Search results for: business intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4462

Search results for: business intelligence

2062 Performance Management of Tangible Assets within the Balanced Scorecard and Interactive Business Decision Tools

Authors: Raymond K. Jonkers

Abstract:

The present study investigated approaches and techniques to enhance strategic management governance and decision making within the framework of a performance-based balanced scorecard. The review of best practices from strategic, program, process, and systems engineering management provided for a holistic approach toward effective outcome-based capability management. One technique, based on factorial experimental design methods, was used to develop an empirical model. This model predicted the degree of capability effectiveness and is dependent on controlled system input variables and their weightings. These variables represent business performance measures, captured within a strategic balanced scorecard. The weighting of these measures enhances the ability to quantify causal relationships within balanced scorecard strategy maps. The focus in this study was on the performance of tangible assets within the scorecard rather than the traditional approach of assessing performance of intangible assets such as knowledge and technology. Tangible assets are represented in this study as physical systems, which may be thought of as being aboard a ship or within a production facility. The measures assigned to these systems include project funding for upgrades against demand, system certifications achieved against those required, preventive maintenance to corrective maintenance ratios, and material support personnel capacity against that required for supporting respective systems. The resultant scorecard is viewed as complimentary to the traditional balanced scorecard for program and performance management. The benefits from these scorecards are realized through the quantified state of operational capabilities or outcomes. These capabilities are also weighted in terms of priority for each distinct system measure and aggregated and visualized in terms of overall state of capabilities achieved. This study proposes the use of interactive controls within the scorecard as a technique to enhance development of alternative solutions in decision making. These interactive controls include those for assigning capability priorities and for adjusting system performance measures, thus providing for what-if scenarios and options in strategic decision-making. In this holistic approach to capability management, several cross functional processes were highlighted as relevant amongst the different management disciplines. In terms of assessing an organization’s ability to adopt this approach, consideration was given to the P3M3 management maturity model.

Keywords: management, systems, performance, scorecard

Procedia PDF Downloads 321
2061 Design Intelligence in Garment Design Between Technical Creativity and Artistic Creativity

Authors: Kanwar Varinder Pal Singh

Abstract:

Art is one of the five secondary sciences next to the social sciences. As per the single essential concept in garment design, it is the coexistence and co-creation of two aspects of reality: Ultimate reality and apparent or conventional reality. All phenomena possess two natures: That which is revealed by correct perception and that which is induced by deceptive perception. The object of correct perception is the ultimate reality, the object of deceptive perception is conventional reality. The same phenomenon, therefore, may be perceived according to its ultimate nature or its apparent nature. Ultimate reality is also called ‘emptiness’. Emptiness does not mean that all phenomena are nothing but do not exist in themselves. Although phenomena, the universe, thoughts, beings, time, and so on, seem very real in themselves, ultimately, they are not. Each one of us can perceive the changing and unpredictable nature of existence. This transitory nature of phenomena, impermanence, is the first sign of emptiness. Sometimes, the interdependence of phenomena leads to ultimate reality, which is nothing but emptiness, e.g., a rainbow, which is an effect due to the function of ‘sun rays,’ ‘rain,’ and ‘time.’ In light of the above, to achieve decision-making for the global desirability of garment design, the coexistence of artistic and technical creativity must achieve an object of correct perception, i.e., ultimate reality. This paper mentions the decision-making technique as semiotic engineering, both subjective and objective.

Keywords: global desirability, social desirability, comfort desirability, handle desirability, overall desirability

Procedia PDF Downloads 7
2060 The Effect of Artificial Intelligence on Urbanism, Architecture and Environmental Conditions

Authors: Abanoub Rady Shaker Saleb

Abstract:

