Search results for: learning from history
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9644

Search results for: learning from history

7274 Cognition and Communication Disorders Effect on Death Penalty Cases

Authors: Shameka Stanford

Abstract:

This presentation will discuss how cognitive and communication disorders in the areas of executive functioning, receptive and expressive language can impact the problem-solving and decision making of individuals with such impairments. More specifically, this presentation will discuss approaches the legal defense team of capital case lawyers can add to their experience when servicing individuals who have a history of educational decline, special education, and limited intervention and treatment. The objective of the research is to explore and identify the correlations between impaired executive function skills and decision making and competency for individuals facing death penalty charges. To conduct this research, experimental design, randomized sampling, qualitative analysis was employed. This research contributes to the legal and criminal justice system related to how they view, defend, and characterize, and judge individuals with documented cognitive and communication disorders who are eligible for capital case charges. More importantly, this research contributes to the increased ability of death penalty lawyers to successfully defend clients with a history of academic difficulty, special education, and documented disorders that impact educational progress and academic success.

Keywords: cognitive impairments, communication disorders, death penalty, executive function

Procedia PDF Downloads 155
7273 Comparision of Statistical Variables for Vaccinated and Unvaccinated Children in Measles Cases in Khyber Pukhtun Khwa

Authors: Inayatullah Khan, Afzal Khan, Hamzullah Khan, Afzal Khan

Abstract:

Objectives: The objective of this study was to compare different statistical variables for vaccinated and unvaccinated children in measles cases. Material and Methods: This cross sectional comparative study was conducted at Isolation ward, Department of Paediatrics, Lady Reading Hospital (LRH), Peshawar, from April 2012 to March 2013. A total of 566 admitted cases of measles were enrolled. Data regarding age, sex, address, vaccination status, measles contact, hospital stay and outcome was collected and recorded on a proforma. History of measles vaccination was ascertained either by checking the vaccination cards or on parental recall. Result: In 566 cases of measles, 211(39%) were vaccinated and 345 (61%) were unvaccinated. Three hundred and ten (54.80%) patients were males and 256 (45.20%) were females with a male to female ratio of 1.2:1.The age range was from 1 year to 14 years with mean age with SD of 3.2 +2 years. Majority (371, 65.5%) of the patients were 1-3 years old. Mean hospital stay was 3.08 days with a range of 1-10 days and a standard deviation of ± 1.15. History of measles contact was present in 393 (69.4%) cases. Fourty eight patients were expired with a mortality rate of 8.5%. Conclusion: Majority of the children in Khyber Pukhtunkhwa are unvaccinated and unprotected against measles. Among vaccinated children, 39% of children attracted measles which indicate measles vaccine failure. This figure is clearly higher than that accepted for measles vaccine (2-10%).

Keywords: measles, vaccination, immunity, population

Procedia PDF Downloads 442
7272 Testing Supportive Feedback Strategies in Second/Foreign Language Vocabulary Acquisition between Typically Developing Children and Children with Learning Disabilities

Authors: Panagiota A. Kotsoni, George S. Ypsilandis

Abstract:

Learning an L2 is a demanding process for all students and in particular for those with learning disabilities (LD) who demonstrate an inability to catch up with their classmates’ progress in a given period of time. This area of study, i.e. examining children with learning disabilities in L2 has not (yet) attracted the growing interest that is registered in L1 and thus remains comparatively neglected. It is this scientific field that this study wishes to contribute to. The longitudinal purpose of this study is to locate effective Supportive Feedback Strategies (SFS) and add to the quality of learning in second language vocabulary in both typically developing (TD) and LD children. Specifically, this study aims at investigating and comparing the performance of TD with LD children on two different types of SFSs related to vocabulary short and long-term retention. In this study two different SFSs have been examined to a total of ten (10) unknown vocabulary items. Both strategies provided morphosyntactic clarifications upon new contextualized vocabulary items. The traditional SFS (direct) provided the information only in one hypertext page with a selection on the relevant item. The experimental SFS (engaging) provided the exact same split information in three successive hypertext pages in the form of a hybrid dialogue asking from the subjects to move on to the next page by selecting the relevant link. It was hypothesized that this way the subjects would engage in their own learning process by actively asking for more information which would further lead to their better retention. The participants were fifty-two (52) foreign language learners (33 TD and 19 LD) aged from 9 to 12, attending an English language school at the level of A1 (CEFR). The design of the study followed a typical pre-post-post test procedure after an hour and after a week. The results indicated statistically significant group differences with TD children performing significantly better than the LD group in both short and long-term memory measurements and in both SFSs. As regards the effectiveness of one SFS over another the initial hypothesis was not supported by the evidence as the traditional SFS was more effective compared to the experimental one in both TD and LD children. This difference proved to be statistically significant only in the long-term memory measurement and only in the TD group. It may be concluded that the human brain seems to adapt to different SFS although it shows a small preference when information is provided in a direct manner.

