Search results for: subtle change detection and quantification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10696

Search results for: subtle change detection and quantification

8326 Hydrologic Impacts of Climate Change and Urbanization on Quetta Watershed, Pakistan

Authors: Malik Muhammad Akhtar, Tanzeel Khan

Abstract:

Various natural and anthropogenic factors are affecting recharge processes in urban areas due to intense urban expansion; land-use/landcover change (LULC) and climate considerably influence the ecosystem functions. In Quetta, a terrible transformation of LULC has occurred due to an increase in human population and rapid urbanization over the past years; according to the Pakistan Bureau of Statistics, the increase of population from 252,577 in 1972 to 2,275,699 in 2017 shows an abrupt rise which in turn has affected the aquifer recharge capability, vegetation, and precipitation at Quetta. This study focuses on the influence of population growth and LULC on groundwater table level by employing multi-temporal, multispectral satellite data during the selected years, i.e. 2014, 2017, and 2020. The results of land classification showed that barren land had shown a considerable decrease, whereas the urban area has increased over time from 152.4sq/km in 2014 to 195.5sq/km in 2017 to 283.3sq/km in 2020, whereas surface-water area coverage has increased since 2014 because of construction of few dams around the valley. Rapid urbanization stresses limited hydrology resources, and this needs to be addressed to conserve/sustain the resources through educating the local community, awareness regarding water use and climate change, and supporting artificial recharge of the aquifers.

Keywords: climate changes, urbanization, GIS, land use, Quetta, watershed

Procedia PDF Downloads 130
8325 A Phase Change Materials Thermal Storage for Ground-Source Heat Pumps: Computational Fluid Dynamics Analysis of Innovative Layouts

Authors: Emanuele Bonamente, Andrea Aquino, Franco Cotana

Abstract:

The exploitation of the low-temperature geothermal resource via ground-source heat pumps is often limited by the high investment cost mainly due to borehole drilling. From the monitoring of a prototypal system currently used by a commercial building, it was found that a simple upgrade of the conventional layout, obtained including a thermal storage between the ground-source heat exchangers and the heat pump, can optimize the ground energy exploitation requiring for shorter/fewer boreholes. For typical applications, a reduction of up to 66% with respect to the conventional layout can be easily achieved. Results from the monitoring campaign of the prototype are presented in this paper, and upgrades of the thermal storage using phase change materials (PCMs) are proposed using computational fluid dynamics simulations. The PCM thermal storage guarantees an improvement of the system coefficient of performance both for summer cooling and winter heating (up to 25%). A drastic reduction of the storage volume (approx. 1/10 of the original size) is also achieved, making it possible to easily place it within the technical room, avoiding extra costs for underground displacement. A preliminary optimization of the PCM geometry is finally proposed.

Keywords: computational fluid dynamics (CFD), geothermal energy, ground-source heat pumps, phase change materials (PCM)

Procedia PDF Downloads 273
8324 Ischemic Stroke Detection in Computed Tomography Examinations

Authors: Allan F. F. Alves, Fernando A. Bacchim Neto, Guilherme Giacomini, Marcela de Oliveira, Ana L. M. Pavan, Maria E. D. Rosa, Diana R. Pina

Abstract:

Stroke is a worldwide concern, only in Brazil it accounts for 10% of all registered deaths. There are 2 stroke types, ischemic (87%) and hemorrhagic (13%). Early diagnosis is essential to avoid irreversible cerebral damage. Non-enhanced computed tomography (NECT) is one of the main diagnostic techniques used due to its wide availability and rapid diagnosis. Detection depends on the size and severity of lesions and the time spent between the first symptoms and examination. The Alberta Stroke Program Early CT Score (ASPECTS) is a subjective method that increases the detection rate. The aim of this work was to implement an image segmentation system to enhance ischemic stroke and to quantify the area of ischemic and hemorrhagic stroke lesions in CT scans. We evaluated 10 patients with NECT examinations diagnosed with ischemic stroke. Analyzes were performed in two axial slices, one at the level of the thalamus and basal ganglion and one adjacent to the top edge of the ganglionic structures with window width between 80 and 100 Hounsfield Units. We used different image processing techniques such as morphological filters, discrete wavelet transform and Fuzzy C-means clustering. Subjective analyzes were performed by a neuroradiologist according to the ASPECTS scale to quantify ischemic areas in the middle cerebral artery region. These subjective analysis results were compared with objective analyzes performed by the computational algorithm. Preliminary results indicate that the morphological filters actually improve the ischemic areas for subjective evaluations. The comparison in area of the ischemic region contoured by the neuroradiologist and the defined area by computational algorithm showed no deviations greater than 12% in any of the 10 examination tests. Although there is a tendency that the areas contoured by the neuroradiologist are smaller than those obtained by the algorithm. These results show the importance of a computer aided diagnosis software to assist neuroradiology decisions, especially in critical situations as the choice of treatment for ischemic stroke.

