Search results for: artificial market
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5467

Search results for: artificial market

3067 Strategic Management of a Geoscience Education and Training Program

Authors: Lee Ock-Sun

Abstract:

The effective development of a geoscience education and training program takes account of the rapidly changing environment in the geoscience market, includes information about resource-rich countries which have international education demands. In this paper, we introduce the geoscience program run bythe International School for Geoscience Resources at the Korea Institute of Geoscience and Mineral Resources (IS-Geo of KIGAM),and show its remarkable performance. To further effective geoscience program planning and operation, we present recommendations for strategic management for customer-oriented operation with a more favorable program format and advanced training aids. Above all, the IS-Geo of KIGAM should continue improve through‘plan-do-see-feedback’activities based on the recommendations.

Keywords: demand survey, geoscience program, program performance, strategic management

Procedia PDF Downloads 447
3066 Characteristics of Technology Infrastructure in Small Firms

Authors: Davinder Singh, Jaimal Singh Khamba, Tarun Nanda

Abstract:

Growth of the Indian economy has accelerated to 8% and efforts are on to further propel it to 10%. Undoubtedly, all the segments of the economy, viz. agriculture, industry and services have to improve their contribution to the economy. Growth of Micro-small and medium enterprises (MSMEs) is a sine qua non for the growth of industry, exports and other segments of the economy. Furthermore, promotion of entrepreneurship is also vital for sustenance and upward movement of the current growth trajectory of the economy. The MSME sector acts as a catalyst in upholding and encouraging the creation of the innovative spirit and entrepreneurship in the economy, thereby helping in laying the foundation for rapid industrial development. In this competitive world, they need to be able to confront the increasing competition from developed and emerging economies and to plug into the new market opportunities.

Keywords: characteristics, management, MSMEs, technology infrastructure

Procedia PDF Downloads 644
3065 A Chemical Perspective to Nineteenth-Century Female Medical Pioneers: Utilizing Mass Spectrometry in the Museum Space

Authors: Elizabeth R. LaFave, Grayson Sink, Anna Vassallo, Samantha Mills, Eli G. Hvastkovs

Abstract:

Throughout history and into modern times, the continuation of male influence over female healthcare has created inadequacies in availability and access to treatments, often further limited in rural communities. The historical plight of women in healthcare can be understood by studying the advancements made by women in the field, both through their career arcs and by delving into the treatments they offer. An early example is the case of Martha Ballard (1735-1812), a midwife in New York who practiced when female practitioners were dismissed in favor of less educated male physicians, which was a well-accepted practice into the twentieth century. In order to overcome these setbacks, a strategy used by some female practitioners was to develop and market their own remedies in an attempt to better serve female patients. By highlighting the compromises and social manipulation of female entrepreneurs, in comparison with the medicines they developed and used, we can map their ability to carve a specific niche for themselves and their targeted customers. The application of modern chemical approaches in a historical context serves to enhance a variety of perspectives within the museum sphere necessary for the comprehension and understanding of the female plight in both medical care and service. In order to further examine the overall bias and scrutiny for women in the medical field, specifically those undertaking entrepreneurial roles, examples of alternative remedies from female founders will be analyzed utilizing these approaches. Modern analytical chemistry techniques, specifically mass spectrometry (MS), have been successful in offering compositional analyses for both labeled and unlabeled ingredients in old medicines. Previously, we have analyzed two forms of alternative treatment options created by male medical professionals to address lingering historical questions of purity and validity. Although primarily sugar based, both Humphreys’ Specifics and Boericke & Tafel remedies also contained unique ingredients, albeit in small quantities, with medicinal properties. Here, we applied the same methodology to study another highly politicized 19th-century debate surrounding the contribution and role of women in the medical profession through analyzing three remedies, each from a different female-led manufacturing company; Mrs. Joe Persons, Lydia Pinkham, and Winslow’s Syrups. Following MS analyses for both labeled and unlabeled ingredients, both Winslow’s and Pinkham’s remedies were similar to their male counterparts in advertisement strategy, targeted customer base, and overall composition of remedy (primarily sugar-based with small amounts of unique ingredients). In effect, these unbiased chemical assessments are used to dissect the rationality of both market and physician criticism for each individual manufacturer through assessment of authenticity, benefaction, and comparison among female entrepreneurs and their aims to enter the medical community (i.e., geographic location, market size). Our work aims to increase collaboration between STEM (Science, Technology, Engineering, Mathematics)-based fields and historical museum studies on a larger scale while also answering questions of potential bias towards females in the medical community as means of comparison to their male counterparts and in-depth historical analyses to unravel individual strategies to overcome the setback.

