Search results for: solar–climatic data
24356 Changes in the Subjective Interpretation of Poverty Due to COVID-19: The Case of a Peripheral County of Hungary
Authors: Eszter Siposne Nandori
Abstract:
The paper describes how the subjective interpretation of poverty changed during the COVID-19 pandemic. The results of data collection at the end of 2020 are compared to the results of a similar survey from 2019. The methods of systematic data collection are used to collect data about the beliefs of the population about poverty. The analysis is carried out in Borsod-Abaúj-Zemplén County, one of the most backward areas in Hungary. The paper concludes that poverty is mainly linked to material values, and it did not change from 2019 to 2020. Some slight changes, however, highlight the effect of the pandemic: poverty is increasingly seen as a generational problem in 2020, and another important change is that isolation became more closely related to poverty.Keywords: Hungary, interpretation of poverty, pandemic, systematic data collection, subjective poverty
Procedia PDF Downloads 12624355 An Encapsulation of a Navigable Tree Position: Theory, Specification, and Verification
Authors: Nicodemus M. J. Mbwambo, Yu-Shan Sun, Murali Sitaraman, Joan Krone
Abstract:
This paper presents a generic data abstraction that captures a navigable tree position. The mathematical modeling of the abstraction encapsulates the current tree position, which can be used to navigate and modify the tree. The encapsulation of the tree position in the data abstraction specification avoids the use of explicit references and aliasing, thereby simplifying verification of (imperative) client code that uses the data abstraction. To ease the tasks of such specification and verification, a general tree theory, rich with mathematical notations and results, has been developed. The paper contains an example to illustrate automated verification ramifications. With sufficient tree theory development, automated proving seems plausible even in the absence of a special-purpose tree solver.Keywords: automation, data abstraction, maps, specification, tree, verification
Procedia PDF Downloads 16624354 Accurate Position Electromagnetic Sensor Using Data Acquisition System
Authors: Z. Ezzouine, A. Nakheli
Abstract:
This paper presents a high position electromagnetic sensor system (HPESS) that is applicable for moving object detection. The authors have developed a high-performance position sensor prototype dedicated to students’ laboratory. The challenge was to obtain a highly accurate and real-time sensor that is able to calculate position, length or displacement. An electromagnetic solution based on a two coil induction principal was adopted. The HPESS converts mechanical motion to electric energy with direct contact. The output signal can then be fed to an electronic circuit. The voltage output change from the sensor is captured by data acquisition system using LabVIEW software. The displacement of the moving object is determined. The measured data are transmitted to a PC in real-time via a DAQ (NI USB -6281). This paper also describes the data acquisition analysis and the conditioning card developed specially for sensor signal monitoring. The data is then recorded and viewed using a user interface written using National Instrument LabVIEW software. On-line displays of time and voltage of the sensor signal provide a user-friendly data acquisition interface. The sensor provides an uncomplicated, accurate, reliable, inexpensive transducer for highly sophisticated control systems.Keywords: electromagnetic sensor, accurately, data acquisition, position measurement
Procedia PDF Downloads 28524353 The Quality of the Presentation Influence the Audience Perceptions
Authors: Gilang Maulana, Dhika Rahma Qomariah, Yasin Fadil
Abstract:
Purpose: This research meant to measure the magnitude of the influence of the quality of the presentation to the targeted audience perception in catching information presentation. Design/Methodology/Approach: This research uses a quantitative research method. The kind of data that uses in this research is the primary data. The population in this research are students the economics faculty of Semarang State University. The sampling techniques uses in this research is purposive sampling. The retrieving data uses questionnaire on 30 respondents. The data analysis uses descriptive analysis. Result: The quality of presentation influential positive against perception of the audience. This proved that the more qualified presentation will increase the perception of the audience. Limitation: Respondents were limited to only 30 people.Keywords: quality of presentation, presentation, audience, perception, semarang state university
Procedia PDF Downloads 39224352 The Impact and Performances of Controlled Ventilation Strategy on Thermal Comfort and Indoor Atmosphere in Building
Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum
Abstract:
Ventilation in buildings is a key element to provide high indoor air quality. Its efficiency appears as one of the most important factors in maintaining thermal comfort for occupants of buildings. Personal displacement ventilation is a new ventilation concept that combines the positive features of displacement ventilation with those of task conditioning or personalized ventilation. This work aims to study numerically the supply air flow in a room to optimize a comfortable microclimate for an occupant. The room is heated, and a dummy is designed to simulate the occupant. Two types of configurations were studied. The first consist of a room without windows; and the second one is a local equipped with a window. The influence of the blowing speed and the solar radiation coming from the window on the thermal comfort of the occupant is studied. To conduct this study we used the turbulence models, namely the high Reynolds k-e, the RNG and the SST models. The numerical tool used is based on the finite volume method. The numerical simulation of the supply air flow in a room can predict and provide a significant information about indoor comfort.Keywords: local, comfort, thermique, ventilation, internal environment