Nowadays, design and architecture are being affected and underwent change with the rapid advancements in technology, economics, politics, society and culture. Architecture has been transforming with the latest developments after the inclusion of computers into design. Integration of design into the computational environment has revolutionized the architecture and new perspectives in architecture have been gained. The history of architecture shows the various technological developments and changes in which the architecture has transformed with time. Therefore, the analysis of integration between technology and the history of the architectural process makes it possible to build a consensus on the idea of how architecture is to proceed. In this study, each period that occurs with the integration of technology into architecture is addressed within historical process. At the same time, changes in architecture via technology are identified as important milestones and predictions with regards to the future of architecture have been determined. Developments and changes in technology and the use of technology in architecture within years are analyzed in charts and graphs comparatively. The historical process of architecture and its transformation via technology are supported with detailed literature review and they are consolidated with the examination of focal points of 20th-century architecture under the titles; parametric design, genetic architecture, simulation, and biomimicry. It is concluded that with the historical research between past and present; the developments in architecture cannot keep up with the advancements in technology and recent developments in technology overshadow the architecture, even the technology decides the direction of architecture. As a result, a scenario is presented with regards to the reach of technology in the future of architecture and the role of the architect.

Keywords: design and development the information technology architecture, enterprise architecture, enterprise architecture design result, TOGAF architecture development method (ADM)

Procedia PDF Downloads 68
2059 Effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management Solutions

Authors: Tesfaye Mengistu

Abstract:

This thesis aims to investigate the effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management solutions. The study explores the potential of Model Free RL approaches, such as Monte Carlo RL and Q-learning, to improve energy management by autonomously adjusting energy management strategies to maximize efficiency. The research investigates the implementation of RL algorithms for optimizing energy consumption in a single-agent environment. The focus is on developing a framework for the implementation of RL algorithms, highlighting the importance of RL for enabling autonomous systems to adapt quickly to changing conditions and make decisions based on previous experiences. Moreover, the paper proposes RL as a novel energy management solution to address nations' CO2 emission goals. Reinforcement learning algorithms are well-suited to solving problems with sequential decision-making patterns and can provide accurate and immediate outputs to ease the planning and decision-making process. This research provides insights into the challenges and opportunities of using RL for energy management solutions and recommends further studies to explore its full potential. In conclusion, this study provides valuable insights into how RL can be used to improve the efficiency of energy management systems and supports the use of RL as a promising approach for developing autonomous energy management solutions in residential buildings.

Keywords: artificial intelligence, reinforcement learning, monte carlo, energy management, CO2 emission

Procedia PDF Downloads 80
2058 Transforming Public Administration in the Digital Era: Challenges and Opportunities

Authors: Catalina Oana Dumitrescu, Andreea L. Drugau-constantin

Abstract:

In the digital age, public administration is facing profound change, fueled by technological advances and the growing demands of citizens for efficient, accessible and transparent services. This paper explores how new digital technologies – including artificial intelligence, blockchain, big data and e-governance solutions – are reshaping the functioning of public administrations globally. In addition to the obvious opportunities to streamline and optimize processes, digital transformation brings with it major challenges, such as cyber security, personal data protection, resistance to change and the need to develop new skills for employees. The paper aims to provide a discussion platform for public administration experts, policy makers and technology innovators to consider how governments can balance the benefits and risks of digital transformation. Topics such as the reconfiguration of administrative processes, the creation of interoperable government systems, the involvement of citizens in public decisions through digital platforms, and solutions for reducing the digital gap between developed and developing regions will be addressed. In conclusion, the digital transformation of public administration is not only an opportunity for modernization, but also a necessity to respond to the new demands and challenges of contemporary society. This paper will provide new insights into the role of technology in improving the quality of governance and public services.

Keywords: public administration, digital ERA, technology, government systems, global

Procedia PDF Downloads 14
2057 Photoleap: An AI-Powered Photo Editing App with Advanced Features and User Satisfaction Analysis

Authors: Joud Basyouni, Rama Zagzoog, Mashael Al Faleh, Jana Alireza

Abstract:

AI is changing many fields and speeding up tasks that used to take a long time. It used to take too long to edit photos. However, many AI-powered apps make photo editing, automatic effects, and animations much easier than other manual editing apps with no AI. The mobile app Photoleap edits photos and creates digital art using AI. Editing photos with text prompts is also becoming a standard these days with the help of apps like Photoleap. Now, users can change backgrounds, add animations, turn text into images, and create scenes with AI. This project report discusses the photo editing app's history and popularity. Photoleap resembles Photoshop, Canva, Photos, and Pixlr. The report includes survey questions to assess Photoleap user satisfaction. The report describes Photoleap's features and functions with screenshots. Photoleap uses AI well. Charts and graphs show Photoleap user ratings and comments from the survey. This project found that most Photoleap users liked how well it worked, was made, and was easy to use. People liked changing photos and adding backgrounds. Users can create stunning photo animations. A few users dislike the app's animations, AI art, and photo effects. The project report discusses the app's pros and cons and offers improvements.

Keywords: artificial intelligence, photoleap, images, background, photo editing

Procedia PDF Downloads 58
2056 Analysis on Greenhouse Gas Emissions Potential by Deploying the Green Cars in Korean Road Transport Sector

Authors: Sungjun Hong, Yanghon Chung, Nyunbae Park, Sangyong Park

Abstract:

South Korea, as the 7th largest greenhouse gas emitting country in 2011, announced that the national reduction target of greenhouse gas emissions was 30% based on BAU (Business As Usual) by 2020. And the reduction rate of the transport sector is 34.3% which is the highest figure among all sectors. This paper attempts to analyze the environmental effect on deploying the green cars in Korean road transport sector. In order to calculate the greenhouse gas emissions, the LEAP model is applied in this study.

Keywords: green car, greenhouse gas, LEAP model, road transport sector

Procedia PDF Downloads 613
2055 Genetic-Environment Influences on the Cognitive Abilities of 6-to-8 Years Old Twins

Authors: Annu Panghal, Bimla Dhanda

Abstract:

This research paper aims to determine the genetic-environment influences on the cognitive abilities of twins. Using the 100 pairs of twins from two districts, namely: Bhiwani (N = 90) and Hisar (N = 110) of Haryana State, genetic and environmental influences were assessed in twin study design. The cognitive abilities of twins were measured using the Wechsler Intelligence Scale for Children (WISC-R). Home Observation for Measurement of the Environment (HOME) Inventory was taken to examine the home environment of twins. Heritability estimate was used to analyze the genes contributing to shape the cognitive abilities of twins. The heritability estimates for cognitive abilities of 6-7 years old twins in Hisar district were 74% and in Bhiwani District 76%. Further the heritability estimates were 64% in the twins of Hisar district and 60 in Bhiwani district % in the age group of 7-8 years. The remaining variations in the cognitive abilities of twins were due to environmental factors namely: provision for Active Stimulation, paternal involvement, safe physical environment. The findings provide robust evidence that the cognitive abilities were more influenced by genes than the environmental factors and also revealed that the influence of genetic was more in the age group 6-7 years than the age group 7-8 years. The conclusion of the heritability estimates indicates that the genetic influence was more in the age group of 6-7 years than the age group of 7-8 years. As the age increases the genetic influence decreases and environment influence increases. Mother education was strongly associated with the cognitive abilities of twins.

Keywords: genetics, heritability, twins, environment, cognitive abilities

Procedia PDF Downloads 137
2054 Modeling the Philippine Stock Exchange Index Closing Value Using Artificial Neural Network

Authors: Frankie Burgos, Emely Munar, Conrado Basa

Abstract:

This paper aimed at developing an artificial neural network (ANN) model specifically for the Philippine Stock Exchange index closing value. The inputs to the ANN are US Dollar and Philippine Peso(USD-PHP) exchange rate, GDP growth of the country, quarterly inflation rate, 10-year bond yield, credit rating of the country, previous open, high, low, close values and volume of trade of the Philippine Stock Exchange Index (PSEi), gold price of the previous day, National Association of Securities Dealers Automated Quotations (NASDAQ), Standard and Poor’s 500 (S & P 500) and the iShares MSCI Philippines ETF (EPHE) previous closing value. The target is composed of the closing value of the PSEi during the 627 trading days from November 3, 2011, to May 30, 2014. MATLAB’s Neural Network toolbox was employed to create, train and simulate the network using multi-layer feed forward neural network with back-propagation algorithm. The results satisfactorily show that the neural network developed has the ability to model the PSEi, which is affected by both internal and external economic factors. It was found out that the inputs used are the main factors that influence the movement of the PSEi closing value.