Keywords: nineteenth-century medicine, alternative remedies, female healthcare, chemical analyses, mass spectrometry

Procedia PDF Downloads 91
3064 Development of Electromyography (EMG) Signal Acquisition System by Simple Electronic Circuits

Authors: Divya Pradip Roy, Md. Zahirul Alam Chowdhury

Abstract:

Electromyography (EMG) sensors are generally used to record the electrical activity produced by skeletal muscles. The conventional EMG sensors available in the market are expensive. This research suggests a low cost EMG sensor design which can be built with simple devices within our reach. In this research, one instrumentation amplifier, two high pass filters, two low pass filters and an inverting amplifier is connected sequentially. The output from the circuit exhibits electrical potential generated by the muscle cells when they are neurologically activated. This electromyography signal is used to control prosthetic devices, identifying neuromuscular diseases and for various other purposes.

Keywords: EMG, high pass filter, instrumentation amplifier, inverting amplifier, low pass filter, neuromuscular

Procedia PDF Downloads 181
3063 Engineered Control of Bacterial Cell-to-Cell Signaling Using Cyclodextrin

Authors: Yuriko Takayama, Norihiro Kato

Abstract:

Quorum sensing (QS) is a cell-to-cell communication system in bacteria to regulate expression of target genes. In gram-negative bacteria, activation on QS is controlled by a concentration increase of N-acylhomoserine lactone (AHL), which can diffuse in and out of the cell. Effective control of QS is expected to avoid virulence factor production in infectious pathogens, biofilm formation, and antibiotic production because various cell functions in gram-negative bacteria are controlled by AHL-mediated QS. In this research, we applied cyclodextrins (CDs) as artificial hosts for the AHL signal to reduce the AHL concentration in the culture broth below its threshold for QS activation. The AHL-receptor complex induced under the high AHL concentration activates transcription of the QS-target gene. Accordingly, artificial reduction of the AHL concentration is one of the effective strategies to inhibit the QS. A hydrophobic cavity of the CD can interact with the acyl-chain of the AHL due to hydrophobic interaction in aqueous media. We studied N-hexanoylhomoserine lactone (C6HSL)-mediated QS in Serratia marcescens; accumulation of C6HSL is responsible for regulation of the expression of pig cluster. Inhibitory effects of added CDs on QS were demonstrated by determination of prodigiosin amount inside cells after reaching stationary phase, because production of prodigiosin depends on the C6HSL-mediated QS. By adding approximately 6 wt% hydroxypropyl-β-CD (HP-β-CD) in Luria-Bertani (LB) medium prior to inoculation of S. maecescens AS-1, the intracellularly accumulated prodigiosin was drastically reduced to 7-10%, which was determined after the extraction of prodigiosin in acidified ethanol. The AHL retention ability of HP-β-CD was also demonstrated by Chromobacterium violacuem CV026 bioassay. The CV026 strain is an AHL-synthase defective mutant that activates QS solely by adding AHLs from outside of cells. A purple pigment violacein is induced by activation of the AHL-mediated QS. We demonstrated that the violacein production was effectively suppressed when the C6HSL standard solution was spotted on a LB agar plate dispersing CV026 cells and HP-β-CD. Physico-chemical analysis was performed to study the affinity between the immobilized CD and added C6HSL using a quartz crystal microbalance (QCM) sensor. The COOH-terminated self-assembled monolayer was prepared on a gold electrode of 27-MHz AT-cut quartz crystal. Mono(6-deoxy-6-N, N-diethylamino)-β-CD was immobilized on the electrode using water-soluble carbodiimide. The C6HSL interaction with the β-CD cavity was studied by injecting the C6HSL solution to a cup-type sensor cell filled with buffer solution. A decrement of resonant frequency (ΔFs) clearly showed the effective C6HSL complexation with immobilized β-CD and its stability constant for MBP-SpnR-C6HSL complex was on the order of 102 M-1. The CD has high potential for engineered control of QS because it is safe for human use.

Keywords: acylhomoserine lactone, cyclodextrin, intracellular signaling, quorum sensing

Procedia PDF Downloads 245
3062 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition

Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman

Abstract:

Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.

Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat

Procedia PDF Downloads 150
3061 The Nature of the Complicated Fabric Textures: How to Represent in Primary Visual Cortex

Authors: J. L. Liu, L. Wang, B. Zhu, J. Zhou, W. D. Gao

Abstract:

Fabric textures are very common in our daily life. However, we never explore the representation of fabric textures from neuroscience view. Theoretical studies suggest that primary visual cortex (V1) uses a sparse code to efficiently represent natural images. However, how the simple cells in V1 encode the artificial textures is still a mystery. So, here we will take fabric texture as stimulus to study the response of independent component analysis that is established to model the receptive field of simple cells in V1. Experimental results based on 140 classical fabric images indicate that the receptive fields of simple cells have obvious selectivity in orientation, frequency, and phase when drifting gratings are used to determine their tuning properties. Additionally, the distribution of optimal orientation and frequency shows that the patch size selected from each original fabric image has a significant effect on the frequency selectivity.