Keywords: learning disabilities, memory, second/foreign language acquisition, supportive feedback

Procedia PDF Downloads 282
7271 Amharic Text News Classification Using Supervised Learning

Authors: Misrak Assefa

Abstract:

The Amharic language is the second most widely spoken Semitic language in the world. There are several new overloaded on the web. Searching some useful documents from the web on a specific topic, which is written in the Amharic language, is a challenging task. Hence, document categorization is required for managing and filtering important information. In the classification of Amharic text news, there is still a gap in the domain of information that needs to be launch. This study attempts to design an automatic Amharic news classification using a supervised learning mechanism on four un-touch classes. To achieve this research, 4,182 news articles were used. Naive Bayes (NB) and Decision tree (j48) algorithms were used to classify the given Amharic dataset. In this paper, k-fold cross-validation is used to estimate the accuracy of the classifier. As a result, it shows those algorithms can be applicable in Amharic news categorization. The best average accuracy result is achieved by j48 decision tree and naïve Bayes is 95.2345 %, and 94.6245 % respectively using three categories. This research indicated that a typical decision tree algorithm is more applicable to Amharic news categorization.

Keywords: text categorization, supervised machine learning, naive Bayes, decision tree

Procedia PDF Downloads 205
7270 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models

Authors: Chad Goldsworthy, B. Rajeswari Matam

Abstract:

The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.

Keywords: convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation

Procedia PDF Downloads 189
7269 A Readiness Framework for Digital Innovation in Education: The Context of Academics and Policymakers in Higher Institutions of Learning to Assess the Preparedness of Their Institutions to Adopt and Incorporate Digital Innovation

Authors: Lufungula Osembe

Abstract:

The field of education has witnessed advances in technology and digital transformation. The methods of teaching have undergone significant changes in recent years, resulting in effects on various areas such as pedagogies, curriculum design, personalized teaching, gamification, data analytics, cloud-based learning applications, artificial intelligence tools, advanced plug-ins in LMS, and the emergence of multimedia creation and design. The field of education has not been immune to the changes brought about by digital innovation in recent years, similar to other fields such as engineering, health, science, and technology. There is a need to look at the variables/elements that digital innovation brings to education and develop a framework for higher institutions of learning to assess their readiness to create a viable environment for digital innovation to be successfully adopted. Given the potential benefits of digital innovation in education, it is essential to develop a framework that can assist academics and policymakers in higher institutions of learning to evaluate the effectiveness of adopting and adapting to the evolving landscape of digital innovation in education. The primary research question addressed in this study is to establish the preparedness of higher institutions of learning to adopt and adapt to the evolving landscape of digital innovation. This study follows a Design Science Research (DSR) paradigm to develop a framework for academics and policymakers in higher institutions of learning to evaluate the readiness of their institutions to adopt digital innovation in education. The Design Science Research paradigm is proposed to aid in developing a readiness framework for digital innovation in education. This study intends to follow the Design Science Research (DSR) methodology, which includes problem awareness, suggestion, development, evaluation, and conclusion. One of the major contributions of this study will be the development of the framework for digital innovation in education. Given the various opportunities offered by digital innovation in recent years, the need to create a readiness framework for digital innovation will play a crucial role in guiding academics and policymakers in their quest to align with emerging technologies facilitated by digital innovation in education.

Keywords: digital innovation, DSR, education, opportunities, research

Procedia PDF Downloads 65
7268 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy

Authors: Kemal Efe Eseller, Göktuğ Yazici

Abstract:

Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.

Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing

Procedia PDF Downloads 86
7267 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation

Procedia PDF Downloads 234
7266 Modern Scotland Yard: Improving Surveillance Policies Using Adversarial Agent-Based Modelling and Reinforcement Learning

Authors: Olaf Visker, Arnout De Vries, Lambert Schomaker

Abstract:

Predictive policing refers to the usage of analytical techniques to identify potential criminal activity. It has been widely implemented by various police departments. Being a relatively new area of research, there are, to the author’s knowledge, no absolute tried, and true methods and they still exhibit a variety of potential problems. One of those problems is closely related to the lack of understanding of how acting on these prediction influence crime itself. The goal of law enforcement is ultimately crime reduction. As such, a policy needs to be established that best facilitates this goal. This research aims to find such a policy by using adversarial agent-based modeling in combination with modern reinforcement learning techniques. It is presented here that a baseline model for both law enforcement and criminal agents and compare their performance to their respective reinforcement models. The experiments show that our smart law enforcement model is capable of reducing crime by making more deliberate choices regarding the locations of potential criminal activity. Furthermore, it is shown that the smart criminal model presents behavior consistent with popular crime theories and outperforms the baseline model in terms of crimes committed and time to capture. It does, however, still suffer from the difficulties of capturing long term rewards and learning how to handle multiple opposing goals.

Keywords: adversarial, agent based modelling, predictive policing, reinforcement learning

Procedia PDF Downloads 147
7265 Educational Innovation through Coaching and Mentoring in Thailand: A Mixed Method Evaluation of the Training Outcomes

Authors: Kanu Priya Mohan

Abstract:

Innovation in education is one of the essential pathways to achieve both educational, and development goals in today’s dynamically changing world. Over the last decade, coaching and mentoring have been applied in the field of education as positive intervention techniques for fostering teaching and learning reforms in the developed countries. The context of this research was Thailand’s educational reform process, wherein a project on coaching and mentoring (C&M) was launched in 2014. The C&M project endeavored to support the professional development of the school teachers in the various provinces of Thailand, and to also enable them to apply C&M for teaching innovative instructional techniques. This research aimed to empirically investigate the learning outcomes for the master trainers, who trained for coaching and mentoring as the first step in the process to train the school teachers. A mixed method study was used for evaluating the learning outcomes of training in terms of cognitive- behavioral-affective dimensions. In the first part of the research a quantitative research design was incorporated to evaluate the effects of learner characteristics and instructional techniques, on the learning outcomes. In the second phase, a qualitative method of in-depth interviews was used to find details about the training outcomes, as well as the perceived barriers and enablers of the training process. Sample size constraints were there, yet these exploratory results, integrated from both methods indicated the significance of evaluating training outcomes from the three dimensions, and the perceived role of other factors in the training. Findings are discussed in terms of their implications for the training of C&M, and also their impact in fostering positive education through innovative educational techniques in the developing countries.

Keywords: cognitive-behavioral-affective learning outcomes, mixed method research, teachers in Thailand, training evaluation

Procedia PDF Downloads 271
7264 Review of Different Machine Learning Algorithms

Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui

Abstract:

Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.

Keywords: Data Mining, Web Mining, classification, ML Algorithms

Procedia PDF Downloads 301
7263 Teaching Health in an Online 3D Virtual Learning Environment

Authors: Nik Siti Hanifah Nik Ahmad

Abstract:

This research discuss about teaching cupping therapy or hijama by using an online 3D Virtual Learning Environment. The experimental platform was using of flash and Second Life as 2D and 3D comparison. 81 samples have been used in three experiments with 21 in the first and 30 in each second and third. The design of the presentation was tested in five categories such as effectiveness, ease of use, efficacy, aesthetic and users’ satisfaction. The results from three experiments had shown promising outcome for usage of the technique to be implement in teaching Cupping Therapy as well as other alternative or conventional medicine knowledge especially for training.