Keywords: artificial neural networks, artificial intelligence, philippine stocks exchange index, stocks trading

Procedia PDF Downloads 296
2053 Physics of Decision for Polling Place Management: A Case Study from the 2020 USA Presidential Election

Authors: Nafe Moradkhani, Frederick Benaben, Benoit Montreuil, Ali Vatankhah Barenji, Dima Nazzal

Abstract:

In the context of the global pandemic, the practical management of the 2020 presidential election in the USA was a strong concern. To anticipate and prepare for this election accurately, one of the main challenges was to confront (i) forecasts of voter turnout, (ii) capacities of the facilities and, (iii) potential configuration options of resources. The approach chosen to conduct this anticipative study consists of collecting data about forecasts and using simulation models to work simultaneously on resource allocation and facility configuration of polling places in Fulton County, Georgia’s largest county. A polling place is a dedicated facility where voters cast their ballots in elections using different devices. This article presents the results of the simulations of such places facing pre-identified potential risks. These results are oriented towards the efficiency of these places according to different criteria (health, trust, comfort). Then a dynamic framework is introduced to describe risks as physical forces perturbing the efficiency of the observed system. Finally, the main benefits and contributions resulting from this simulation campaign are presented.

Keywords: performance, decision support, simulation, artificial intelligence, risk management, election, pandemics, information system

Procedia PDF Downloads 151
2052 Assignment of Airlines Technical Members under Disruption

Authors: Walid Moudani

Abstract:

The Crew Reserve Assignment Problem (CRAP) considers the assignment of the crew members to a set of reserve activities covering all the scheduled flights in order to ensure a continuous plan so that operations costs are minimized while its solution must meet hard constraints resulting from the safety regulations of Civil Aviation as well as from the airlines internal agreements. The problem considered in this study is of highest interest for airlines and may have important consequences on the service quality and on the economic return of the operations. In this communication, a new mathematical formulation for the CRAP is proposed which takes into account the regulations and the internal agreements. While current solutions make use of Artificial Intelligence techniques run on main frame computers, a low cost approach is proposed to provide on-line efficient solutions to face perturbed operating conditions. The proposed solution method uses a dynamic programming approach for the duties scheduling problem and when applied to the case of a medium airline while providing efficient solutions, shows good potential acceptability by the operations staff. This optimization scheme can then be considered as the core of an on-line Decision Support System for crew reserve assignment operations management.

Keywords: airlines operations management, combinatorial optimization, dynamic programming, crew scheduling

Procedia PDF Downloads 353
2051 Profiling on the Holistic Identity of Malaysian Gifted Learners

Authors: Rorlinda Yusof, Siti Aishah Hassan, Afifah Mohamad Radzi, Mohd Hakimie Zainal Abidin, Amran Rasli, Inderbir Sandhu

Abstract:

The purpose of this study is to examine the self-identities of gifted and talented students and the relationship between self-identity and academic accomplishment. A random sample of 300 students enrolled in a secondary education programme at the Pusat GENIUS@pintar Negara was chosen as respondents of a 151-item holistic-identity component development tool. The validity of the instrument was assessed using Principal Components Analysis and Factor Analysis via an inter-Item Correlation Matrix (Loading values 0.44 to 0.86), which resulted in the formation of eight dimensions. The Cronbach's Alpha was calculated to determine the instrument's reliability (the overall result was 0.98). The results showed that students' holistic-identity profiles were relatively high (mean=4.09, standard deviation=0.449). In addition, spiritual identity received the greatest mean score (4.34) out of the eight components of identity investigated, while leadership identity received the lowest mean score (3.88). A conceptual framework for Islamic school leadership is recommended to implement spiritual values without differentiation to harmonize spiritual and intellectual intelligence among all the students. Some benchmarking studies with other centres for gifted and talented students are recommended for further research.

