recent investigations showed that LFN at relatively low A-weighted sound pressure levels (40−45 dB) occurring in office-like areas could adversely affect the mental performance, especially of high-sensitive subjects. It is well documented that high-frequency noise disturbs various types of human functions; however, there is very little data on the impact of LFN on well-being and health, including the cardiovascular system. Heart rate variability (HRV) is a sensitive marker of autonomic regulation of the circulatory system. Walker and co-workers found that LFN has a significantly more negative impact on cardiovascular response than exposure to high-frequency noise and that changes in HRV parameters resulting from LFN exposure tend to persist over time. The negative reactions of the cardiovascular system in response to LFN generated by wind turbines (20-200 Hz) were confirmed by Chiu. The scientific aim of the study is to assess the relationship between the spectral-temporal characteristics of LFN and the activity of the autonomic nervous system, considering the subjective assessment of annoyance, sensitivity to this type of noise, and cognitive and general health status. The study will be conducted in 20 male students in a special, acoustically prepared, constantly supervised room. Each person will be tested 4 times (4 sessions), under conditions of non-exposure (sham) and exposure to noise of wind turbines recorded at a distance of 250 meters from the turbine with different frequencies and frequency ranges: acoustic band 20 Hz-20 kHz, infrasound band 5-20 Hz, acoustic band + infrasound band. The order of sessions of the experiment will be randomly selected. Each session will last 1 h. There will be a 2-3 days break between sessions to exclude the possibility of the earlier session influencing the results of the next one. Before the first exposure, a questionnaire will be conducted on noise sensitivity, general health status using the GHQ questionnaire, hearing organ status and sociodemographic data. Before each of the 4 exposures, subjects will complete a brief questionnaire on their mood and sleep quality the night before the test. After the test, the subjects will be asked about any discomfort and subjective symptoms during the exposure. Before the test begins, Holter ECG monitoring equipment will be installed. HRV will be analyzed from the ECG recordings, including time and frequency domain parameters. The tests will always be performed in the morning (9-12) to avoid the influence of diurnal rhythm on HRV results. Students will perform psychological tests 15 minutes before the end of the test (Vienna Test System).

Keywords: neurovegetative control, heart rate variability (HRV), cognitive processes, low frequency noise

Procedia PDF Downloads 84
28245 Integrated Model for Enhancing Data Security Performance in Cloud Computing

Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali

Abstract:

Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.

Keywords: cloud Ccomputing, data security, SAAS, PAAS, IAAS, Blowfish

Procedia PDF Downloads 482
28244 Development and Validation of the 'Short Form BASIC Scale' Psychotic Tendencies Subscale

Authors: Chia-Chun Wu, Ying-Yao Cheng

Abstract:

The purpose of this study was developing the 'short-form BASIC scale' psychotic tendencies subscale so as to provide a more efficient, economical and effective way to assess the mental health of recruits. 1749 students from Naval Recruit Training Center participated in this study. The multidimensional constructs of psychotic tendencies subscale include four dimensions: schizophrenic tendencies, manic tendencies, depression tendencies, and suicidal ideation. We cut down the 36-item psychotic tendencies subscale to 25 items by using multidimension Rasch techniques. They were applied to assess model-data fit and to provide the validity evidence of the short form BASIC scale of psychotic tendencies subscale. The person separation reliabilities of the measures from four dimensions were .70, .67, .74 and .57, respectively. In addition, there is a notable correlation between the length version and short version of schizophrenic tendencies (scaled .89), manic tendencies (.96), depression tendencies (.97) and suicidal ideation (.97). The results have indicated that the development of the study of short-form scale sufficient to replace the original scale. Therefore, it is suggested that short-form basic scale is used to assess the mental health with participants being more willing to answer questions to ensure the validation of assessments.

Keywords: BASIC scale, military, Rasch analysis, short-form scale

Procedia PDF Downloads 365
28243 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 95
28242 Effect of Urban Informal Settlements and Outdoor Advertisement on the Quality of Built Environment and Urban Upgrading in Nigeria

Authors: Amao Funmilayo Lanrewaju, T. Ogunlade

Abstract:

The paper examines the causes and characteristics of informal settlements and outdoor advertisement in the evaluation of quality of environment. The paper identifies the problems that have aided informal settlements to: Urbanization, poverty, growth of informal sector, non-affordability of land and housing shortage. The paper asserts that the informal settlements have serious adverse effects on the people’s health, their built environment and quality of life. The secondary data was obtained from books, journals and seminar papers. The paper argues that, although the urban upgrading possesses great potential for improving quality of built environment in informal settlements, there is a need to repackage the upgrading exercise so that majority can benefit from it. It is necessary to incorporate community participation into the urban upgrading in order to assist the very poor that cannot take care of their housing consumption needs. Therefore, government is encouraged to see informal settlements as a solution to new city planning rather than problem to the urban areas. This paper suggests the implementation of policies and planning, physical infrastructural development, social economic improvement, environment and health improvement. Government, private and communities interventions on informal settlements are required in order to prevent further decay for sustainable development.