Keywords: ischemic stroke, image processing, CT scans, Fuzzy C-means

Procedia PDF Downloads 372
8323 An Experimental Study on the Optimum Installation of Fire Detector for Early Stage Fire Detecting in Rack-Type Warehouses

Authors: Ki Ok Choi, Sung Ho Hong, Dong Suck Kim, Don Mook Choi

Abstract:

Rack type warehouses are different from general buildings in the kinds, amount, and arrangement of stored goods, so the fire risk of rack type warehouses is different from those buildings. The fire pattern of rack type warehouses is different in combustion characteristic and storing condition of stored goods. The initial fire burning rate is different in the surface condition of materials, but the running time of fire is closely related with the kinds of stored materials and stored conditions. The stored goods of the warehouse are consisted of diverse combustibles, combustible liquid, and so on. Fire detection time may be delayed because the residents are less than office and commercial buildings. If fire detectors installed in rack type warehouses are inadaptable, the fire of the warehouse may be the great fire because of delaying of fire detection. In this paper, we studied what kinds of fire detectors are optimized in early detecting of rack type warehouse fire by real-scale fire tests. The fire detectors used in the tests are rate of rise type, fixed type, photo electric type, and aspirating type detectors. We considered optimum fire detecting method in rack type warehouses suggested by the response characteristic and comparative analysis of the fire detectors.

Keywords: fire detector, rack, response characteristic, warehouse

Procedia PDF Downloads 750
8322 One Building at a Time for Tambak Lorok

Authors: Etika Sukma Adiyanti, H. N. Nurul Huda Putu Ekapraja, Gugun Gunawan

Abstract:

Global warming causes climate change and sea level rise. This is a threat for coastal regions, especially for coastal settlements with activities that are influenced by this natural phenomenon. Consequences are damage of houses, humid house environment, sustainability of the houses, obstructed economic activities and domestic works, disruption of sanitation facilities, lack of electricity, failure of transport system, psychological issues and other. Icons Tambak Lorok as 'Fisherman Village' is not something familiar to residents of the city of Semarang. Especially for the housewife who every day have to buy the ingredients high in protein and omega fish auction which is adjacent to the main street market in the village of Tambak Lorok. However, there are major problems that are being experienced by this small neighborhood. In fact, this issue includes seven infrastructure that should spoil the fishermen in activity with marine life. With this research, we will investigate water urbanism and climate change resiliency in Semarang, specifically the traditional fisher community of Tambak Lorok. We intend to find out how the local people in the fisher settlement Tambak Lorok deal with water urbanism, proverty and living with floods. So, we have a good solution for this problem, Floating Stage. We think that Tambak Lorok needs a new design for the common future. With this, One Building at A Time for Tambak Lorok, will be a good solution.

Keywords: fisher community, environment, climate change, settlement

Procedia PDF Downloads 218
8321 Self-Supervised Learning for Hate-Speech Identification

Authors: Shrabani Ghosh

Abstract:

Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.

Keywords: attention learning, language model, offensive language detection, self-supervised learning

Procedia PDF Downloads 111
8320 Poli4SDG: An Application for Environmental Crises Management and Gender Support

Authors: Angelica S. Valeriani, Lorenzo Biasiolo

Abstract:

In recent years, the scale of the impact of climate change and its related side effects has become ever more massive and devastating. Sustainable Development Goals (SDGs), promoted by United Nations, aim to front issues related to climate change, among others. In particular, the project CROWD4SDG focuses on a bunch of SDGs since it promotes environmental activities and climate-related issues. In this context, we developed a prototype of an application, under advanced development considering web design, that focuses on SDG 13 (SDG on climate action) by providing users with useful instruments to face environmental crises and climate-related disasters. Our prototype is thought and structured for both web and mobile development. The main goal of the application, POLI4SDG, is to help users to get through emergency services. To this extent, an organized overview and classification prove to be very effective and helpful to people in need. A careful analysis of data related to environmental crises prompted us to integrate the user contribution, i.e., exploiting a core principle of Citizen Science, into the realization of a public catalog, available for consulting and organized according to typology and specific features. In addition, gender equality and opportunity features are considered in the prototype in order to allow women, often the most vulnerable category, to have direct support. The overall description of the application functionalities is detailed. Moreover, the implementation features and properties of the prototype are discussed.

Keywords: crowdsourcing, social media, SDG, climate change, natural disasters, gender equality

Procedia PDF Downloads 118
8319 Geospatial Techniques and VHR Imagery Use for Identification and Classification of Slums in Gujrat City, Pakistan

Authors: Muhammad Ameer Nawaz Akram

Abstract:

The 21st century has been revealed that many individuals around the world are living in urban settlements than in rural zones. The evolution of numerous cities in emerging and newly developed countries is accompanied by the rise of slums. The precise definition of a slum varies countries to countries, but the universal harmony is that slums are dilapidated settlements facing severe poverty and have lacked access to sanitation, water, electricity, good living styles, and land tenure. The slum settlements always vary in unique patterns within and among the countries and cities. The core objective of this study is the spatial identification and classification of slums in Gujrat city Pakistan from very high-resolution GeoEye-1 (0.41m) satellite imagery. Slums were first identified using GPS for sample site identification and ground-truthing; through this process, 425 slums were identified. Then Object-Oriented Analysis (OOA) was applied to classify slums on digital image. Spatial analysis softwares, e.g., ArcGIS 10.3, Erdas Imagine 9.3, and Envi 5.1, were used for processing data and performing the analysis. Results show that OOA provides up to 90% accuracy for the identification of slums. Jalal Cheema and Allah Ho colonies are severely affected by slum settlements. The ratio of criminal activities is also higher here than in other areas. Slums are increasing with the passage of time in urban areas, and they will be like a hazardous problem in coming future. So now, the executive bodies need to make effective policies and move towards the amelioration process of the city.