Keywords: fabric texture, receptive filed, simple cell, spare coding

Procedia PDF Downloads 477
3060 Electronic Tongue as an Innovative Non-Destructive Tool for the Quality Monitoring of Fruits

Authors: Mahdi Ghasemi-Varnamkhasti, Ayat Mohammad-Razdari, Seyedeh-Hoda Yoosefian

Abstract:

Taste is an important sensory property governing acceptance of products for administration through mouth. The advent of artificial sensorial systems as non-destructive tools able to mimic chemical senses such as those known as electronic tongue (ET) has open a variety of practical applications and new possibilities in many fields where the presence of taste is the phenomenon under control. In recent years, electronic tongue technology opened the possibility to exploit information on taste attributes of fruits providing real time information about quality and ripeness. Electronic tongue systems have received considerable attention in the field of sensor technology during the last two decade because of numerous applications in diverse fields of applied sciences. This paper deals with some facets of this technology in the quality monitoring of fruits along with more recent its applications.

Keywords: fruit, electronic tongue, non-destructive, taste machine, horticultural

Procedia PDF Downloads 263
3059 Data Science/Artificial Intelligence: A Possible Panacea for Refugee Crisis

Authors: Avi Shrivastava

Abstract:

In 2021, two heart-wrenching scenes, shown live on television screens across countries, painted a grim picture of refugees. One of them was of people clinging onto an airplane's wings in their desperate attempt to flee war-torn Afghanistan. They ultimately fell to their death. The other scene was the U.S. government authorities separating children from their parents or guardians to deter migrants/refugees from coming to the U.S. These events show the desperation refugees feel when they are trying to leave their homes in disaster zones. However, data paints a grave picture of the current refugee situation. It also indicates that a bleak future lies ahead for the refugees across the globe. Data and information are the two threads that intertwine to weave the shimmery fabric of modern society. Data and information are often used interchangeably, but they differ considerably. For example, information analysis reveals rationale, and logic, while data analysis, on the other hand, reveals a pattern. Moreover, patterns revealed by data can enable us to create the necessary tools to combat huge problems on our hands. Data analysis paints a clear picture so that the decision-making process becomes simple. Geopolitical and economic data can be used to predict future refugee hotspots. Accurately predicting the next refugee hotspots will allow governments and relief agencies to prepare better for future refugee crises. The refugee crisis does not have binary answers. Given the emotionally wrenching nature of the ground realities, experts often shy away from realistically stating things as they are. This hesitancy can cost lives. When decisions are based solely on data, emotions can be removed from the decision-making process. Data also presents irrefutable evidence and tells whether there is a solution or not. Moreover, it also responds to a nonbinary crisis with a binary answer. Because of all that, it becomes easier to tackle a problem. Data science and A.I. can predict future refugee crises. With the recent explosion of data due to the rise of social media platforms, data and insight into data has solved many social and political problems. Data science can also help solve many issues refugees face while staying in refugee camps or adopted countries. This paper looks into various ways data science can help solve refugee problems. A.I.-based chatbots can help refugees seek legal help to find asylum in the country they want to settle in. These chatbots can help them find a marketplace where they can find help from the people willing to help. Data science and technology can also help solve refugees' many problems, including food, shelter, employment, security, and assimilation. The refugee problem seems to be one of the most challenging for social and political reasons. Data science and machine learning can help prevent the refugee crisis and solve or alleviate some of the problems that refugees face in their journey to a better life. With the explosion of data in the last decade, data science has made it possible to solve many geopolitical and social issues.

Keywords: refugee crisis, artificial intelligence, data science, refugee camps, Afghanistan, Ukraine

Procedia PDF Downloads 75
3058 Antioxidant Extraction from Indonesian Crude Palm Oil and Its Antioxidation Activity

Authors: Supriyono, Sumardiyono, Puti Pertiwi

Abstract:

Crude palm oil (CPO) is a vegetable oil that came from a palm tree bunch. Palm oil tree was known as highest vegetable oil yield. It was grown across Equatorial County, especially in Malaysia and Indonesia. The greenish red color on CPO was came from carotenoid antioxidant, which could be extracted and use separately as functional food and other purposes as antioxidant source. Another antioxidant that also found in CPO is tocopherol. The aim of the research work is to find antioxidant activity on CPO comparing to the synthetic antioxidant that available in a market. On this research work, antioxidant was extracted by using a mixture of acetone and n. hexane, while activity of the antioxidant extract was determine by DPPH method. The extracted matter was shown that their antioxidant activity was about 45% compare to pure tocopherol and beta carotene.