Procedia PDF Downloads 41224351 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights
Authors: Julian Wise
Abstract:
Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.Keywords: mineral technology, big data, machine learning operations, data lake
Procedia PDF Downloads 11224350 Examining Statistical Monitoring Approach against Traditional Monitoring Techniques in Detecting Data Anomalies during Conduct of Clinical Trials
Authors: Sheikh Omar Sillah
Abstract:
Introduction: Monitoring is an important means of ensuring the smooth implementation and quality of clinical trials. For many years, traditional site monitoring approaches have been critical in detecting data errors but not optimal in identifying fabricated and implanted data as well as non-random data distributions that may significantly invalidate study results. The objective of this paper was to provide recommendations based on best statistical monitoring practices for detecting data-integrity issues suggestive of fabrication and implantation early in the study conduct to allow implementation of meaningful corrective and preventive actions. Methodology: Electronic bibliographic databases (Medline, Embase, PubMed, Scopus, and Web of Science) were used for the literature search, and both qualitative and quantitative studies were sought. Search results were uploaded into Eppi-Reviewer Software, and only publications written in the English language from 2012 were included in the review. Gray literature not considered to present reproducible methods was excluded. Results: A total of 18 peer-reviewed publications were included in the review. The publications demonstrated that traditional site monitoring techniques are not efficient in detecting data anomalies. By specifying project-specific parameters such as laboratory reference range values, visit schedules, etc., with appropriate interactive data monitoring, statistical monitoring can offer early signals of data anomalies to study teams. The review further revealed that statistical monitoring is useful to identify unusual data patterns that might be revealing issues that could impact data integrity or may potentially impact study participants' safety. However, subjective measures may not be good candidates for statistical monitoring. Conclusion: The statistical monitoring approach requires a combination of education, training, and experience sufficient to implement its principles in detecting data anomalies for the statistical aspects of a clinical trial.Keywords: statistical monitoring, data anomalies, clinical trials, traditional monitoring
Procedia PDF Downloads 7724349 An ALM Matrix Completion Algorithm for Recovering Weather Monitoring Data
Authors: Yuqing Chen, Ying Xu, Renfa Li
Abstract:
The development of matrix completion theory provides new approaches for data gathering in Wireless Sensor Networks (WSN). The existing matrix completion algorithms for WSN mainly consider how to reduce the sampling number without considering the real-time performance when recovering the data matrix. In order to guarantee the recovery accuracy and reduce the recovery time consumed simultaneously, we propose a new ALM algorithm to recover the weather monitoring data. A lot of experiments have been carried out to investigate the performance of the proposed ALM algorithm by using different parameter settings, different sampling rates and sampling models. In addition, we compare the proposed ALM algorithm with some existing algorithms in the literature. Experimental results show that the ALM algorithm can obtain better overall recovery accuracy with less computing time, which demonstrate that the ALM algorithm is an effective and efficient approach for recovering the real world weather monitoring data in WSN.Keywords: wireless sensor network, matrix completion, singular value thresholding, augmented Lagrange multiplier
Procedia PDF Downloads 38424348 Field Production Data Collection, Analysis and Reporting Using Automated System
Authors: Amir AlAmeeri, Mohamed Ibrahim
Abstract:
Various data points are constantly being measured in the production system, and due to the nature of the wells, these data points, such as pressure, temperature, water cut, etc.., fluctuations are constant, which requires high frequency monitoring and collection. It is a very difficult task to analyze these parameters manually using spreadsheets and email. An automated system greatly enhances efficiency, reduce errors, the need for constant emails which take up disk space, and frees up time for the operator to perform other critical tasks. Various production data is being recorded in an oil field, and this huge volume of data can be seen as irrelevant to some, especially when viewed on its own with no context. In order to fully utilize all this information, it needs to be properly collected, verified and stored in one common place and analyzed for surveillance and monitoring purposes. This paper describes how data is recorded by different parties and departments in the field, and verified numerous times as it is being loaded into a repository. Once it is loaded, a final check is done before being entered into a production monitoring system. Once all this is collected, various calculations are performed to report allocated production. Calculated production data is used to report field production automatically. It is also used to monitor well and surface facility performance. Engineers can use this for their studies and analyses to ensure field is performing as it should be, predict and forecast production, and monitor any changes in wells that could affect field performance.Keywords: automation, oil production, Cheleken, exploration and production (E&P), Caspian Sea, allocation, forecast