Keywords: quality of environment, informal settlements, urban upgrading, outdoor advertisement

Procedia PDF Downloads 490
28241 Performing Fat Activism in Australia: An Autoethnographic Exploration

Authors: Jenny Lee

Abstract:

Fat Studies is emerging as an interdisciplinary area of study, intersecting with Gender Studies, Sociology, Human Development and the Creative Arts. A focus on weight loss, and, therefore, fat hatred, has resulted in a form of discriminatory institutional practice that impacts women in the Western world. This focus is sanctioned by a large dieting industry, medical associations, the media, and at times, government initiatives. This paper will discuss the emergence of the so-called ‘Obesity Epidemic’ in Australia and the Western world and the stereotypes that thin equals healthy and fat equals unhealthy. This paper will argue that, for those with a health focus, ‘Health at every size’ is a more effective principle, which involves striving for healthy living, without a focus on weight loss. This discussion will contextualise an autoethnographic exploration of how fat acceptance and Health at Every Size can be encouraged through fat activism and fat political art. As part of this paper, a selection of the recent performance, writing and art in Australia will be presented, including Aquaporko, the fat femme synchronised swim team and VaVaBoomBah, the Melbourne fat burlesque performances.

Keywords: activism, fat, health, obesity, performance

Procedia PDF Downloads 184
28240 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 135
28239 Challenges in Multi-Cloud Storage Systems for Mobile Devices

Authors: Rajeev Kumar Bedi, Jaswinder Singh, Sunil Kumar Gupta

Abstract:

The demand for cloud storage is increasing because users want continuous access their data. Cloud Storage revolutionized the way how users access their data. A lot of cloud storage service providers are available as DropBox, G Drive, and providing limited free storage and for extra storage; users have to pay money, which will act as a burden on users. To avoid the issue of limited free storage, the concept of Multi Cloud Storage introduced. In this paper, we will discuss the limitations of existing Multi Cloud Storage systems for mobile devices.

Keywords: cloud storage, data privacy, data security, multi cloud storage, mobile devices

Procedia PDF Downloads 703
28238 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method

Authors: Dangut Maren David, Skaf Zakwan

Abstract:

Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.

Keywords: prognostics, data-driven, imbalance classification, deep learning

Procedia PDF Downloads 177
28237 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches

Authors: Wuttigrai Ngamsirijit

Abstract:

Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.    

Keywords: decision making, human capital analytics, talent management, talent value chain

Procedia PDF Downloads 191
28236 Optimizing AI Voice for Adolescent Health Education: Preferences and Trustworthiness Across Teens and Parent

Authors: Yu-Lin Chen, Kimberly Koester, Marissa Raymond-Flesh, Anika Thapar, Jay Thapar

Abstract:

Purpose: Effectively communicating adolescent health topics to teens and their parents is crucial. This study emphasizes critically evaluating the optimal use of artificial intelligence tools (AI), which are increasingly prevalent in disseminating health information. By fostering a deeper understanding of AI voice preference in the context of health, the research aspires to have a ripple effect, enhancing the collective health literacy and decision-making capabilities of both teenagers and their parents. This study explores AI voices' potential within health learning modules for annual well-child visits. We aim to identify preferred voice characteristics and understand factors influencing perceived trustworthiness, ultimately aiming to improve health literacy and decision-making in both demographics. Methods: A cross-sectional study assessed preferences and trust perceptions of AI voices in learning modules among teens (11-18) and their parents/guardians in Northern California. The study involved the development of four distinct learning modules covering various adolescent health-related topics, including general communication, sexual and reproductive health communication, parental monitoring, and well-child check-ups. Participants were asked to evaluate eight AI voices across the modules, considering a set of six factors such as intelligibility, naturalness, prosody, social impression, trustworthiness, and overall appeal, using Likert scales ranging from 1 to 10 (the higher, the better). They were also asked to select their preferred choice of voice for each module. Descriptive statistics summarized participant demographics. Chi-square/t-tests explored differences in voice preferences between groups. Regression models identified factors impacting the perceived trustworthiness of the top-selected voice per module. Results: Data from 104 participants (teen=63; adult guardian = 41) were included in the analysis. The mean age is 14.9 for teens (54% male) and 41.9 for the parent/guardian (12% male). At the same time, similar voice quality ratings were observed across groups, and preferences varied by topic. For instance, in general communication, teens leaned towards young female voices, while parents preferred mature female tones. Interestingly, this trend reversed for parental monitoring, with teens favoring mature male voices and parents opting for mature female ones. Both groups, however, converged on mature female voices for sexual and reproductive health topics. Beyond preferences, the study delved into factors influencing perceived trustworthiness. Interestingly, social impression and sound appeal emerged as the most significant contributors across all modules, jointly explaining 71-75% of the variance in trustworthiness ratings. Conclusion: The study emphasizes the importance of catering AI voices to specific audiences and topics. Social impression and sound appeal emerged as critical factors influencing perceived trustworthiness across all modules. These findings highlight the need to tailor AI voices by age and the specific health information being delivered. Ensuring AI voices resonate with both teens and their parents can foster their engagement and trust, ultimately leading to improved health literacy and decision-making for both groups. Limitations and future research: This study lays the groundwork for understanding AI voice preferences for teenagers and their parents in healthcare settings. However, limitations exist. The sample represents a specific geographic location, and cultural variations might influence preferences. Additionally, the modules focused on topics related to well-child visits, and preferences might differ for more sensitive health topics. Future research should explore these limitations and investigate the long-term impact of AI voice on user engagement, health outcomes, and health behaviors.