Keywords: antioxidant, , beta carotene, , crude palm oil, , DPPH, , tocopherol

Procedia PDF Downloads 296
3057 Chemical-Induced Mutation for Development of Resistance in Banana cv. Nanjangud rasabale

Authors: H. Kishor, G. Prabhuling, D. S. Ambika, D. P. Prakash

Abstract:

The chemical mutagens have become important tool to enhance agronomic traits of banana crop. It is being used to develop fusarium resistance lines in various susceptible banana cultivars. There are several mutagens like EMS and NaN3 available for banana crop improvement and each mutagen has its own important role as positive or negative effects on growth and development of banana plants. Explants from shoot tip culture were treated with various EMS (0.30, 0.60, 0.90 and 0.12%) and NaN3 (0.01, 0.02 and 0.03%) concentrations. The putative mutants obtained after in vitro rooting were subjected for artificial inoculation of Fusarium oxysporum f.sp. cubense. Screening putative mutants resistance to Panama disease was carried out by using syringe method of inoculation. It was observed that, EMS treated mutants were more susceptible compared to NaN3 treatment. Among the NaN3 doses 0.01% found to produce 3 resistant lines during preliminary screening under greenhouse conditions.

Keywords: Nanjangud rasabale, EMS, NaN3, putative mutants

Procedia PDF Downloads 192
3056 The Impact of Artificial Intelligence on E-Learning

Authors: Sameil Hanna Samweil Botros

Abstract:

The variation of social networking websites inside higher training has garnered enormous hobby in recent years, with numerous researchers thinking about it as a possible shift from the conventional lecture room-based learning paradigm. However, this boom in research and carried out research, but the adaption of SNS-based modules has not proliferated inside universities. This paper commences its contribution with the aid of studying the numerous fashions and theories proposed in the literature and amalgamates together various effective aspects for the inclusion of social technology within e-gaining knowledge. A three-phased framework is similarly proposed, which informs the important concerns for the hit edition of SNS in improving the student's mastering experience. This suggestion outlines the theoretical foundations as a way to be analyzed in sensible implementation across worldwide university campuses.

Keywords: eLearning, institutionalization, teaching and learning, transformation vtuber, ray tracing, avatar agriculture, adaptive, e-learning, technology eLearning, higher education, social network sites, student learning

Procedia PDF Downloads 35
3055 Institutional Segmantation and Country Clustering: Implications for Multinational Enterprises Over Standardized Management

Authors: Jung-Hoon Han, Jooyoung Kwak

Abstract:

Distances between cultures, institutions are gaining academic attention once again since the classical debate on the validity of globalization. Despite the incessant efforts to define international segments with various concepts, no significant attempts have been made considering the institutional dimensions. Resource-based theory and institutional theory provides useful insights in assessing market environment and understanding when and how MNEs loose or gain advantages. This study consists of two parts: identifying institutional clusters and predicting the effect of MNEs’ origin on the applicability of competitive advantages. MNEs in one country cluster are expected to use similar management systems.

Keywords: institutional theory, resource-based theory, institutional environment, cultural dimensions, cluster analysis, standardized management

Procedia PDF Downloads 491
3054 Natural Language News Generation from Big Data

Authors: Bastian Haarmann, Likas Sikorski

Abstract:

In this paper, we introduce an NLG application for the automatic creation of ready-to-publish texts from big data. The fully automatic generated stories have a high resemblance to the style in which the human writer would draw up a news story. Topics may include soccer games, stock exchange market reports, weather forecasts and many more. The generation of the texts runs according to the human language production. Each generated text is unique. Ready-to-publish stories written by a computer application can help humans to quickly grasp the outcomes of big data analyses, save time-consuming pre-formulations for journalists and cater to rather small audiences by offering stories that would otherwise not exist.

Keywords: big data, natural language generation, publishing, robotic journalism

Procedia PDF Downloads 433
3053 Acoustic Performance and Application of Three Personalized Sound-Absorbing Materials

Authors: Fangying Wang, Zhang Sanming, Ni Qian

Abstract:

In recent years, more and more personalized sound absorbing materials have entered the Chinese room acoustical decoration market. The acoustic performance of three kinds of personalized sound-absorbing materials: Flame-retardant Flax Fiber Sound-absorbing Cotton, Eco-Friendly Sand Acoustic Panel and Transparent Micro-perforated Panel (Film) are tested by Reverberation Room Method. The sound absorption characteristic curves show that their performance match for or even exceed the traditional sound absorbing material. Through the application in the actual projects, these personalized sound-absorbing materials also proved their sound absorption ability and unique decorative effect.

Keywords: acoustic performance, application prospect personalized sound-absorbing materials

Procedia PDF Downloads 194
3052 Improving Mathematics and Engineering Interest through Programming

Authors: Geoffrey A. Wright

Abstract:

In an attempt to address shortcomings revealed in international assessments and lamented in legislation, many schools are reducing or eliminating elective courses, applying the rationale that replacing "non-essential" subjects with core subjects, such as mathematics and language arts, will better position students in the global market. However, there is evidence that systematically pairing a core subject with another complementary subject may lead to greater overall learning in both subjects. In this paper, we outline the methods and preliminary findings from a study we conducted analyzing the influence learning programming has on student mathematical comprehension and ability. The purpose of this research is to demonstrate in what ways two subjects might complement each other, and to better understand the principles and conditions that encourage what we call lateral transfer, the synergistic effect that occurs when a learner studies two complementary subjects.