Keywords: holistic self-identity, academic achievement, self-development programme, counselling services, gifted and talented students

Procedia PDF Downloads 111
2050 Innovating and Disrupting Higher Education: The Evolution of Massive Open Online Courses

Authors: Nabil Sultan

Abstract:

A great deal has been written on Massive Open Online Courses (MOOCs) since 2012 (considered by some as the year of the MOOCs). The emergence of MOOCs caused a great deal of interest amongst academics and technology experts as well as ordinary people. Some of the authors who wrote on MOOCs perceived it as the next big thing that will disrupt education. Other authors saw it as another fad that will go away once it ran its course (as most fads often do). But MOOCs did not turn out to be a fad and it is still around. Most importantly, they evolved into something that is beginning to look like a viable business model. This paper explores this phenomenon within the theoretical frameworks of disruptive innovations and jobs to be done as developed by Clayton Christensen and his colleagues and its implications for the future of higher education (HE).

Keywords: MOOCs, disruptive innovations, higher education, jobs theory

Procedia PDF Downloads 269
2049 Online Handwritten Character Recognition for South Indian Scripts Using Support Vector Machines

Authors: Steffy Maria Joseph, Abdu Rahiman V, Abdul Hameed K. M.

Abstract:

Online handwritten character recognition is a challenging field in Artificial Intelligence. The classification success rate of current techniques decreases when the dataset involves similarity and complexity in stroke styles, number of strokes and stroke characteristics variations. Malayalam is a complex south indian language spoken by about 35 million people especially in Kerala and Lakshadweep islands. In this paper, we consider the significant feature extraction for the similar stroke styles of Malayalam. This extracted feature set are suitable for the recognition of other handwritten south indian languages like Tamil, Telugu and Kannada. A classification scheme based on support vector machines (SVM) is proposed to improve the accuracy in classification and recognition of online malayalam handwritten characters. SVM Classifiers are the best for real world applications. The contribution of various features towards the accuracy in recognition is analysed. Performance for different kernels of SVM are also studied. A graphical user interface has developed for reading and displaying the character. Different writing styles are taken for each of the 44 alphabets. Various features are extracted and used for classification after the preprocessing of input data samples. Highest recognition accuracy of 97% is obtained experimentally at the best feature combination with polynomial kernel in SVM.

Keywords: SVM, matlab, malayalam, South Indian scripts, onlinehandwritten character recognition

Procedia PDF Downloads 574
2048 Decision Support Tool for Water Re-used Systems

Authors: Katarzyna Pawęska, Aleksandra Bawiec, Ewa Burszta-Adamiak, Wiesław Fiałkiewicz

Abstract:

The water shortage becomes a serious problem not only in African and Middle Eastern countries, but also recently in the European Union. Scarcity of water means that not all agricultural, industrial and municipal needs will be met. When the annual availability of renewable freshwater per capita is less than 1,700 cubic meters, countries begin to experience periodic or regular water shortages. The phenomenon of water stress is the result of an imbalance between the constantly growing demand for water and its availability. The constant development of industry, population growth, and climate changes make the situation even worse. The search for alternative water sources and independent supplies is becoming a priority for many countries. Data enabling the assessment of country’s condition regarding water resources, water consumption, water price, wastewater volume, forecasted climate changes e.g. temperature, precipitation, are scattered and their interpretation by common entrepreneurs may be difficult. For this purpose, a digital tool has been developed to support decisions related to the implementation of water and wastewater re-use systems, as a result of an international research project “Framework for organizational decision-making process in water reuse for smart cities” (SMART-WaterDomain) funded under the EIG-CONCERT Japan call on Smart Water Management for Sustainable Society. The developed geo-visualization tool graphically presents, among others, data about the capacity of wastewater treatment plants and the volume of water demand in the private and public sectors for Poland, Germany, and the Czech Republic. It is expected that such a platform, extended with economical water management data and climate forecasts (temperature, precipitation), will allow in the future independent investigation and assessment of water use rate and wastewater production on the local and regional scale. The tool is a great opportunity for small business owners, entrepreneurs, farmers, local authorities, and common users to analyze the impact of climate change on the availability of water in the regions of their business activities. Acknowledgments: The authors acknowledge the support of the Project Organisational Decision Making in Water Reuse for Smart Cities (SMART- WaterDomain), funded by The National Centre for Research and Development and supported by the EIG-Concert Japan.