Keywords: artificial intelligence, trustworthiness, voice, adolescent

Procedia PDF Downloads 66
28235 A Relative Entropy Regularization Approach for Fuzzy C-Means Clustering Problem

Authors: Ouafa Amira, Jiangshe Zhang

Abstract:

Clustering is an unsupervised machine learning technique; its aim is to extract the data structures, in which similar data objects are grouped in the same cluster, whereas dissimilar objects are grouped in different clusters. Clustering methods are widely utilized in different fields, such as: image processing, computer vision , and pattern recognition, etc. Fuzzy c-means clustering (fcm) is one of the most well known fuzzy clustering methods. It is based on solving an optimization problem, in which a minimization of a given cost function has been studied. This minimization aims to decrease the dissimilarity inside clusters, where the dissimilarity here is measured by the distances between data objects and cluster centers. The degree of belonging of a data point in a cluster is measured by a membership function which is included in the interval [0, 1]. In fcm clustering, the membership degree is constrained with the condition that the sum of a data object’s memberships in all clusters must be equal to one. This constraint can cause several problems, specially when our data objects are included in a noisy space. Regularization approach took a part in fuzzy c-means clustering technique. This process introduces an additional information in order to solve an ill-posed optimization problem. In this study, we focus on regularization by relative entropy approach, where in our optimization problem we aim to minimize the dissimilarity inside clusters. Finding an appropriate membership degree to each data object is our objective, because an appropriate membership degree leads to an accurate clustering result. Our clustering results in synthetic data sets, gaussian based data sets, and real world data sets show that our proposed model achieves a good accuracy.

Keywords: clustering, fuzzy c-means, regularization, relative entropy

Procedia PDF Downloads 263
28234 Trajectories of Physical Activity Intensity and Associated Factors in Men and Women from Elsa-Brasil

Authors: André Luis Messias Dos Santos Duque, Daniela Polessa Paula, Rosane Harter Griep

Abstract:

The intensity of physical activity (PA) over time is essential for health promotion. However, there are few studies that have analyzed the practice of different intensities of PA longitudinally. The objective was to identify PA intensity trajectories in men and women from a Brazilian multicentric cohort and their associated factors. Data from 10,367 participants (5,777 women and 4,590 men) aged 35 to 74 years from the baseline and two follow-up visits (2012-2014 and 2017-2019) of the Longitudinal Study of Adult Health (ELSA-Brasil) were analyzed. PA intensity (low, moderate, or high) was assessed using the leisure-time PA module of the International Physical Activity Questionnaire (IPAQ), and sociodemographic, behavioral, and clinical variables were included. Chi-square and T-student tests were used, considering a significant level of 5%. Four intensity trajectories were identified: low, moderate, high, and no pattern. Most participants (82.5% of women and 75.7% of men) had low PA intensity trajectories, and only 2% of women and 4.8% of men had high PA intensity trajectories. For both sexes, a significant difference (p<0.05) was found for age group, education level, income, smoking, type 2 diabetes, obesity, hypertriglyceridemia, and hypertension. Actions that promote the practice of high-intensity PA over time and consider sociodemographic, clinical, and behavioral factors are necessary.