Keywords: programming, engineering, technology, complementary subjects

Procedia PDF Downloads 362
3051 Market Segmentation of Cruise Ship Passengers: Implications for Marketing of Local Products and Services at Destination Points

Authors: Gunnar Oskarsson, Irena Georgsdottir

Abstract:

Tourism has been growing incredibly fast during the past years, including the cruise industry, which is gaining increasing popularity among various groups of travelers. It is a challenging task for companies serving cruise ship passengers with local products and services at the point of destination to reach them in due time with information about their offerings, as well learning how to adapt their offerings and messages to the type of customers arriving on each particular occasion. Although some research has been conducted in this sphere, there is still limited knowledge about many specifics within this sector of the tourist industry. The objective of this research is to examine one of these, with the main goal of studying the segmentation of cruise passengers and to learn about marketing practices directed towards them. A qualitative research method, based on in-depth interviews, was used, as this provides an opportunity to gain insight into the participants’ perspectives. Interviews were conducted with 10 respondents from different companies in the tourist industry in Iceland, who interact with cruise passengers on a regular basis in their work environment. The main objective was to gain an understanding of what distinguishes different customer groups, or segments, in this industry, and of the marketing approaches directed towards them. The main findings reveal that participants note the strongest difference between cruise passengers of different nationalities, passengers coming on different ships (size and type), and passengers arriving at different times of the year. A drastic difference was noticed between nationalities in four main segments, American, British, Other European, and Asian customers, although some of these segments could be divided into even further sub-segments. Other important differencing factors were size and type of ships, quality or number of stars on the ship, and travelling time of the year. Companies serving cruise ship passengers, as well as the customers themselves, could benefit if the offerings of services were designed specifically for particular segments within the industry. Concerning marketing towards cruise passengers, the results indicate that it is carried out almost exclusively through the Internet using; a reliable website and, search engine optimization. Marketing is also by word-of-mouth. This research can assist practitioners by offering a deeper understanding of the approaches that may be effective in marketing local products and services to cruise ship passengers, based on their segmentation and by identifying effective ways to reach them. The research, furthermore, provides a valuable contribution to marketing knowledge for the benefit of an increasingly important market segment in a fast growing tourist industry.

Keywords: capabilities, global integration, internationalisation, SMEs

Procedia PDF Downloads 404
3050 Measurements of Service Quality vs Customer Satisfaction in Government Owned Retail Store at Kochi

Authors: N. S. Ajisha

Abstract:

In today’s competitive world the quality of the service you deliver is one of the important factor that determine customer satisfaction. Service quality is considered to be one important determinant to evaluate customer satisfaction and the relationship between service quality and customer satisfaction is considered as the foundation in researches on customer satisfaction. This research examines to do a gap analysis between the perception and expectation of the services delivered and find relation between the service quality and customer satisfaction. Service quality is found out here using the SERVQUAL model. And it finds out the dimension of service quality which is more important to measure customer satisfaction. The dimensions which we measure using SERVQUAL include the tangibles, reliability, responsiveness, assurance, and empathy. This study involves primary data collection like market survey.

Keywords: customer satisfaction, service quality, retail service quality, Kochi

Procedia PDF Downloads 559
3049 Market Integration in the ECCAS Sub-Region

Authors: Mouhamed Mbouandi Njikam

Abstract:

This work assesses the trade potential of countries in the Economic Community of Central Africa States (ECCAS). The gravity model of trade is used to evaluate the trade flows of member countries, and to compute the trade potential index of ECCAS during 1995-2010. The focus is on the removal of tariffs and non-tariff barriers in the sub-region. Estimates from the gravity model are used for the calculation of the sub-region’s commercial potential. Its three main findings are: (i) the background research shows a low level of integration in the sub-region and open economies; (ii) a low level of industrialization and diversification are the main factors reducing trade potential in the sub-region; (iii) the trade creation predominate on the deflections of trade between member countries.

Keywords: gravity model, ECCAS, trade flows, trade potential, regional cooperation

Procedia PDF Downloads 430
3048 Strategies to Enhance Export Performance of Thai Furniture Industry

Authors: Khomsan Laosillapacharoen

Abstract:

This research paper was aimed to analyze the current situation of the furniture industry and embark a plan to enhance the export volume of Thai furniture. This is a qualitative research which utilized meta-analysis and focus group. A total of 24 experts in both government and private sectors were interviewed. The findings revealed that Thai furniture had some advantages of access to raw material, high quality of labors, and have a unique skill. However, the threat included a tendency to have more foreign competitors in domestic market. In addition, the strategies to enhance the level of export included increase the standard quality of Thai furniture, offer new and modern designs, use marketing on the internet, use modern technology, and gain tax incentive from the government.