Procedia PDF Downloads 15624347 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.Keywords: clustering, data analysis, data mining, predictive models
Procedia PDF Downloads 46624346 Aerosol Direct Radiative Forcing Over the Indian Subcontinent: A Comparative Analysis from the Satellite Observation and Radiative Transfer Model
Authors: Shreya Srivastava, Sagnik Dey
Abstract:
Aerosol direct radiative forcing (ADRF) refers to the alteration of the Earth's energy balance from the scattering and absorption of solar radiation by aerosol particles. India experiences substantial ADRF due to high aerosol loading from various sources. These aerosols' radiative impact depends on their physical characteristics (such as size, shape, and composition) and atmospheric distribution. Quantifying ADRF is crucial for understanding aerosols’ impact on the regional climate and the Earth's radiative budget. In this study, we have taken radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 22 years (2000-2021) over the Indian subcontinent. Except for a few locations, the short-wave DARF exhibits aerosol cooling at the TOA (values ranging from +2.5 W/m2 to -22.5W/m2). Cooling due to aerosols is more pronounced in the absence of clouds. Being an aerosol hotspot, higher negative ADRF is observed over the Indo-Gangetic Plain (IGP). Aerosol Forcing Efficiency (AFE) shows a decreasing seasonal trend in winter (DJF) over the entire study region while an increasing trend over IGP and western south India during the post-monsoon season (SON) in clear-sky conditions. Analysing atmospheric heating and AOD trends, we found that only the aerosol loading is not governing the change in atmospheric heating but also the aerosol composition and/or their vertical profile. We used a Multi-angle Imaging Spectro-Radiometer (MISR) Level-2 Version 23 aerosol products to look into aerosol composition. MISR incorporates 74 aerosol mixtures in its retrieval algorithm based on size, shape, and absorbing properties. This aerosol mixture information was used for analysing long-term changes in aerosol composition and dominating aerosol species corresponding to the aerosol forcing value. Further, ADRF derived from this method is compared with around 35 studies across India, where a plane parallel Radiative transfer model was used, and the model inputs were taken from the OPAC (Optical Properties of Aerosols and Clouds) utilizing only limited aerosol parameter measurements. The result shows a large overestimation of TOA warming by the latter (i.e., Model-based method).Keywords: aerosol radiative forcing (ARF), aerosol composition, MISR, CERES, SBDART
Procedia PDF Downloads 5424345 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO
Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky
Abstract:
The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.Keywords: aeronautics, big data, data processing, machine learning, S1000D
Procedia PDF Downloads 15724344 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines
Authors: Xiaogang Li, Jieqiong Miao
Abstract:
As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square errorKeywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error
Procedia PDF Downloads 46124343 Investigation of Internal Gettering at Low Temperatures of Metallic Elements in HEM Wafers mc-Si for Photovoltaic Solar Cells
Authors: Abdelghani Boucheham, Djoudi Bouhafs, Nabil Khelifati, Baya Palahouane
Abstract:
The main aim of this study is to investigate the low temperature internal gettering of manganese and chromium transition metals content in p-type multicrystalline silicon grown by Heat Exchanger Method (HEM). The minority carrier lifetime variation, the transition metal elements behavior, the sheet resistivity and the interstitial oxygen concentration after different temperatures annealing under N2 ambient were investigated using quasi-steady state photoconductance technique (QSSPC), secondary ion mass spectroscopy (SIMS), four-probe measurement and Fourier transform infrared spectrometer (FTIR), respectively. The obtained results indicate in the temperature range of 300°C to 700°C that the effective lifetime increases and reaches its maximum values of 28 μs at 500 °C and decreasing to 6 μs at 700 °C. This amelioration is due probably to metallic impurities internal gettering in the extended defects and in the oxygen precipitates as observed on SIMS profiles and the FTIR spectra. From 300 °C to 500 °C the sheet resistivity values rest unchanged at 30 Ohm/sq and rises significantly to reach 45 Ohm/sq for T> 500 °C.Keywords: mc-Si, low temperature annealing, internal gettering, minority carrier lifetime, interstitial oxygen, resistivity
Procedia PDF Downloads 30824342 Development of a Data Security Model Using Steganography
Authors: Terungwa Simon Yange, Agana Moses A.