Keywords: lifestyle, longterm effects, physical activity, socioeconomic factors

Procedia PDF Downloads 24
28233 Highway Waste Management in Zambia Policy Preparedness and Remedies: The Case of Great East Road

Authors: Floyd Misheck Mwanza, Paul Boniface Majura

Abstract:

The paper looked at highways/ roadside waste generation, disposal and the consequent environmental impacts. The dramatic increase in vehicular and paved roads in the recent past in Zambia, has given rise to the indiscriminate disposal of litter that now poses a threat to health and the environment. Primary data was generated by carrying out oral interviews and field observations for holistic and in–depth assessment of the environment and the secondary data was obtained from desk review method, information on effects of roadside wastes on environment were obtained from relevant literatures. The interviews were semi structured and a purposive sampling method was adopted and analyzed descriptively. The results of the findings showed that population growth and unplanned road expansion has exceeded the expected limit in recent time with resultant poor system of roadside wastes disposal. Roadside wastes which contain both biodegradable and non-biodegradable roadside wastes are disposed at the shoulders of major highways in temporary dumpsites and are never collected by a road development agency (RDA). There is no organized highway to highway or street to street collection of the wastes in Zambia by the key organization the RDA. The study revealed that roadside disposal of roadside wastes has serious impacts on the environment. Some of these impacts include physical nuisance of the wastes to the environment, the waste dumps also serve as hideouts for rodents and snakes which are dangerous. Waste are blown around by wind making the environment filthy, most of the wastes are also been washed by overland flow during heavy downpour to block drainage channels and subsequently lead to flooding of the environment. Most of the non- biodegradable wastes contain toxic chemicals which have serious implications on the environmental sustainability and human health. The paper therefore recommends that Government/ RDA should come up with proper orientation and environmental laws should be put in place for the general public and also to provide necessary facilities and arrange for better methods of collection of wastes.

Keywords: biodegradable, disposal, environment, impacts

Procedia PDF Downloads 346
28232 Sampled-Data Model Predictive Tracking Control for Mobile Robot

Authors: Wookyong Kwon, Sangmoon Lee

Abstract:

In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method.

Keywords: model predictive control, sampled-data control, linear parameter varying systems, LPV

Procedia PDF Downloads 315
28231 Analysis of Latest Fitness Trends in India

Authors: Amita Rana

Abstract:

From the ancient to modern times, the nature of fitness activities has varied. We can choose any form of exercise that is suitable for our particular need. Watchers of fitness trends say that the road to better health is paved with new possibilities along with some old ones that are poised to make a comeback. Educated, certified and experienced fitness professionals; strength training; fitness programmes for older adults; exercise and weight loss; children and obesity; personal training; core training; group personal training; Zumba and other dance workouts; functional fitness; yoga; comprehensive health promotion programmes at worksite; boot-camp; outdoor activities; reaching new markets; spinning; sport-specific training; worker incentive programmes; wellness coaching; and physician referrals are among the fitness trends included in worldwide surveys. However, trends related to fitness in India could be the same or different. Hence, the present paper makes an attempt to analyze the latest fitness trends in India. A total of eighteen (18) surveys were shortlisted on the basis of their relevance to the present topic of study and were arranged in descending order of their chronology. Content analysis was done after the preliminary set of data collection, which formed the basis of a group of data. Further, frequency and percentage were used to statistically represent the data. It can be concluded from the analysis of data regarding recent fitness trends in India that yoga dominates the fitness activity list, followed by numerous other activities including running, Zumba and sh’bam, boot camp, boxing, kickboxing, cycling, swimming, TRX, ass-pocalypse, ballet, biking, bokwa fitness, dance-iso-bic, masala bhangra, outdoor activities, pilates, planks, push-ups, sofa workouts, stairs Workouts, tabata training, and twerking. The body weight/ gym-specified/ strength training as well as high intensity interval training dominate the preferred workouts; followed by mixed work-outs, cross training work-outs, express work-outs, functional fitness, natural body movements, personalized training, and stay-at-home workouts. General areas that featured in the latest fitness trends in India demonstrates that the fitness is making an impact on all sections of the society be it children, women, older adults, senior citizens, worksite fitness. Fitness is becoming the lifestyle of the masses. People are doing exercise for weight-loss, combining diet with exercising; prefer sweating, making groups participate in fitness activities and wellness programmes. Technology is another area which has a high impact on the lives of people. They are using wearable technology for workout tracking and following numerous mobile friendly apps.