Keywords: slums, GPS, satellite imagery, object oriented analysis, zonal change detection

Procedia PDF Downloads 139
8318 Colour Change and melenophores response in ateleost: Balantiochilous melenopterus (Bleeker) with Certain Chemicals and Drugs

Authors: Trapti Pathak

Abstract:

Fishes can change their body colour according to their surroundings by. They do so by either aggregation or dispersion of melanosomes within the skin. These movements can regulate by means of sympathetic nerves with the help of cytoskeleton. Employing the melanophores on isolated scales of the fingerling of teleost fish, it is attempted to characterise the concerned nerves and the receptors located on melenocytes along with implication of microtubules a part of cytoskeleton in the pigmentary translocation in the fish. The scales from dorso-lateral trunk of the fish represented the sympathetic– neuromelanophore preparations which were stimulated by chemical means, such as adrenergic agonist, antagonist and the microtubule-disrupting drugs such as yuhombine, dopamine, colchicine etc. Adrenaline is an adrenergic agonist which is strongly induced the dorse-dependent concentration of pigment in innervated melanophores while Yohimbine is an adrenergic antagonist which is known to block effectively the α2-adrenoceptors inhibited the action of adrenaline. Colchicine effectively interferes with melanosome aggregating action of adrenaline. From these results it is concluded that the chromatic fibres of adrenergic nature innervate the melanophores and these cells do possess α2-adrenoceptors which mediate the melanosome aggregation and the movements of pigment granules through microtubules means of transport within the cell. These movements of pigment are linked to paling or darkening achieved of teleost fish respectively when they approach to their background.

Keywords: melenophores, agonists, antagonist, colour change

Procedia PDF Downloads 81
8317 Clinical Signs of Neonatal Calves in Experimental Colisepticemia

Authors: Samad Lotfollahzadeh

Abstract:

Escherichia coli (E.coli) is the most isolated bacteria from blood circulation of septicemic calves. Given the prevalence of septicemia in animals and its economic importance in veterinary practice, better understanding of changes in clinical signs following disease, may contribute to early detection of the disorder. The present study has been carried out to detect changes of clinical signs in induced sepsis in calves with E.coli. Colisepticemia has been induced in 10 twenty-day old healthy Holstein- Frisian calves with intravenous injection of 1.5 X 109 colony forming units (cfu) of O111: H8 strain of E.coli. Clinical signs including rectal temperature, heart rate, respiratory rate, shock, appetite, sucking reflex, feces consistency, general behavior, dehydration and standing ability were recorded in experimental calves during 24 hours after induction of colisepticemia. Blood culture was also carried out from calves four times during the experiment. ANOVA with repeated measure is used to see changes of calves’ clinical signs to experimental colisepticemia, and values of P≤ 0.05 was considered statistically significant. Mean values of rectal temperature and heart rate as well as median values of respiratory rate, appetite, suckling reflex, standing ability and feces consistency of experimental calves increased significantly during the study (P<0.05). In the present study, median value of shock score was not significantly increased in experimental calves (P> 0.05). The results of present study showed that total score of clinical signs in calves with experimental colisepticemia increased significantly, although the score of some clinical signs such as shock did not change significantly.

Keywords: calves, clinical signs scoring, E. coli O111:H8, experimental colisepticemia

Procedia PDF Downloads 380
8316 Calculation of the Normalized Difference Vegetation Index and the Spectral Signature of Coffee Crops: Benefits of Image Filtering on Mixed Crops

Authors: Catalina Albornoz, Giacomo Barbieri

Abstract:

Crop monitoring has shown to reduce vulnerability to spreading plagues and pathologies in crops. Remote sensing with Unmanned Aerial Vehicles (UAVs) has made crop monitoring more precise, cost-efficient and accessible. Nowadays, remote monitoring involves calculating maps of vegetation indices by using different software that takes either Truecolor (RGB) or multispectral images as an input. These maps are then used to segment the crop into management zones. Finally, knowing the spectral signature of a crop (the reflected radiation as a function of wavelength) can be used as an input for decision-making and crop characterization. The calculation of vegetation indices using software such as Pix4D has high precision for monoculture plantations. However, this paper shows that using this software on mixed crops may lead to errors resulting in an incorrect segmentation of the field. Within this work, authors propose to filter all the elements different from the main crop before the calculation of vegetation indices and the spectral signature. A filter based on the Sobel method for border detection is used for filtering a coffee crop. Results show that segmentation into management zones changes with respect to the traditional situation in which a filter is not applied. In particular, it is shown how the values of the spectral signature change in up to 17% per spectral band. Future work will quantify the benefits of filtering through the comparison between in situ measurements and the calculated vegetation indices obtained through remote sensing.