Abstract:
This paper studied steganography and designed a simplistic approach to a steganographic tool for hiding information in image files with the view of addressing the security challenges with data by hiding data from unauthorized users to improve its security. The Structured Systems Analysis and Design Method (SSADM) was used in this work. The system was developed using Java Development Kit (JDK) 1.7.0_10 and MySQL Server as its backend. The system was tested with some hypothetical health records which proved the possibility of protecting data from unauthorized users by making it secret so that its existence cannot be easily recognized by fraudulent users. It further strengthens the confidentiality of patient records kept by medical practitioners in the health setting. In conclusion, this work was able to produce a user friendly steganography software that is very fast to install and easy to operate to ensure privacy and secrecy of sensitive data. It also produced an exact copy of the original image and the one carrying the secret message when compared with each.Keywords: steganography, cryptography, encryption, decryption, secrecy
Procedia PDF Downloads 26624341 Analysis of Citation Rate and Data Reuse for Openly Accessible Biodiversity Datasets on Global Biodiversity Information Facility
Authors: Nushrat Khan, Mike Thelwall, Kayvan Kousha
Abstract:
Making research data openly accessible has been mandated by most funders over the last 5 years as it promotes reproducibility in science and reduces duplication of effort to collect the same data. There are evidence that articles that publicly share research data have higher citation rates in biological and social sciences. However, how and whether shared data is being reused is not always intuitive as such information is not easily accessible from the majority of research data repositories. This study aims to understand the practice of data citation and how data is being reused over the years focusing on biodiversity since research data is frequently reused in this field. Metadata of 38,878 datasets including citation counts were collected through the Global Biodiversity Information Facility (GBIF) API for this purpose. GBIF was used as a data source since it provides citation count for datasets, not a commonly available feature for most repositories. Analysis of dataset types, citation counts, creation and update time of datasets suggests that citation rate varies for different types of datasets, where occurrence datasets that have more granular information have higher citation rates than checklist and metadata-only datasets. Another finding is that biodiversity datasets on GBIF are frequently updated, which is unique to this field. Majority of the datasets from the earliest year of 2007 were updated after 11 years, with no dataset that was not updated since creation. For each year between 2007 and 2017, we compared the correlations between update time and citation rate of four different types of datasets. While recent datasets do not show any correlations, 3 to 4 years old datasets show weak correlation where datasets that were updated more recently received high citations. The results are suggestive that it takes several years to cumulate citations for research datasets. However, this investigation found that when searched on Google Scholar or Scopus databases for the same datasets, the number of citations is often not the same as GBIF. Hence future aim is to further explore the citation count system adopted by GBIF to evaluate its reliability and whether it can be applicable to other fields of studies as well.Keywords: data citation, data reuse, research data sharing, webometrics
Procedia PDF Downloads 17824340 Significance of Transient Data and Its Applications in Turbine Generators
Authors: Chandra Gupt Porwal, Preeti C. Porwal
Abstract:
Transient data reveals much about the machine's condition that steady-state data cannot. New technologies make this information much more available for evaluating the mechanical integrity of a machine train. Recent surveys at various stations indicate that simplicity is preferred over completeness in machine audits throughout the power generation industry. This is most clearly shown by the number of rotating machinery predictive maintenance programs in which only steady-state vibration amplitude is trended while important transient vibration data is not even acquired. Efforts have been made to explain what transient data is, its importance, the types of plots used for its display, and its effective utilization for analysis. In order to demonstrate the value of measuring transient data and its practical application in rotating machinery for resolving complex and persistent issues with turbine generators, the author presents a few case studies that highlight the presence of rotor instabilities due to the shaft moving towards the bearing centre in a 100 MM LMZ unit located in the Northern Capital Region (NCR), heavy misalignment noticed—especially after 2993 rpm—caused by loose coupling bolts, which prevented the machine from being synchronized for more than four months in a 250 MW KWU unit in the Western Region (WR), and heavy preload noticed at Intermediate pressure turbine (IPT) bearing near HP- IP coupling, caused by high points on coupling faces at a 500 MW KWU unit in the Northern region (NR), experienced at Indian power plants.Keywords: transient data, steady-state-data, intermediate -pressure-turbine, high-points