Keywords: fitness, India, survey, trend

Procedia PDF Downloads 314
28230 Development of Typical Meteorological Year for Passive Cooling Applications Using World Weather Data

Authors: Nasser A. Al-Azri

Abstract:

The effectiveness of passive cooling techniques is assessed based on bioclimatic charts that require the typical meteorological year (TMY) for a specified location for their development. However, TMYs are not always available; mainly due to the scarcity of records of solar radiation which is an essential component used in developing common TMYs intended for general uses. Since solar radiation is not required in the development of the bioclimatic chart, this work suggests developing TMYs based solely on the relevant parameters. This approach improves the accuracy of the developed TMY since only the relevant parameters are considered and it also makes the development of the TMY more accessible since solar radiation data are not used. The presented paper will also discuss the development of the TMY from the raw data available at the NOAA-NCDC archive of world weather data and the construction of the bioclimatic charts for some randomly selected locations around the world.

Keywords: bioclimatic charts, passive cooling, TMY, weather data

Procedia PDF Downloads 243
28229 Stress, Anxiety and Its Associated Factors Within the Transgender Population of Delhi: A Cross-Sectional Study

Authors: Annie Singh, Ishaan Singh

Abstract:

Background: Transgenders are people who have a gender identity different from their sex assigned at birth. Their gender behaviour doesn’t match their body anatomy. The community faces discrimination due to their gender identity all across the world. The term transgender is an umbrella term for many people non-conformal to their biological identity; note that the term transgender is different from gender dysphoria, which is a DSM-5 disorder defined as problems faced by an individual due to their non-conforming gender identity. Transgender people have been a part of Indian culture for ages yet have continued to face exclusion and discrimination in society. This has led to the low socio-economic status of the community. Various studies done across the world have established the role of discrimination, harassment and exclusion in the development of psychological disorders. The study is aimed to assess the frequency of stress and anxiety in the transgender population and understand the various factors affecting the same. Methodology: A cross-sectional survey of self consenting transgender individuals above the age of 18 residing in Delhi was done to assess their socioeconomic status and experiential ecology. Recruitment of participants was done with the help of NGOs. The survey was constructed GAD-7 and PSS-10, two well-known scales were used to assess the stress and anxiety levels. Medians, means and ranges are used for reporting continuous data wherever required, while frequencies and percentages are used for categorical data. For associations and comparison between groups in categorical data, the Chi-square test was used, while the Kruskal-Wallis H test was employed for associations involving multiple ordinal groups. SPSS v28.0 was used to perform the statistical analysis for this study. Results: The survey showed that the frequency of stress and anxiety is high in the transgender population. A demographic survey indicates a low socio-economic background. 44% of participants reported facing discrimination on a daily basis; the frequency of discrimination is higher in transwomen than in transmen. Stress and anxiety levels are similar among both transmen and transwomen. Only 34.5% of participants said they had receptive family or friends. The majority of participants (72.7%) reported a positive or neutral experience with healthcare workers. The prevalence of discrimination is significantly lower in the higher educated groups. Analysis of data shows a positive impact of acceptance and reception on mental health, while discrimination is correlated with higher levels of stress and anxiety. Conclusion: The prevalence of widespread transphobia and discrimination faced by the transgender community has culminated in high levels of stress and anxiety in the transgender population and shows variance according to multiple socio-demographic factors. Educating people about the LGBT community formation of support groups, policies and laws are required to establish trust and promote integration.

Keywords: transgender, gender, stress, anxiety, mental health, discrimination, exclusion

Procedia PDF Downloads 114
28228 Development of Management System of the Experience of Defensive Modeling and Simulation by Data Mining Approach

Authors: D. Nam Kim, D. Jin Kim, Jeonghwan Jeon

Abstract:

Defense Defensive Modeling and Simulation (M&S) is a system which enables impracticable training for reducing constraints of time, space and financial resources. The necessity of defensive M&S has been increasing not only for education and training but also virtual fight. Soldiers who are using defensive M&S for education and training will obtain empirical knowledge and know-how. However, the obtained knowledge of individual soldiers have not been managed and utilized yet since the nature of military organizations: confidentiality and frequent change of members. Therefore, this study aims to develop a management system for the experience of defensive M&S based on data mining approach. Since individual empirical knowledge gained through using the defensive M&S is both quantitative and qualitative data, data mining approach is appropriate for dealing with individual empirical knowledge. This research is expected to be helpful for soldiers and military policy makers.