Keywords: coffee, filtering, mixed crop, precision agriculture, remote sensing, spectral signature

Procedia PDF Downloads 391
8315 Extraction of the Volatile Oils of Dictyopteris Membranacea by Focused Microwave Assisted Hydrodistillation and Supercritical Carbon Dioxide: Chemical Composition and Kinetic Data

Authors: Mohamed El Hattab

Abstract:

The Supercritical carbon dioxide (SFE) and the focused microwave-assisted hydrodistillation (FMAHD) were employed to isolate the volatile fraction of the brown alga Dictyopteris membranacea from the crude extract. The volatiles fractions obtained were analyzed by GC/MS. The major compounds in this case: dictyopterene A, 6-butylcyclohepta-1,4-diene, Undec-1-en-3-one, Undeca-1,4-dien-3-one, (3-oxoundec-4-enyl) sulphur, tetradecanoic acid, hexadecanoic acid, 3-hexyl-4,5-dithia-cycloheptanone and albicanol (this later is present only in the FMAHD oil) are identified by comparing their mass spectra with those reported on the commercial MS data base and also on our previously work. A kinetic study realized on both extraction processes and followed by an external standard quantification has allowed the study of the mass percent evolution of the major compounds in the two oils, an empirical mathematical modelling was used to describe their kinetic extraction.

Keywords: dictyopteris membranacea, extraction techniques, mathematical modeling, volatile oils

Procedia PDF Downloads 430
8314 Harnessing Renewable Energy as a Strategy to Combating Climate Change in Sub Saharan Africa

Authors: Gideon Nyuimbe Gasu

Abstract:

Sub Saharan Africa is at a critical point, experiencing rapid population growth, particularly in urban areas and young growing force. At the same time, the growing risk of catastrophic global climate change threatens to weaken food production system, increase intensity and frequency of drought, flood, and fires and undermine gains on development and poverty reduction. Although the region has the lowest per capital greenhouse gas emission level in the world, it will need to join global efforts to address climate change, including action to avoid significant increases and to encourage a green economy. Thus, there is a need for the concept of 'greening the economy' as was prescribed at Rio Summit of 1992. Renewable energy is one of the criterions to achieve this laudable goal of maintaining a green economy. There is need to address climate change while facilitating continued economic growth and social progress as energy today is critical to economic growth. Fossil fuels remain the major contributor of greenhouse gas emission. Thus, cleaner technologies such as carbon capture storage, renewable energy have emerged to be commercially competitive. This paper sets out to examine how to achieve a low carbon economy with minimal emission of carbon dioxide and other greenhouse gases which is one of the outcomes of implementing a green economy. Also, the paper examines the different renewable energy sources such as nuclear, wind, hydro, biofuel, and solar voltaic as a panacea to the looming climate change menace. Finally, the paper assesses the different renewable energy and energy efficiency as a propeller to generating new sources of income and jobs and in turn reduces carbon emission. The research shall engage qualitative, evaluative and comparative methods. The research will employ both primary and secondary sources of information. The primary sources of information shall be drawn from the sub Saharan African region and the global environmental organizations, energy legislation, policies and related industries and the judicial processes. The secondary sources will be made up of some books, journal articles, commentaries, discussions, observations, explanations, expositions, suggestions, prescriptions and other material sourced from the internet on renewable energy as a panacea to climate change. All information obtained from these sources will be subject to content analysis. The research result will show that the entire planet is warming as a result of the activities of mankind which is clear evidence that the current development is fundamentally unsustainable. Equally, the study will reveal that a low carbon development pathway in the sub Saharan African region should be embraced to minimize emission of greenhouse gases such as using renewable energy rather than coal, oil, and gas. The study concludes that until adequate strategies are devised towards the use of renewable energy the region will continue to add and worsen the current climate change menace and other adverse environmental conditions.

Keywords: carbon dioxide, climate change, legislation/law, renewable energy

Procedia PDF Downloads 234
8313 Noninvasive Disease Diagnosis through Breath Analysis Using DNA-functionalized SWNT Sensor Array

Authors: W. J. Zhang, Y. Q. Du, M. L. Wang

Abstract:

Noninvasive diagnostics of diseases via breath analysis has attracted considerable scientific and clinical interest for many years and become more and more promising with the rapid advancement in nanotechnology and biotechnology. The volatile organic compounds (VOCs) in exhaled breath, which are mainly blood borne, particularly provide highly valuable information about individuals’ physiological and pathophysiological conditions. Additionally, breath analysis is noninvasive, real-time, painless and agreeable to patients. We have developed a wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) for the detection of a number of physiological indicators in breath. Eight DNA sequences were used to functionalize SWNT sensors to detect trace amount of methanol, benzene, dimethyl sulfide, hydrogen sulfide, acetone and ethanol, which are indicators of heavy smoking, excessive drinking, and diseases such as lung cancer, breast cancer, cirrhosis and diabetes. Our tests indicated that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, reproducibility, and repeatability. Furthermore, different molecules can be distinguished through pattern recognition enabled by this sensor array. Thus, the DNA-SWNT sensor array has great potential to be applied in chemical or bimolecular detection for the noninvasive diagnostics of diseases and health monitoring.