Keywords: circular economy, digital tool, geo-visualization, wastewater re-use

Procedia PDF Downloads 56
2047 A Software Product Engineering Process for Commercial Success in Start-Up and Cases

Authors: Javed Ahsan

Abstract:

Software engineers strive for technical sophistication with a dream of finding commercial success in their start-up business. But they may find their much technically sophisticated software products failing in industry in competition with lesser sophisticated products. This is because of not maintaining a clear focus on complimenting and leading commercial success through technical sophistication. This can be achieved through a software engineering specific product development process suggested in this paper. This process is about evolving a software product through specific phases and iterations until commercial triumph falls on software engineer’s feet.

Keywords: software, product, engineering, commercialization, start-up, competitiveness, industry

Procedia PDF Downloads 354
2046 Employing Operations Research at Universities to Build Management Systems

Authors: Abdallah A. Hlayel

Abstract:

Operations research science (OR) deals with good success in developing and applying scientific methods for problem solving and decision-making. However, by using OR techniques, we can enhance the use of computer decision support systems to achieve optimal management for institutions. OR applies comprehensive analysis including all factors that affect on it and builds mathematical modeling to solve business or organizational problems. In addition, it improves decision-making and uses available resources efficiently. The adoption of OR by universities would definitely contributes to the development and enhancement of the performance of OR techniques. This paper provides an understanding of the structures, approaches and models of OR in problem solving and decision-making.

Keywords: best candidates' method, decision making, decision support system, operations research

Procedia PDF Downloads 443
2045 Modeling Optimal Lipophilicity and Drug Performance in Ligand-Receptor Interactions: A Machine Learning Approach to Drug Discovery

Authors: Jay Ananth

Abstract:

The drug discovery process currently requires numerous years of clinical testing as well as money just for a single drug to earn FDA approval. For drugs that even make it this far in the process, there is a very slim chance of receiving FDA approval, resulting in detrimental hurdles to drug accessibility. To minimize these inefficiencies, numerous studies have implemented computational methods, although few computational investigations have focused on a crucial feature of drugs: lipophilicity. Lipophilicity is a physical attribute of a compound that measures its solubility in lipids and is a determinant of drug efficacy. This project leverages Artificial Intelligence to predict the impact of a drug’s lipophilicity on its performance by accounting for factors such as binding affinity and toxicity. The model predicted lipophilicity and binding affinity in the validation set with very high R² scores of 0.921 and 0.788, respectively, while also being applicable to a variety of target receptors. The results expressed a strong positive correlation between lipophilicity and both binding affinity and toxicity. The model helps in both drug development and discovery, providing every pharmaceutical company with recommended lipophilicity levels for drug candidates as well as a rapid assessment of early-stage drugs prior to any testing, eliminating significant amounts of time and resources currently restricting drug accessibility.

Keywords: drug discovery, lipophilicity, ligand-receptor interactions, machine learning, drug development

Procedia PDF Downloads 108
2044 The Impact of Motivation on Employee Performance in South Korea

Authors: Atabong Awung Lekeazem

Abstract:

The purpose of this paper is to identify the impact or role of incentives on employee’s performance with a particular emphasis on Korean workers. The process involves defining and explaining the different types of motivation. In defining them, we also bring out the difference between the two major types of motivations. The second phase of the paper shall involve gathering data/information from a sample population and then analyzing the data. In the analysis, we shall get to see the almost similar mentality or value which Koreans attach to motivation, which a slide different view coming only from top management personnel. The last phase shall have us presenting the data and coming to a conclusion from which possible knowledge on how managers and potential managers can ignite the best out of their employees.