Keywords: data mining, defensive m&s, management system, knowledge management

Procedia PDF Downloads 259
28227 Health Belief Model to Predict Sharps Injuries among Health Care Workers at First Level Care Facilities in Rural Pakistan

Authors: Mohammad Tahir Yousafzai, Amna Rehana Siddiqui, Naveed Zafar Janjua

Abstract:

We assessed the frequency and predictors of sharp injuries (SIs) among health care workers (HCWs) at first level care facilities (FLCF) in rural Pakistan. HCWs working at public clinic (PC), privately owned licensed practitioners’ clinic (LPC) and non-licensed practitioners’ clinic (NLC) were interviewed on universal precautions (UPs) and constructs of health belief model (HBM) to assess their association with SIs through negative-binomial regression. From 365 clinics, 485 HCWs were interviewed. Overall annual rate of Sis was 192/100 HCWs/year; 78/100 HCWs among licensed prescribers, 191/100 HCWs among non-licensed prescribers, 248/100 HCWs among qualified assistants, and 321/100 HCWs among non-qualified assistants. Increasing knowledge score about bloodborne pathogens (BBPs) transmission (rate-ratio (RR): 0.93; 95%CI: 0.89–0.96), fewer years of work experience, being a non-licensed prescriber (RR: 2.02; 95%CI: 1.36–2.98) licensed (RR: 2.86; 9%CI: 1.81–4.51) or non-licensed assistant (RR: 2.78; 95%CI: 1.72–4.47) compared to a licensed prescriber, perceived barriers (RR: 1.06;95%CI: 1.03–1.08), and compliance with UPs scores (RR: 0.93; 95%CI: 0.87–0.97) were significant predictors of SIs. Improved knowledge about BBPs, compliance with UPs and reduced barriers to follow UPs could reduce SIs to HCWs.

Keywords: health belief model, sharp injuries, needle stick injuries, healthcare workers

Procedia PDF Downloads 314
28226 Enhancing Operational Efficiency and Patient Care at Johns Hopkins Aramco Healthcare through a Business Intelligence Framework

Authors: Muneera Mohammed Al-Dossary, Fatimah Mohammed Al-Dossary, Mashael Al-Shahrani, Amal Al-Tammemi

Abstract:

Johns Hopkins Aramco Healthcare (JAHA), a joint venture between Saudi Aramco and Johns Hopkins Medicine, delivers comprehensive healthcare services to a diverse patient population. Despite achieving high patient satisfaction rates and surpassing several operational targets, JAHA faces challenges such as appointment delays and resource inefficiencies. These issues highlight the need for an advanced, integrated approach to operational management. This paper proposes a Business Intelligence (BI) framework to address these challenges, leveraging tools such as Epic electronic health records and Tableau dashboards. The framework focuses on data integration, real-time monitoring, and predictive analytics to streamline operations and enhance decision-making. Key outcomes include reduced wait times (e.g., a 23% reduction in specialty clinic wait times) and improved operating room efficiency (from 95.83% to 98% completion rates). These advancements align with JAHA’s strategic objectives of optimizing resource utilization and delivering superior patient care. The findings underscore the transformative potential of BI in healthcare, enabling a shift from reactive to proactive operations management. The success of this implementation lays the foundation for future innovations, including machine learning models for more precise demand forecasting and resource allocation.

Keywords: business intelligence, operational efficiency, healthcare management, predictive analytics, patient care improvement, data integration, real-time monitoring, resource optimization, Johns Hopkins Aramco Healthcare, electronic health records, Tableau dashboards, predictive modeling, efficiency metrics, resource utilization, patient satisfaction

Procedia PDF Downloads 15
28225 Timely Detection and Identification of Abnormalities for Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.

Keywords: detection, monitoring, identification, measurement data, multivariate techniques

Procedia PDF Downloads 240
28224 Delivery of Contraceptive and Maternal Health Commodities with Drones in the Most Remote Areas of Madagascar

Authors: Josiane Yaguibou, Ngoy Kishimba, Issiaka V. Coulibaly, Sabrina Pestilli, Falinirina Razanalison, Hantanirina Andremanisa

Abstract:

Background: Madagascar has one of the least developed road networks in the world with a majority of its national and local roads being earth roads and in poor condition. In addition, the country is affected by frequent natural disasters that further affect the road conditions limiting the accessibility to some parts of the country. In 2021 and 2022, 2.21 million people were affected by drought in the Grand Sud region, and by cyclones and floods in the coastal regions, with disruptions of the health system including last mile distribution of lifesaving maternal health commodities and reproductive health commodities in the health facilities. Program intervention: The intervention uses drone technology to deliver maternal health and family planning commodities in hard-to-reach health facilities in the Grand Sud and Sud-Est of Madagascar, the regions more affected by natural disasters. Methodology The intervention was developed in two phases. A first phase, conducted in the Grand Sud, used drones leased from a private company to deliver commodities in isolated health facilities. Based on the lesson learnt and encouraging results of the first phase, in the second phase (2023) the intervention has been extended to the Sud Est regions with the purchase of drones and the recruitment of pilots to reduce costs and ensure sustainability. Key findings: The drones ensure deliveries of lifesaving commodities in the Grand Sud of Madagascar. In 2023, 297 deliveries in commodities in forty hard-to-reach health facilities have been carried out. Drone technology reduced delivery times from the usual 3 - 7 days necessary by road or boat to only a few hours. Program Implications: The use of innovative drone technology demonstrated to be successful in the Madagascar context to reduce dramatically the distribution time of commodities in hard-to-reach health facilities and avoid stockouts of life-saving medicines. When the intervention reaches full scale with the completion of the second phase and the extension in the Sud-Est, 150 hard-to-reach facilities will receive drone deliveries, avoiding stockouts and improving the quality of maternal health and family planning services offered to 1,4 million people in targeted areas.