Keywords: breath analysis, diagnosis, DNA-SWNT sensor array, noninvasive

Procedia PDF Downloads 349
8312 PPB-Level H₂ Gas-Sensor Based on Porous Ni-MOF Derived NiO@CuO Nanoflowers for Superior Sensing Performance

Authors: Shah Sufaid, Hussain Shahid, Tianyan You, Liu Guiwu, Qiao Guanjun

Abstract:

Nickel oxide (NiO) is an optimal material for precise detection of hydrogen (H₂) gas due to its high catalytic activity and low resistivity. However, the gas response kinetics of H₂ gas molecules with the surface of NiO concurrence limitation imposed by its solid structure, leading to a diminished gas response value and slow electron-hole transport. Herein, NiO@CuO NFs with porous sharp-tip and nanospheres morphology were successfully synthesized by using a metal-organic framework (MOFs) as a precursor. The fabricated porous 2 wt% NiO@CuO NFs present outstanding selectivity towards H₂ gas, including a high sensitivity of a response value (170 to 20 ppm at 150 °C) higher than that of porous Ni-MOF (6), low detection limit (300 ppb) with a notable response (21), short response and recovery times at (300 ppb, 40/63 s and 20 ppm, 100/167 s), exceptional long-term stability and repeatability. Furthermore, an understanding of NiO@CuO sensor functioning in an actual environment has been obtained by using the impact of relative humidity as well. The boosted hydrogen sensing properties may be attributed due to synergistic effects of numerous facts including p-p heterojunction at the interface between NiO and CuO nanoflowers. Particularly, a porous Ni-MOF structure combined with the chemical sensitization effect of NiO with the rough surface of CuO nanosphere, are examined. This research presents an effective method for development of Ni-MOF derived metal oxide semiconductor (MOS) heterostructures with rigorous morphology and composition, suitable for gas sensing application.

Keywords: NiO@CuO NFs, metal organic framework, porous structure, H₂, gas sensing

Procedia PDF Downloads 51
8311 Experimental Device for Fluorescence Measurement by Optical Fiber Combined with Dielectrophoretic Sorting in Microfluidic Chips

Authors: Jan Jezek, Zdenek Pilat, Filip Smatlo, Pavel Zemanek

Abstract:

We present a device that combines fluorescence spectroscopy with fiber optics and dielectrophoretic micromanipulation in PDMS (poly-(dimethylsiloxane)) microfluidic chips. The device allows high speed detection (in the order of kHz) of the fluorescence signal, which is coming from the sample by an inserted optical fiber, e.g. from a micro-droplet flow in a microfluidic chip, or even from the liquid flowing in the transparent capillary, etc. The device uses a laser diode at a wavelength suitable for excitation of fluorescence, excitation and emission filters, optics for focusing the laser radiation into the optical fiber, and a highly sensitive fast photodiode for detection of fluorescence. The device is combined with dielectrophoretic sorting on a chip for sorting of micro-droplets according to their fluorescence intensity. The electrodes are created by lift-off technology on a glass substrate, or by using channels filled with a soft metal alloy or an electrolyte. This device found its use in screening of enzymatic reactions and sorting of individual fluorescently labelled microorganisms. The authors acknowledge the support from the Grant Agency of the Czech Republic (GA16-07965S) and Ministry of Education, Youth and Sports of the Czech Republic (LO1212) together with the European Commission (ALISI No. CZ.1.05/2.1.00/01.0017).

Keywords: dielectrophoretic sorting, fiber optics, laser, microfluidic chips, microdroplets, spectroscopy

Procedia PDF Downloads 724
8310 Using MALDI-TOF MS to Detect Environmental Microplastics (Polyethylene, Polyethylene Terephthalate, and Polystyrene) within a Simulated Tissue Sample

Authors: Kara J. Coffman-Rea, Karen E. Samonds

Abstract:

Microplastic pollution is an urgent global threat to our planet and human health. Microplastic particles have been detected within our food, water, and atmosphere, and found within the human stool, placenta, and lung tissue. However, most spectrometric microplastic detection methods require chemical digestion which can alter or destroy microplastic particles and makes it impossible to acquire information about their in-situ distribution. MALDI TOF MS (Matrix-assisted laser desorption ionization-time of flight mass spectrometry) is an analytical method using a soft ionization technique that can be used for polymer analysis. This method provides a valuable opportunity to both acquire information regarding the in-situ distribution of microplastics and also minimizes the destructive element of chemical digestion. In addition, MALDI TOF MS allows for expanded analysis of the microplastics including detection of specific additives that may be present within them. MALDI TOF MS is particularly sensitive to sample preparation and has not yet been used to analyze environmental microplastics within their specific location (e.g., biological tissues, sediment, water). In this study, microplastics were created using polyethylene gloves, polystyrene micro-foam, and polyethylene terephthalate cable sleeving. Plastics were frozen using liquid nitrogen and ground to obtain small fragments. An artificial tissue was created using a cellulose sponge as scaffolding coated with a MaxGel Extracellular Matrix to simulate human lung tissue. Optimal preparation techniques (e.g., matrix, cationization reagent, solvent, mixing ratio, laser intensity) were first established for each specific polymer type. The artificial tissue sample was subsequently spiked with microplastics, and specific polymers were detected using MALDI-TOF-MS. This study presents a novel method for the detection of environmental polyethylene, polyethylene terephthalate, and polystyrene microplastics within a complex sample. Results of this study provide an effective method that can be used in future microplastics research and can aid in determining the potential threats to environmental and human health that they pose.

Keywords: environmental plastic pollution, MALDI-TOF MS, microplastics, polymer identification

Procedia PDF Downloads 265
8309 Image Processing techniques for Surveillance in Outdoor Environment

Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.

Abstract:

This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.

Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management

Procedia PDF Downloads 31
8308 Diagnosis and Analysis of Automated Liver and Tumor Segmentation on CT

Authors: R. R. Ramsheeja, R. Sreeraj

Abstract:

For view the internal structures of the human body such as liver, brain, kidney etc have a wide range of different modalities for medical images are provided nowadays. Computer Tomography is one of the most significant medical image modalities. In this paper use CT liver images for study the use of automatic computer aided techniques to calculate the volume of the liver tumor. Segmentation method is used for the detection of tumor from the CT scan is proposed. Gaussian filter is used for denoising the liver image and Adaptive Thresholding algorithm is used for segmentation. Multiple Region Of Interest(ROI) based method that may help to characteristic the feature different. It provides a significant impact on classification performance. Due to the characteristic of liver tumor lesion, inherent difficulties appear selective. For a better performance, a novel proposed system is introduced. Multiple ROI based feature selection and classification are performed. In order to obtain of relevant features for Support Vector Machine(SVM) classifier is important for better generalization performance. The proposed system helps to improve the better classification performance, reason in which we can see a significant reduction of features is used. The diagnosis of liver cancer from the computer tomography images is very difficult in nature. Early detection of liver tumor is very helpful to save the human life.

Keywords: computed tomography (CT), multiple region of interest(ROI), feature values, segmentation, SVM classification

Procedia PDF Downloads 513
8307 Automatic Detection of Defects in Ornamental Limestone Using Wavelets

Authors: Maria C. Proença, Marco Aniceto, Pedro N. Santos, José C. Freitas

Abstract:

A methodology based on wavelets is proposed for the automatic location and delimitation of defects in limestone plates. Natural defects include dark colored spots, crystal zones trapped in the stone, areas of abnormal contrast colors, cracks or fracture lines, and fossil patterns. Although some of these may or may not be considered as defects according to the intended use of the plate, the goal is to pair each stone with a map of defects that can be overlaid on a computer display. These layers of defects constitute a database that will allow the preliminary selection of matching tiles of a particular variety, with specific dimensions, for a requirement of N square meters, to be done on a desktop computer rather than by a two-hour search in the storage park, with human operators manipulating stone plates as large as 3 m x 2 m, weighing about one ton. Accident risks and work times are reduced, with a consequent increase in productivity. The base for the algorithm is wavelet decomposition executed in two instances of the original image, to detect both hypotheses – dark and clear defects. The existence and/or size of these defects are the gauge to classify the quality grade of the stone products. The tuning of parameters that are possible in the framework of the wavelets corresponds to different levels of accuracy in the drawing of the contours and selection of the defects size, which allows for the use of the map of defects to cut a selected stone into tiles with minimum waste, according the dimension of defects allowed.

Keywords: automatic detection, defects, fracture lines, wavelets

Procedia PDF Downloads 251
8306 Fatigue Crack Growth Rate Measurement by Means of Classic Method and Acoustic Emission

Authors: V. Mentl, V. Koula, P. Mazal, J. Volák

Abstract:

Nowadays, the acoustic emission is a widely recognized method of material damage investigation, mainly in cases of cracks initiation and growth observation and evaluation. This is highly important in structures, e.g. pressure vessels, large steam turbine rotors etc., applied both in classic and nuclear power plants. Nevertheless, the acoustic emission signals must be correlated with the real crack progress to be able to evaluate the cracks and their growth by this non-destructive technique alone in real situations and to reach reliable results when the assessment of the structures' safety and reliability is performed and also when the remaining lifetime should be evaluated. The main aim of this study was to propose a methodology for evaluation of the early manifestations of the fatigue cracks and their growth and thus to quantify the material damage by acoustic emission parameters. Specimens made of several steels used in the power producing industry were subjected to fatigue loading in the low- and high-cycle regimes. This study presents results of the crack growth rate measurement obtained by the classic compliance change method and the acoustic emission signal analysis. The experiments were realized in cooperation between laboratories of Brno University of Technology and West Bohemia University in Pilsen within the solution of the project of the Czech Ministry of Industry and Commerce: "A diagnostic complex for the detection of pressure media and material defects in pressure components of nuclear and classic power plants" and the project “New Technologies for Mechanical Engineering”.