Procedia PDF Downloads 6924339 Geographic Information System for District Level Energy Performance Simulations
Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck
Abstract:
The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.Keywords: CityGML, EnergyADE, energy performance simulation, GIS
Procedia PDF Downloads 16924338 Visual Analytics in K 12 Education: Emerging Dimensions of Complexity
Authors: Linnea Stenliden
Abstract:
The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors by Latour. The learning conditions are found to be distinguished by broad complexity characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.Keywords: analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation
Procedia PDF Downloads 37624337 Thermal Performance of an Air-Water Heat Exchanger (AWHE) Operating in Groundwater and Hot-Humid Climate
Authors: César Ramírez-Dolores, Jorge Wong-Loya, Jorge Andaverde, Caleb Becerra
Abstract:
Low-depth geothermal energy can take advantage of the use of the subsoil as an air conditioning technique, being used as a passive system or coupled to an active cooling and/or heating system. This source of air conditioning is possible because at a depth less than 10 meters, the subsoil temperature is practically homogeneous and tends to be constant regardless of the climatic conditions on the surface. The effect of temperature fluctuations on the soil surface decreases as depth increases due to the thermal inertia of the soil, causing temperature stability; this effect presents several advantages in the context of sustainable energy use. In the present work, the thermal behavior of a horizontal Air-Water Heat Exchanger (AWHE) is evaluated, and the thermal effectiveness and temperature of the air at the outlet of the prototype immersed in groundwater is experimentally determined. The thermohydraulic aspects of the heat exchanger were evaluated using the Number of Transfer Units-Efficiency (NTU-ε) method under conditions of groundwater flow in a coastal region of sandy soil (southeastern Mexico) and air flow induced by a blower, the system was constructed of polyvinyl chloride (PVC) and sensors were placed in both the exchanger and the water to record temperature changes. The results of this study indicate that when the exchanger operates in groundwater, it shows high thermal gains allowing better heat transfer, therefore, it significantly reduces the air temperature at the outlet of the system, which increases the thermal effectiveness of the system in values > 80%, this passive technique is relevant for building cooling applications and could represent a significant development in terms of thermal comfort for hot locations in emerging economy countries.Keywords: convection, earth, geothermal energy, thermal comfort
Procedia PDF Downloads 7324336 Effect of Blanching and Drying Methods on the Degradation Kinetics and Color Stability of Radish (Raphanus sativus) Leaves
Authors: K. Radha Krishnan, Mirajul Alom
Abstract:
Dehydrated powder prepared from fresh radish (Raphanus sativus) leaves were investigated for the color stability by different drying methods (tray, sun and solar). The effect of blanching conditions, drying methods as well as drying temperatures (50 – 90°C) were considered for studying the color degradation kinetics of chlorophyll in the dehydrated powder. The hunter color parameters (L*, a*, b*) and total color difference (TCD) were determined in order to investigate the color degradation kinetics of chlorophyll. Blanching conditions, drying method and drying temperature influenced the changes in L*, a*, b* and TCD values. The changes in color values during processing were described by a first order kinetic model. The temperature dependence of chlorophyll degradation was adequately modeled by Arrhenius equation. To predict the losses in green color, a mathematical model was developed from the steady state kinetic parameters. The results from this study indicated the protective effect of blanching conditions on the color stability of dehydrated radish powder.Keywords: chlorophyll, color stability, degradation kinetics, drying
Procedia PDF Downloads 40124335 A New Paradigm to Make Cloud Computing Greener
Authors: Apurva Saxena, Sunita Gond
Abstract:
Demand of computation, data storage in large amount are rapidly increases day by day. Cloud computing technology fulfill the demand of today’s computation but this will lead to high power consumption in cloud data centers. Initiative for Green IT try to reduce power consumption and its adverse environmental impacts. Paper also focus on various green computing techniques, proposed models and efficient way to make cloud greener.Keywords: virtualization, cloud computing, green computing, data center
Procedia PDF Downloads 55424334 Physiological Action of Anthraquinone-Containing Preparations
Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina, Evgenii N. Kojaev
Abstract:
In review the generalized data about biological activity of anthraquinone-containing plants and specimens on their basis is presented. Data of traditional medicine, results of bioscreening and clinical researches of specimens are analyzed.Keywords: anthraquinones, physiologically active substances, phytopreparation, Ramon
Procedia PDF Downloads 37624333 Personal Data Protection: A Legal Framework for Health Law in Turkey
Authors: Veli Durmus, Mert Uydaci
Abstract:
Every patient who needs to get a medical treatment should share health-related personal data with healthcare providers. Therefore, personal health data plays an important role to make health decisions and identify health threats during every encounter between a patient and caregivers. In other words, health data can be defined as privacy and sensitive information which is protected by various health laws and regulations. In many cases, the data are an outcome of the confidential relationship between patients and their healthcare providers. Globally, almost all nations have own laws, regulations or rules in order to protect personal data. There is a variety of instruments that allow authorities to use the health data or to set the barriers data sharing across international borders. For instance, Directive 95/46/EC of the European Union (EU) (also known as EU Data Protection Directive) establishes harmonized rules in European borders. In addition, the General Data Protection Regulation (GDPR) will set further common principles in 2018. Because of close policy relationship with EU, this study provides not only information on regulations, directives but also how they play a role during the legislative process in Turkey. Even if the decision is controversial, the Board has recently stated that private or public healthcare institutions are responsible for the patient call system, for doctors to call people waiting outside a consultation room, to prevent unlawful processing of personal data and unlawful access to personal data during the treatment. In Turkey, vast majority private and public health organizations provide a service that ensures personal data (i.e. patient’s name and ID number) to call the patient. According to the Board’s decision, hospital or other healthcare institutions are obliged to take all necessary administrative precautions and provide technical support to protect patient privacy. However, this application does not effectively and efficiently performing in most health services. For this reason, it is important to draw a legal framework of personal health data by stating what is the main purpose of this regulation and how to deal with complicated issues on personal health data in Turkey. The research is descriptive on data protection law for health care setting in Turkey. Primary as well as secondary data has been used for the study. The primary data includes the information collected under current national and international regulations or law. Secondary data include publications, books, journals, empirical legal studies. Consequently, privacy and data protection regimes in health law show there are some obligations, principles and procedures which shall be binding upon natural or legal persons who process health-related personal data. A comparative approach presents there are significant differences in some EU member states due to different legal competencies, policies, and cultural factors. This selected study provides theoretical and practitioner implications by highlighting the need to illustrate the relationship between privacy and confidentiality in Personal Data Protection in Health Law. Furthermore, this paper would help to define the legal framework for the health law case studies on data protection and privacy.Keywords: data protection, personal data, privacy, healthcare, health law
Procedia PDF Downloads 22424332 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based on Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling
Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König
Abstract:
As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focuses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.Keywords: auto-ID, construction logistic, fuzzy, monitoring, RFID, scheduling
Procedia PDF Downloads 51324331 Wavelet Based Advanced Encryption Standard Algorithm for Image Encryption
Authors: Ajish Sreedharan
Abstract:
With the fast evolution of digital data exchange, security information becomes much important in data storage and transmission. Due to the increasing use of images in industrial process, it is essential to protect the confidential image data from unauthorized access. As encryption process is applied to the whole image in AES ,it is difficult to improve the efficiency. In this paper, wavelet decomposition is used to concentrate the main information of image to the low frequency part. Then, AES encryption is applied to the low frequency part. The high frequency parts are XORed with the encrypted low frequency part and a wavelet reconstruction is applied. Theoretical analysis and experimental results show that the proposed algorithm has high efficiency, and satisfied security suits for image data transmission.Keywords: discrete wavelet transforms, AES, dynamic SBox