Keywords: commodities, drones, last-mile distribution, lifesaving supplies

Procedia PDF Downloads 69
28223 Dental Education in Brazil: A Systematic Literature Review

Authors: Fabiane Alves Farias Guimarães, Rodrigo Otávio Moretti-Pires, Ana Lúcia Schaefer Ferreira de Mello

Abstract:

Introduction: Considering the last changes in Brazilian Health and Higher Educational Systems, the production of scientific knowledge regarding dental education and training has been increasing. The National Curriculum Guidelines for undergraduate courses in Dentistry established in 2002 the principles and procedures to perform a more generalist dental professional profile. Objectives: To perform a systematic review of the Brazilian scientific literature about dental education and training. Methods: The systematic review was conducted considering the Lilacs - Latin American Literature in Health Sciences and SciELO - Scientific Electronic Library Online data bases, using the combination of key words dentistry, education, teaching or training. It was select original research articles, published between 2010 and 2013, in Portuguese. Results: Based on the selection criteria, it was found 23 articles. In order to organize the outcomes, the analysis was separated in three themes: Ethical aspects of education (3 articles), integrating dental service with training (10 articles) and Dental education and the Brazilian curriculum guidelines (10 articles). Most of the studies were published between 2011 and 2012 (35% each) and were held in public universities. The studied populations included dental students, teachers, universities directors, health managers and dentists. The qualitative methodological approach was predominant. Conclusion: It was possible to identify a transience time in Brazilian undergraduate courses in Dentistry after curricular changes. The produced literature shows some advances, as the incorporation of ethical values on dental education and the inclusion of new practices environments for students by integrating education and training in diversified dental services scenarios.

Keywords: Teaching, Dental Students, Human resources in dentistry

Procedia PDF Downloads 536
28222 Imputation of Urban Movement Patterns Using Big Data

Authors: Eusebio Odiari, Mark Birkin, Susan Grant-Muller, Nicolas Malleson

Abstract:

Big data typically refers to consumer datasets revealing some detailed heterogeneity in human behavior, which if harnessed appropriately, could potentially revolutionize our understanding of the collective phenomena of the physical world. Inadvertent missing values skew these datasets and compromise the validity of the thesis. Here we discuss a conceptually consistent strategy for identifying other relevant datasets to combine with available big data, to plug the gaps and to create a rich requisite comprehensive dataset for subsequent analysis. Specifically, emphasis is on how these methodologies can for the first time enable the construction of more detailed pictures of passenger demand and drivers of mobility on the railways. These methodologies can predict the influence of changes within the network (like a change in time-table or impact of a new station), explain local phenomena outside the network (like rail-heading) and the other impacts of urban morphology. Our analysis also reveals that our new imputation data model provides for more equitable revenue sharing amongst network operators who manage different parts of the integrated UK railways.

Keywords: big-data, micro-simulation, mobility, ticketing-data, commuters, transport, synthetic, population

Procedia PDF Downloads 231
28221 The Long-Term Impact of Health Conditions on Social Mobility Outcomes: A Modelling Study

Authors: Lise Retat, Maria Carmen Huerta, Laura Webber, Franco Sassi

Abstract:

Background: Intra-generational social mobility (ISM) can be defined as the extent to which individuals change their socio-economic position over a period of time or during their entire life course. The relationship between poor health and ISM is established. Therefore, quantifying the impact that potential health policies have on ISM now and into the future would provide evidence for how social inequality could be reduced. This paper takes the condition of overweight and obesity as an example and estimates the mean earning change per individual if the UK were to introduce policies to effectively reduce overweight and obesity. Methods: The HealthLumen individual-based model was used to estimate the impact of obesity on social mobility measures, such as earnings, occupation, and wealth. The HL tool models each individual's probability of experiencing downward ISM as a result of their overweight and obesity status. For example, one outcome of interest was the cumulative mean earning per person of implementing a policy which would reduce adult overweight and obesity by 1% each year between 2020 and 2030 in the UK. Results: Preliminary analysis showed that by reducing adult overweight and obesity by 1% each year between 2020 and 2030, the cumulative additional mean earnings would be ~1,000 Euro per adult by 2030. Additional analysis will include other social mobility indicators. Conclusions: These projections are important for illustrating the role of health in social mobility and for providing evidence for how health policy can make a difference to social mobility outcomes and, in turn, help to reduce inequality.