Keywords: fatigue, crack growth rate, acoustic emission, material damage

Procedia PDF Downloads 375
8305 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows

Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham

Abstract:

In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.

Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis

Procedia PDF Downloads 71
8304 A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates

Authors: S. Dey, T. Mukhopadhyay, S. Adhikari

Abstract:

This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance.

Keywords: composite plate, natural frequency, polynomial regression model, sampling technique, uncertainty quantification

Procedia PDF Downloads 516
8303 Trend Analysis for Extreme Rainfall Events in New South Wales, Australia

Authors: Evan Hajani, Ataur Rahman, Khaled Haddad

Abstract:

Climate change will affect the hydrological cycle in many different ways such as increase in evaporation and rainfalls. There have been growing interests among researchers to identify the nature of trends in historical rainfall data in many different parts of the world. This paper examines the trends in annual maximum rainfall data from 30 stations in New South Wales, Australia by using two non-parametric tests, Mann-Kendall (MK) and Spearman’s Rho (SR). Rainfall data were analyzed for fifteen different durations ranging from 6 min to 3 days. It is found that the sub-hourly durations (6, 12, 18, 24, 30, and 48 minutes) show statistically significant positive (upward) trends whereas longer duration (sub-daily and daily) events generally show a statistically significant negative (downward) trend. It is also found that the MK test and SR test provide notably different results for some rainfall event durations considered in this study. Since shorter duration sub-hourly rainfall events show positive trends at many stations, the design rainfall data based on stationary frequency analysis for these durations need to be adjusted to account for the impact of climate change. These shorter durations are more relevant to many urban development projects based on smaller catchments having a much shorter response time.

Keywords: climate change, Mann-Kendall test, Spearman’s Rho test, trends, design rainfall

Procedia PDF Downloads 275
8302 Patient Progression at Discharge: A Communication, Coordination, and Accountability Gap among Hospital Teams

Authors: Nana Benma Osei

Abstract:

Patient discharge can be a hectic process. Patients are sometimes sent to the wrong location or forgotten in lounges in the waiting room. This ends up compromising patient care because the delay in picking the patients can affect how they adhere to medication. Patients may fail to take their medication, and this will lead to negative outcomes. The situation highlights the demands of modern-day healthcare, and the use of technology can help in reducing such challenges and in enhancing the patient’s experience, leading to greater satisfaction with the care provided. The paper contains the proposed changes to a healthcare facility by introducing the clinical decision support system, which will be needed to improve coordination and communication during patient discharge. This will be done under Kurt Lewin’s Change Management Model, which recognizes the different phases in the change process. A pilot program is proposed initially before the program can be implemented in the entire organization. This allows for the identification of challenges and ways of managing them. The paper anticipates some of the possible challenges that may arise during implementation, and a multi-disciplinary approach is considered the most effective. Opposition to the change is likely to arise because staff members may lack information on how the changes will affect them and the skills they will need to learn to use the new system. Training will occur before the technology can be implemented. Every member will go for training, and adequate time is allocated for training purposes. A comparison of data will determine whether the project has succeeded.

Keywords: patient discharge, clinical decision support system, communication, collaboration

Procedia PDF Downloads 106
8301 Quantification of Effects of Shape of Basement Topography below the Circular Basin on the Ground Motion Characteristics and Engineering Implications

Authors: Kamal, Dinesh Kumar, J. P. Narayan, Komal Rani

Abstract:

This paper presents the effects of shape of basement topography on the characteristics of the basin-generated surface (BGS) waves and associated average spectral amplification (ASA) in the 3D basins having circular surface area. Seismic responses were computed using a recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on parsimonious staggered-grid approximation of 3D viscoelastic wave equations. An increase of amplitude amplification and ASA towards the centre of different considered basins was obtained. Further, it may be concluded that ASA in basin very much depends on the impedance contrast, exposure area of basement to the incident wave front, edge-slope, focusing of the BGS-waves and sediment-damping. There is an urgent need of incorporation of a map of differential ground motion (DGM) caused by the BGS-waves as one of the output maps of the seismic microzonation.