Keywords: export, furniture, strategies, marketing

Procedia PDF Downloads 401
3047 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 73
3046 A Theoretical Framework of Multifactor Systematic Risks in Equity Market: Behavioral Finance Paradigm

Authors: Jasman Tuyon, Zamri Ahmad

Abstract:

Behavioral asset pricing research has been gaining momentum since in 1990s. However, it is still incomplete and has been criticized for some philosophical, theoretical and model specification limitations. Due to these drawbacks, investors’ behaviors as a source of risk in behavioral asset pricing modeling still remains disputable. This paper aims to address these issues with an alternative perspective based on behavioral finance paradigm. Specifically, this paper proposes a theoretical linkages of both fundamental and behavioral risks on stock prices formation and an extension of the multifactor stock pricing model by combining multi-factor fundamentals and behavioral risks factors.

Keywords: behavioral finance, multifactor asset pricing, behavioral risks, fundamental risks

Procedia PDF Downloads 504
3045 A Hybrid Distributed Algorithm for Solving Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a distributed hybrid algorithm is proposed for solving the job shop scheduling problem. The suggested method executes different artificial neural networks, heuristics and meta-heuristics simultaneously on more than one machine. The neural networks are used to control the constraints of the problem while the meta-heuristics search the global space and the heuristics are used to prevent the premature convergence. To attain an efficient distributed intelligent method for solving big and distributed job shop scheduling problems, Apache Spark and Hadoop frameworks are used. In the algorithm implementation and design steps, new approaches are applied. Comparison between the proposed algorithm and other efficient algorithms from the literature shows its efficiency, which is able to solve large size problems in short time.

Keywords: distributed algorithms, Apache Spark, Hadoop, job shop scheduling, neural network

Procedia PDF Downloads 393
3044 The Increasing Importance of the Role of AI in Higher Education

Authors: Joshefina Bengoechea Fernandez, Alex Bell

Abstract:

In its 2021 guidance for policy makers, the UNESCO has proposed 4 areas where AI can be applied in educational settings: These are: 1) Education management and delivery; 2) Learning and assessment; 3) Empowering teachers and facilitating teaching, and 4) Providing lifelong learning possibilities (UNESCO, 2021). Like with wblockchain technologies, AI will automate the management of educational institutions. These include, but are not limited to admissions, timetables, attendance, and homework monitoring. Furthermore, AI will be used to select relevant learning content across learning platforms for each student, based on his or her personalized needs. A problem educators face is the “one-size-fits-all” approach that does not work with a diverse student population. The purpose of this paper is to illustrate if the implementation of Technology is the solution to the Problems faced in Higher Education. The paper builds upon a constructivist approach, combining a literature review and research on key publications and academic reports.

Keywords: artificial intelligence, learning platforms, students personalised needs, life- long learning, privacy, ethics

Procedia PDF Downloads 110
3043 Calm, Confusing and Chaotic: Investigating Humanness through Sentiment Analysis of Abstract Artworks

Authors: Enya Autumn Trenholm-Jensen, Hjalte Hviid Mikkelsen

Abstract:

This study was done in the pursuit of nuancing the discussion surrounding what it means to be human in a time of unparalleled technological development. Subjectivity was deemed to be an accessible example of humanity to study, and art was a fitting medium through which to probe subjectivity. Upon careful theoretical consideration, abstract art was found to fit the parameters of the study with the added bonus of being, as of yet, uninterpretable from an AI perspective. It was hypothesised that dissimilar appraisals of the art stimuli would be found through sentiment and terminology. Opinion data was collected through survey responses and analysed using Valence Aware Dictionary for sEntiment Reasoning (VADER) sentiment analysis. The results reflected the enigmatic nature of subjectivity through erratic ratings of the art stimuli. However, significant themes were found in the terminology used in the responses. The implications of the findings are discussed in relation to the uniqueness, or lack thereof, of human subjectivity, and directions for future research are provided.

Keywords: abstract art, artificial intelligence, cognition, sentiment, subjectivity

Procedia PDF Downloads 119
3042 CertifHy: Developing a European Framework for the Generation of Guarantees of Origin for Green Hydrogen

Authors: Frederic Barth, Wouter Vanhoudt, Marc Londo, Jaap C. Jansen, Karine Veum, Javier Castro, Klaus Nürnberger, Matthias Altmann

Abstract:

Hydrogen is expected to play a key role in the transition towards a low-carbon economy, especially within the transport sector, the energy sector and the (petro)chemical industry sector. However, the production and use of hydrogen only make sense if the production and transportation are carried out with minimal impact on natural resources, and if greenhouse gas emissions are reduced in comparison to conventional hydrogen or conventional fuels. The CertifHy project, supported by a wide range of key European industry leaders (gas companies, chemical industry, energy utilities, green hydrogen technology developers and automobile manufacturers, as well as other leading industrial players) therefore aims to: 1. Define a widely acceptable definition of green hydrogen. 2. Determine how a robust Guarantee of Origin (GoO) scheme for green hydrogen should be designed and implemented throughout the EU. It is divided into the following work packages (WPs). 1. Generic market outlook for green hydrogen: Evidence of existing industrial markets and the potential development of new energy related markets for green hydrogen in the EU, overview of the segments and their future trends, drivers and market outlook (WP1). 2. Definition of “green” hydrogen: step-by-step consultation approach leading to a consensus on the definition of green hydrogen within the EU (WP2). 3. Review of existing platforms and interactions between existing GoO and green hydrogen: Lessons learnt and mapping of interactions (WP3). 4. Definition of a framework of guarantees of origin for “green” hydrogen: Technical specifications, rules and obligations for the GoO, impact analysis (WP4). 5. Roadmap for the implementation of an EU-wide GoO scheme for green hydrogen: the project implementation plan will be presented to the FCH JU and the European Commission as the key outcome of the project and shared with stakeholders before finalisation (WP5 and 6). Definition of Green Hydrogen: CertifHy Green hydrogen is hydrogen from renewable sources that is also CertifHy Low-GHG-emissions hydrogen. Hydrogen from renewable sources is hydrogen belonging to the share of production equal to the share of renewable energy sources (as defined in the EU RES directive) in energy consumption for hydrogen production, excluding ancillary functions. CertifHy Low-GHG hydrogen is hydrogen with emissions lower than the defined CertifHy Low-GHG-emissions threshold, i.e. 36.4 gCO2eq/MJ, produced in a plant where the average emissions intensity of the non-CertifHy Low-GHG hydrogen production (based on an LCA approach), since sign-up or in the past 12 months, does not exceed the emissions intensity of the benchmark process (SMR of natural gas), i.e. 91.0 gCO2eq/MJ.

Keywords: green hydrogen, cross-cutting, guarantee of origin, certificate, DG energy, bankability

Procedia PDF Downloads 499
3041 Influence of Temperature and Immersion on the Behavior of a Polymer Composite

Authors: Quentin C.P. Bourgogne, Vanessa Bouchart, Pierre Chevrier, Emmanuel Dattoli

Abstract:

This study presents an experimental and theoretical work conducted on a PolyPhenylene Sulfide reinforced with 40%wt of short glass fibers (PPS GF40) and its matrix. Thermoplastics are widely used in the automotive industry to lightweight automotive parts. The replacement of metallic parts by thermoplastics is reaching under-the-hood parts, near the engine. In this area, the parts are subjected to high temperatures and are immersed in cooling liquid. This liquid is composed of water and glycol and can affect the mechanical properties of the composite. The aim of this work was thus to quantify the evolution of mechanical properties of the thermoplastic composite, as a function of temperature and liquid aging effects, in order to develop a reliable design of parts. An experimental campaign in the tensile mode was carried out at different temperatures and for various glycol proportions in the cooling liquid, for monotonic and cyclic loadings on a neat and a reinforced PPS. The results of these tests allowed to highlight some of the main physical phenomena occurring during these solicitations under tough hydro-thermal conditions. Indeed, the performed tests showed that temperature and liquid cooling aging can affect the mechanical behavior of the material in several ways. The more the cooling liquid contains water, the more the mechanical behavior is affected. It was observed that PPS showed a higher sensitivity to absorption than to chemical aggressiveness of the cooling liquid, explaining this dominant sensitivity. Two kinds of behaviors were noted: an elasto-plastic type under the glass transition temperature and a visco-pseudo-plastic one above it. It was also shown that viscosity is the leading phenomenon above the glass transition temperature for the PPS and could also be important under this temperature, mostly under cyclic conditions and when the stress rate is low. Finally, it was observed that soliciting this composite at high temperatures is decreasing the advantages of the presence of fibers. A new phenomenological model was then built to take into account these experimental observations. This new model allowed the prediction of the evolution of mechanical properties as a function of the loading environment, with a reduced number of parameters compared to precedent studies. It was also shown that the presented approach enables the description and the prediction of the mechanical response with very good accuracy (2% of average error at worst), over a wide range of hydrothermal conditions. A temperature-humidity equivalence principle was underlined for the PPS, allowing the consideration of aging effects within the proposed model. Then, a limit of improvement of the reachable accuracy was determinate for all models using this set of data by the application of an artificial intelligence-based model allowing a comparison between artificial intelligence-based models and phenomenological based ones.