Keywords: modelling, social mobility, obesity, health

Procedia PDF Downloads 123
28220 Analyzing Data Protection in the Era of Big Data under the Framework of Virtual Property Layer Theory

Authors: Xiaochen Mu

Abstract:

Data rights confirmation, as a key legal issue in the development of the digital economy, is undergoing a transition from a traditional rights paradigm to a more complex private-economic paradigm. In this process, data rights confirmation has evolved from a simple claim of rights to a complex structure encompassing multiple dimensions of personality rights and property rights. Current data rights confirmation practices are primarily reflected in two models: holistic rights confirmation and process rights confirmation. The holistic rights confirmation model continues the traditional "one object, one right" theory, while the process rights confirmation model, through contractual relationships in the data processing process, recognizes rights that are more adaptable to the needs of data circulation and value release. In the design of the data property rights system, there is a hierarchical characteristic aimed at decoupling from raw data to data applications through horizontal stratification and vertical staging. This design not only respects the ownership rights of data originators but also, based on the usufructuary rights of enterprises, constructs a corresponding rights system for different stages of data processing activities. The subjects of data property rights include both data originators, such as users, and data producers, such as enterprises, who enjoy different rights at different stages of data processing. The intellectual property rights system, with the mission of incentivizing innovation and promoting the advancement of science, culture, and the arts, provides a complete set of mechanisms for protecting innovative results. However, unlike traditional private property rights, the granting of intellectual property rights is not an end in itself; the purpose of the intellectual property system is to balance the exclusive rights of the rights holders with the prosperity and long-term development of society's public learning and the entire field of science, culture, and the arts. Therefore, the intellectual property granting mechanism provides both protection and limitations for the rights holder. This perfectly aligns with the dual attributes of data. In terms of achieving the protection of data property rights, the granting of intellectual property rights is an important institutional choice that can enhance the effectiveness of the data property exchange mechanism. Although this is not the only path, the granting of data property rights within the framework of the intellectual property rights system helps to establish fundamental legal relationships and rights confirmation mechanisms and is more compatible with the classification and grading system of data. The modernity of the intellectual property rights system allows it to adapt to the needs of big data technology development through special clauses or industry guidelines, thus promoting the comprehensive advancement of data intellectual property rights legislation. This paper analyzes data protection under the virtual property layer theory and two-fold virtual property rights system. Based on the “bundle of right” theory, this paper establishes specific three-level data rights. This paper analyzes the cases: Google v. Vidal-Hall, Halliday v Creation Consumer Finance, Douglas v Hello Limited, Campbell v MGN and Imerman v Tchenquiz. This paper concluded that recognizing property rights over personal data and protecting data under the framework of intellectual property will be beneficial to establish the tort of misuse of personal information.

Keywords: data protection, property rights, intellectual property, Big data

Procedia PDF Downloads 44
28219 Motivational Factors for the Practice of Exercise in a Sample of Portuguese Fitness Center Users

Authors: N. Sena, C. Vasconcelos

Abstract:

Portugal has a lower rate of people who exercise. Fitness centers are a widely recognized context for the performance of an exercise. Thus, the objective of this study is to analyze the motivational factors for the practice of exercise in a sample of Portuguese fitness center users. The sample consists of 34 users (23 men and 11 women), aged between 16 and 60 years old (24.7 ± 11,5 years old). The instrument used for data collection was the Motivation Questionnaire for Exercise (version translated and validated into Portuguese), consisting of forty-nine items grouped into ten motivational factors. Responses to the Exercise Motivation Questionnaire are given on a 6-point Likert scale (0="not at all true for me" to 5="completely true for me"). With regard to the results, it is possible to verify that the motivational factors considered most relevant by the sample of our study were “Well-being” (4.44 ± 0.28), followed by “Health” (4.29 ± 0.57) and “Stress Management” (4.06 ± 0.54). The factors “Affiliation” (3.11 ± 0.49) “Personal Appreciation” (2.26 ± 0.59) and “Medical History” (1.71 ± 0.74) were considered by the respondents to be the least important factors for performing the exercise. The conclusion of this study is that in the sample of this study, the factors that most motivated the practice of exercise were “Well-being”, “Health” and “Stress Management”. In the opposite direction, the factors that least motivated the individuals in this sample to practice exercise were “Affiliation”, “Personal Appreciation” and “Medical History”.

Keywords: exercise, fitness center users, motivational factors, Portugal

Procedia PDF Downloads 87