Keywords: motivation, employee’s performance, Korean workers, business information systems

Procedia PDF Downloads 412
2043 Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.

Keywords: probability-based damage detection (PBDD), Kriging, surrogate modeling, uncertainty quantification, artificial intelligence, enhanced ideal gas molecular movement (EIGMM)

Procedia PDF Downloads 238
2042 Forecasting Future Demand for Energy Efficient Vehicles: A Review of Methodological Approaches

Authors: Dimitrios I. Tselentis, Simon P. Washington

Abstract:

Considerable literature has been focused over the last few decades on forecasting the consumer demand of Energy Efficient Vehicles (EEVs). These methodological issues range from how to capture recent purchase decisions in revealed choice studies and how to set up experiments in stated preference (SP) studies, and choice of analysis method for analyzing such data. This paper reviews the plethora of published studies on the field of forecasting demand of EEVs since 1980, and provides a review and annotated bibliography of that literature as it pertains to this particular demand forecasting problem. This detailed review addresses the literature not only to Transportation studies, but specifically to the problem and methodologies around forecasting to the time horizons of planning studies which may represent 10 to 20 year forecasts. The objectives of the paper are to identify where existing gaps in literature exist and to articulate where promising methodologies might guide longer term forecasting. One of the key findings of this review is that there are many common techniques used both in the field of new product demand forecasting and the field of predicting future demand for EEV. Apart from SP and RP methods, some of these new techniques that have emerged in the literature in the last few decades are survey related approaches, product diffusion models, time-series modelling, computational intelligence models and other holistic approaches.

Keywords: demand forecasting, Energy Efficient Vehicles (EEVs), forecasting methodologies review, methodological approaches

Procedia PDF Downloads 488
2041 Evaluating Models Through Feature Selection Methods Using Data Driven Approach

Authors: Shital Patil, Surendra Bhosale

Abstract:

Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.

Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE

Procedia PDF Downloads 116
2040 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance

Procedia PDF Downloads 159
2039 The Impact of the Covid-19 Pandemic on Marine-Wildlife Tourism in Massachusetts, United States

Authors: K. C. Bloom, Cynde McInnis

Abstract:

The Covid-19 pandemic has caused immense changes in the way that we live, work and travel. The impact of these changes is readily apparent in tourism to Massachusetts and the region of New England. Whereas, in general, Massachusetts and New England are a hotspot for travelers from around the world, this form of travel has largely been shut down due to the pandemic. One such area where the impact has been felt is in marine-based wildlife tourism. Massachusetts is home to not only whales but also seals and great white sharks. Prior to the pandemic, whale watching had long been a popular activity while seal and shark tourism has been a developing one. Given that seeing a great white shark was rare in New England for many years, shark tourism has not played a role in the economies of the region until recently. While whales have steadily been found within the marine environments of Massachusetts and whale watching has been a popular attraction since the mid-1970s, the lack of great white sharks in New England was, in part, a response to a change in their environment in that a favorite food source, the gray seals, were culled by regional fishermen as the fishermen believed that seals were taking their catch. This retaliatory behavior ended when the Marine Mammal Protection Act of 1972 (MMPA) was passed. The MMPA prohibited the killing of seals and since then the seal population has increased to traditional numbers (Tech Times, 2014). Given the increase in the seal population in New England, and especially Cape Cod, Massachusetts, there has been a similar increase in the numbers of great white sharks. In fact, over the time between 2004 and 2014, the number of sightings increased from an average of two per year to more than 20 (NY Post, 7/21/14). This has increased even more over the last six years. As a result, residents and businesses in Massachusetts have begun to embrace the great whites as a potential tourism draw. Local business owners are considering opening up cage diving and shark viewing businesses while there has also been an increase in shark-related merchandise throughout the Cape Cod region. Combined with a large whale watching industry, marine-based wildlife tourism is big business to Massachusetts. With the Covid-19 pandemic shuttering international travel, this study aims to look at the impacts of the pandemic on this industry. Through interviews with marine-based wildlife tourism businesses as well as survey data collection from visitors, this study looks at the holistic impacts of the Covid-19 pandemic on an important part of the marine tourism industry in the state.