Procedia PDF Downloads 43224330 An Improved Modular Multilevel Converter Voltage Balancing Approach for Grid Connected PV System
Authors: Safia Bashir, Zulfiqar Memon
Abstract:
During the last decade, renewable energy sources in particular solar photovoltaic (PV) has gained increased attention. Therefore, various PV converters topologies have emerged. Among this topology, the modular multilevel converter (MMC) is considered as one of the most promising topologies for the grid-connected PV system due to its modularity and transformerless features. When it comes to the safe operation of MMC, the balancing of the Submodules Voltages (SMs) plays a critical role. This paper proposes a balancing approach based on space vector PWM (SVPWM). Unlike the existing techniques, this method generates the switching vectors for the MMC by using only one SVPWM for the upper arm. The lower arm switching vectors are obtained by finding the complement of the upper arm switching vectors. The use of one SVPWM not only simplifies the calculation but also helped in reducing the circulating current in the MMC. The proposed method is varied through simulation using Matlab/Simulink and compared with other available modulation methods. The results validate the ability of the suggested method in balancing the SMs capacitors voltages and reducing the circulating current which will help in reducing the power loss of the PV system.Keywords: capacitor voltage balancing, circulating current, modular multilevel converter, PV system
Procedia PDF Downloads 15824329 Evaluating the Impact of Future Scenarios on Water Availability and Demand Based on Stakeholders Prioritized Water Management Options in the Upper Awash Basin, Ethiopia
Authors: Adey Nigatu Mersha, Ilyas Masih, Charlotte de Fraiture, Tena Alamirew
Abstract:
Conflicts over water are increasing mainly as a result of water scarcity in response to higher water demand and climatic variability. There is often not enough water to meet all demands for different uses. Thus, decisions have to be made as to how the available resources can be managed and utilized. Correspondingly water allocation goals, practically national water policy goals, need to be revised accordingly as the pressure on water increases from time to time. A case study is conducted in the Upper Awash Basin, Ethiopia, to assess and evaluate prioritized comprehensive water demand management options based on the framework of integrated water resources management in account of stakeholders’ knowledge and preferences as well as practical prominence within the Upper Awash Basin. Two categories of alternative management options based on policy analysis and stakeholders' consultation were evaluated against the business-as-usual scenario by using WEAP21 model as an analytical tool. Strong effects on future (unmet) demands are observed with major socio-economic assumptions and forthcoming water development plans. Water management within the basin will get more complex with further abstraction which may lead to an irreversible damage to the ecosystem. It is further confirmed through this particular study that efforts to maintain users’ preferences alone cannot insure economically viable and environmentally sound development and vice versa. There is always a tradeoff between these factors. Hence, all of these facets must be analyzed separately, related with each other in equal footing, and ultimately taken up in decision making in order for the whole system to function properly.Keywords: water demand, water availability, WEAP21, scenarios
Procedia PDF Downloads 28124328 Using Data from Foursquare Web Service to Represent the Commercial Activity of a City
Authors: Taras Agryzkov, Almudena Nolasco-Cirugeda, Jose L. Oliver, Leticia Serrano-Estrada, Leandro Tortosa, Jose F. Vicent
Abstract:
This paper aims to represent the commercial activity of a city taking as source data the social network Foursquare. The city of Murcia is selected as case study, and the location-based social network Foursquare is the main source of information. After carrying out a reorganisation of the user-generated data extracted from Foursquare, it is possible to graphically display on a map the various city spaces and venues –especially those related to commercial, food and entertainment sector businesses. The obtained visualisation provides information about activity patterns in the city of Murcia according to the people`s interests and preferences and, moreover, interesting facts about certain characteristics of the town itself.Keywords: social networks, spatial analysis, data visualization, geocomputation, Foursquare
Procedia PDF Downloads 42624327 Application of Data Mining Techniques for Tourism Knowledge Discovery
Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee
Abstract:
Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.Keywords: classification algorithms, data mining, knowledge discovery, tourism
Procedia PDF Downloads 295