Keywords: 3D viscoelastic simulation, basin-generated surface waves, maximum displacement, average spectral amplification

Procedia PDF Downloads 301
8300 The Adoption of Mobile Learning in Saudi Women Faculty in King Abdulaziz University

Authors: Leena Alfarani

Abstract:

Although mobile devices are ubiquitous on university campuses, teacher-readiness for mobile learning has yet to be fully explored in the non-western nations. This study shows that two main factors affect the adoption and use of m-learning among female teachers within a university in Saudi Arabia—resistance to change and perceived social culture. These determinants of the current use and intention to use of m-learning were revealed through the analysis of an online questionnaire completed by 165 female faculty members. This study reveals several important issues for m-learning research and practice. The results further extend the body of knowledge in the field of m-learning, with the findings revealing that resistance to change and perceived social culture are significant determinants of the current use of and the intention to use m-learning.

Keywords: blended learning, mobile learning, technology adoption, devices

Procedia PDF Downloads 466
8299 Learning Disability or Learning Differences: Understanding Differences Between Cultural and Linguistic Diversity, Learning Differences, and Learning Disabilities

Authors: Jolanta Jonak, Sylvia Tolczyk

Abstract:

Students demonstrate various learning preferences and learning styles that range from visual, auditory to kinesthetic preferences. These learning preferences are further impacted by individual cognitive make up that characterizes itself in linguistic strengths, logical- special, inter-or intra- personal, just to name a few. Students from culturally and linguistically diverse backgrounds (CLD) have an increased risk of being misunderstood by many school systems and even medical personnel. CLD students are influenced by many factors (like acculturation and experience) that may impact their achievements and functioning levels. CLD students who develop initial or basic interpersonal communication proficiency skills in the target language are even at a higher risk for being suspected of learning disability when they are underachieving academically. Research indicates that large numbers of students arenot provided the type of education and types of supports they need in order to be successful in an academicenvironment. Multiple research findings indicate that significant numbers of school staff self-reports that they do not feel adequately prepared to work with CLD students. It is extremely important for the school staff, especially school psychologists, who often are the first experts that are consulted, to be educated about overlapping symptoms and settle differences between learning difference and disability. It is equally important for medical personnel, mainly pediatricians, psychologists, and psychiatrists, to understand the subtle differences to avoid inaccurate opinions. Having the knowledge, school staff can avoid unnecessary referrals for special education evaluations and avoid inaccurate decisions about the presence of a disability. This presentation will illustrate distinctions based on research between learning differences and disabilities, how to recognize them, and how to assess for them.

Keywords: special education, learning disability, differentiation, differences

Procedia PDF Downloads 159
8298 Comparing Different Frequency Ground Penetrating Radar Antennas for Tunnel Health Assessment

Authors: Can Mungan, Gokhan Kilic

Abstract:

Structural engineers and tunnel owners have good reason to attach importance to the assessment and inspection of tunnels. Regular inspection is necessary to maintain and monitor the health of the structure not only at the present time but throughout its life cycle. Detection of flaws within the structure, such as corrosion and the formation of cracks within the internal elements of the structure, can go a long way to ensuring that the structure maintains its integrity over the course of its life. Other issues that may be detected earlier through regular assessment include tunnel surface delamination and the corrosion of the rebar. One advantage of new technology such as the ground penetrating radar (GPR) is the early detection of imperfections. This study will aim to discuss and present the effectiveness of GPR as a tool for assessing the structural integrity of the heavily used tunnel. GPR is used with various antennae in frequency and application method (2 GHz and 500 MHz GPR antennae). The paper will attempt to produce a greater understanding of structural defects and identify the correct tool for such purposes. Conquest View with 3D scanning capabilities was involved throughout the analysis, reporting, and interpretation of the results. This study will illustrate GPR mapping and its effectiveness in providing information of value when it comes to rebar position (lower and upper reinforcement). It will also show how such techniques can detect structural features that would otherwise remain unseen, as well as moisture ingress.

Keywords: tunnel, GPR, health monitoring, moisture ingress, rebar position

Procedia PDF Downloads 124
8297 Evaluation of Beam Structure Using Non-Destructive Vibration-Based Damage Detection Method

Authors: Bashir Ahmad Aasim, Abdul Khaliq Karimi, Jun Tomiyama

Abstract:

Material aging is one of the vital issues among all the civil, mechanical, and aerospace engineering societies. Sustenance and reliability of concrete, which is the widely used material in the world, is the focal point in civil engineering societies. For few decades, researchers have been able to present some form algorithms that could lead to evaluate a structure globally rather than locally without harming its serviceability and traffic interference. The algorithms could help presenting different methods for evaluating structures non-destructively. In this paper, a non-destructive vibration-based damage detection method is adopted to evaluate two concrete beams, one being in a healthy state while the second one contains a crack on its bottom vicinity. The study discusses that damage in a structure affects modal parameters (natural frequency, mode shape, and damping ratio), which are the function of physical properties (mass, stiffness, and damping). The assessment is carried out to acquire the natural frequency of the sound beam. Next, the vibration response is recorded from the cracked beam. Eventually, both results are compared to know the variation in the natural frequencies of both beams. The study concludes that damage can be detected using vibration characteristics of a structural member considering the decline occurred in the natural frequency of the cracked beam.

Keywords: concrete beam, natural frequency, non-destructive testing, vibration characteristics

Procedia PDF Downloads 116