Keywords: marine tourism, ecotourism, Covid, wildlife

Procedia PDF Downloads 155
2038 The Role of Microfinance in Economic Development

Authors: Babak Salekmahdy

Abstract:

Microfinance is often seen as a means of repairing credit markets and unleashing the potential contribution of impoverished people who rely on self-employment. Since the 1990s, the microfinance industry has expanded rapidly, opening the path for additional kinds of social entrepreneurship and social investment. However, current data indicate relatively few average consumer effects, opposing pushback against microfinance. This research reconsiders microfinance statements, stressing the variety of data on impacts and the essential (but limited) role of reimbursements. The report finishes by explaining a shift in thinking: from microfinance as a strictly defined enterprise finance to microfinance as a more widely defined home finance. Microfinance, under this perspective, provides advantages by providing liquidity for various requirements rather than just by increasing income.

Keywords: microfinance, small business, economic development, credit markets

Procedia PDF Downloads 81
2037 Evaluating Data Maturity in Riyadh's Nonprofit Sector: Insights Using the National Data Maturity Index (NDI)

Authors: Maryam Aloshan, Imam Mohammad Ibn Saud, Ahmad Khudair

Abstract:

This study assesses the data governance maturity of nonprofit organizations in Riyadh, Saudi Arabia, using the National Data Maturity Index (NDI) framework developed by the Saudi Data and Artificial Intelligence Authority (SDAIA). Employing a survey designed around the NDI model, data maturity levels were evaluated across 14 dimensions using a 5-point Likert scale. The results reveal a spectrum of maturity levels among the organizations surveyed: while some medium-sized associations reached the ‘Defined’ stage, others, including large associations, fell within the ‘Absence of Capabilities’ or ‘Building’ phases, with no organizations achieving the advanced ‘Established’ or ‘Pioneering’ levels. This variation suggests an emerging recognition of data governance but underscores the need for targeted interventions to bridge the maturity gap. The findings point to a significant opportunity to elevate data governance capabilities in Saudi nonprofits through customized capacity-building initiatives, including training, mentorship, and best practice sharing. This study contributes valuable insights into the digital transformation journey of the Saudi nonprofit sector, aligning with national goals for data-driven governance and organizational efficiency.

Keywords: nonprofit organizations-national data maturity index (NDI), Saudi Arabia- SDAIA, data governance, data maturity

Procedia PDF Downloads 13
2036 Current Issues on Enterprise Architecture Implementation Evaluation

Authors: Fatemeh Nikpay, Rodina Binti Ahmad, Babak Darvish Rouhani

Abstract:

Enterprise Architecture (EA) is employed by enterprises for providing integrated Information Systems (ISs) in order to support alignment of their business and Information Technology (IT). Evaluation of EA implementation can support enterprise to reach intended goals. There are some problems in current evaluation methods of EA implementation that lead to ineffectiveness implementation of EA. This paper represents current issues on evaluation of EA implementation. In this regard, we set the framework in order to represent evaluation’s issues based on their functionality and structure. The results of this research not only increase the knowledge of evaluation, but also could be useful for both academics and practitioners in order to realize the current situation of evaluations.

Keywords: current issues on EA implementation evaluation, evaluation, enterprise architecture, evaluation of enterprise architecture implementation

Procedia PDF Downloads 525
2035 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma

Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu

Abstract:

The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.

Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter

Procedia PDF Downloads 99
2034 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification

Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang

Abstract:

One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.

Keywords: malware detection, network security, targeted attack, computational intelligence

Procedia PDF Downloads 263
2033 The Effect of Artificial Intelligence on the Production of Agricultural Lands and Labor

Authors: Ibrahim Makram Ibrahim Salib

Abstract:

Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.

Keywords: agriculture land, agriculture land loss, Kabul city, urban land expansion, urbanization agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models drone, precision agriculture, farmer income

Procedia PDF Downloads 72