Keywords: aging, analytical modeling, mechanical testing, polymer matrix composites, sequential model, thermomechanical

Procedia PDF Downloads 121
3040 Current Applications of Artificial Intelligence (AI) in Chest Radiology

Authors: Angelis P. Barlampas

Abstract:

Learning Objectives: The purpose of this study is to inform briefly the reader about the applications of AI in chest radiology. Background: Currently, there are 190 FDA-approved radiology AI applications, with 42 (22%) pertaining specifically to thoracic radiology. Imaging findings OR Procedure details Aids of AI in chest radiology1: Detects and segments pulmonary nodules. Subtracts bone to provide an unobstructed view of the underlying lung parenchyma and provides further information on nodule characteristics, such as nodule location, nodule two-dimensional size or three dimensional (3D) volume, change in nodule size over time, attenuation data (i.e., mean, minimum, and/or maximum Hounsfield units [HU]), morphological assessments, or combinations of the above. Reclassifies indeterminate pulmonary nodules into low or high risk with higher accuracy than conventional risk models. Detects pleural effusion . Differentiates tension pneumothorax from nontension pneumothorax. Detects cardiomegaly, calcification, consolidation, mediastinal widening, atelectasis, fibrosis and pneumoperitoneum. Localises automatically vertebrae segments, labels ribs and detects rib fractures. Measures the distance from the tube tip to the carina and localizes both endotracheal tubes and central vascular lines. Detects consolidation and progression of parenchymal diseases such as pulmonary fibrosis or chronic obstructive pulmonary disease (COPD).Can evaluate lobar volumes. Identifies and labels pulmonary bronchi and vasculature and quantifies air-trapping. Offers emphysema evaluation. Provides functional respiratory imaging, whereby high-resolution CT images are post-processed to quantify airflow by lung region and may be used to quantify key biomarkers such as airway resistance, air-trapping, ventilation mapping, lung and lobar volume, and blood vessel and airway volume. Assesses the lung parenchyma by way of density evaluation. Provides percentages of tissues within defined attenuation (HU) ranges besides furnishing automated lung segmentation and lung volume information. Improves image quality for noisy images with built-in denoising function. Detects emphysema, a common condition seen in patients with history of smoking and hyperdense or opacified regions, thereby aiding in the diagnosis of certain pathologies, such as COVID-19 pneumonia. It aids in cardiac segmentation and calcium detection, aorta segmentation and diameter measurements, and vertebral body segmentation and density measurements. Conclusion: The future is yet to come, but AI already is a helpful tool for the daily practice in radiology. It is assumed, that the continuing progression of the computerized systems and the improvements in software algorithms , will redder AI into the second hand of the radiologist.

Keywords: artificial intelligence, chest imaging, nodule detection, automated diagnoses

Procedia PDF Downloads 75
3039 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images

Authors: Elham Bagheri, Yalda Mohsenzadeh

Abstract:

Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.

Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception

Procedia PDF Downloads 95
3038 Innovations and Agricultural Development Potential in Georgia

Authors: Tamar Lazariashvili

Abstract:

Introduction: The growth and development of the economy in the country depend on many factors, the most important of which is the use of innovation. The article analyzes the innovations and the potential of agricultural development in Georgia, presents the problems in the field, justifies the need to introduce innovations, shows the policy of innovation development, evaluates the positive and negative factors of the use of innovations in agriculture. Methodology: The article uses general and specific research methods, namely, analysis, synthesis, induction, deduction, comparison and statistical ones: selection, grouping, observation, trend. All these methods used together in the article reveal the main problems and challenges and their development trends. Main Findings: The introduction of innovations for the country has an impact if there is established state support system for business development and the State creates an effective environment for innovation development. As a result, the appropriate establishment gives incentives to increase budget revenues, create new jobs, increase export turnover and improve the overall economic situation in the country. Georgia has sufficient resource potential to create and develop new businesses in agriculture by introducing innovations and contribute to the further socio-economic development of the country. Political and economic stability, the existing legislation in the country, infrastructure, the proper functioning of financial institutions and the qualification of the workforce are crucial for the development of innovations. These criteria determine the political and economic ratings of all countries of the world, which are of great importance to foreign investors in the implementation of innovations. Conclusion: Enactment of agro-insurance will increase the interest and confidence of financial institutions in the farming sector, financial resources will be accessible to the farmers that will facilitate the stable development of the sector in the country. The size of the agro-insurance market in the country should be increased and the new territories should be covered. The State must have an obligation to ensure the risk of farmers and subsidize insurance companies. Based on an analysis of the insurance market the conclusions on agro-insurance issues and the relevant recommendations are proposed. The introduction of innovations in agriculture will have a great impact on the Georgian economy: it will improve the technological base, establish enterprises equipped with modern equipment and methodologies, retrain existing enterprises, promote to improve skills of workers and improve management systems. Based on the analysis, conclusions are made about the prospects for the development of innovation in agriculture and relevant recommendations are proposed.

Keywords: agriculture, development potential, innovation, optimal environment

Procedia PDF Downloads 184