Keywords: medical and health, cupping therapy or hijama, second life, online 3D VLE, virtual worlds

Procedia PDF Downloads 421
7262 Infusing Social Business Skills into the Curriculum of Higher Learning Institutions with Special Reference to Albukhari International University

Authors: Abdi Omar Shuriye

Abstract:

A social business is a business designed to address socio-economic problems to enhance the welfare of the communities involved. Lately, social business, with its focus on innovative ideas, is capturing the interest of educational institutions, governments, and non-governmental organizations. Social business uses a business model to achieve a social goal, and in the last few decades, the idea of imbuing social business into the education system of higher learning institutions has spurred much excitement. This is due to the belief that it will lead to job creation and increased social resilience. One of the higher learning institutions which have invested immensely in the idea is Albukhari International University; it is a private education institution, on a state-of-the-art campus, providing an advantageous learning ecosystem. The niche area of this institution is social business, and it graduates job creators, not job seekers; this Malaysian institution is unique and one of its kind. The objective of this paper is to develop a work plan, direction, and milestone as well as the focus area for the infusion of social business into higher learning institutions with special reference to Al-Bukhari International University. The purpose is to develop a prototype and model full-scale to enable higher learning education institutions to construct the desired curriculum fermented with social business. With this model, major predicaments faced by these institutions could be overcome. The paper sets forth an educational plan and will spell out the basic tenets of social business, focusing on the nature and implementational aspects of the curriculum. It will also evaluate the mechanisms applied by these educational institutions. Currently, since research in this area remains scarce, institutions adopt the process of experimenting with various methods to find the best way to reach the desired result on the matter. The author is of the opinion that social business in education is the main tool to educate holistic future leaders; hence educational institutions should inspire students in the classroom to start up their own businesses by adopting creative and proactive teaching methods. This proposed model is a contribution in that direction.

Keywords: social business, curriculum, skills, university

Procedia PDF Downloads 88
7261 Children’s (re)actions in the Scaffolding Process Using Digital Technologies

Authors: Davoud Masoumi, Maryam Bourbour

Abstract:

By characterizing children’s actions in the scaffolding process, which is often undermined and ignored in the studies reviewed, this study aimed to examine children’s different (re)actions in relation to the teachers’ actions in a context where digital technologies are used. Over five months, 22 children aged 4-6 with five preschool teachers were video observed. The study brought in rich details of the children’s actions in relation to the teacher’s actions in the scaffolding process. The findings of the study reveal thirteen (re)actions, including Giving short response; Explaining; Participating in the activities; Examining; Smiling and laughing; Pointing and showing; Working together; Challenging each other; Problem-solving skills; Developing vocabulary; Choosing the activity; Expressing of the emotions; and Identifying the similarities and differences. Our findings expanded and deepened the understanding of the scaffolding process, which can contribute to the notion of scaffolding and help us to gain further understanding about scaffolding of children’s learning. Characterizing the children’s (re)action in relation to teacher’s scaffolding actions further can contribute to ongoing discussions about how teachers can scaffold children’s learning using digital technologies in the learning process.

Keywords: children’ (re)actions, scaffolding process, technologies, preschools

Procedia PDF Downloads 80
7260 The Cytomegalovirus Infection among Iranian Kidney Graft Recipients

Authors: Zakieh Rostamzadeh , Nariman Sepehrvand-Zahra Shirmohamadi

Abstract:

Background: Cytomegalovirus (CMV) infection is one of the most common infectious problems following kidney transplantation. In this study, we are aimed to investigate the CMV infection in the setting of renal transplant recipients in Urmia-Iran, using both ELISA and polymerase chain reaction (PCR) methods. Methods: Ninety-six renal transplant recipients were selected randomly and enrolled in a cross-sectional study. Blood sampling was done via venipuncture, and all sera were investigated for anti-CMV IgM, and the seropositive cases in association with 14 randomly selected seronegative cases were investigated with PCR assay. Results: Thirty-three patients (34.3%) were seropositive for anti-CMV IgM, 3 patients (3.1%) were in borderline range, and 60 patients (62.5%) were seronegative. By considering the patients with borderline anti-CMV IgM levels as seropositive, 37.5% were seropositive for anti-CMV IgM. Among 36 seropositive cases, the CMV infection was confirmed in 19 (52.7%) of them using PCR. Age (P = 0.40), educational status (P = 0.77), history of pre-transplantation dialysis (0.52), history of blood transfusion (P = 0.52), and immunosuppressive regimen were not statistically different among recipients with positive versus negative CMV PCR study results. Conclusion: The seroprevalence of CMV infection was demonstrated to be high in renal transplant recipients of Urmia-Iran. The rate was higher compared to several previous reports in the literature. ELISA method has an appropriate sensitivity to screen the recipients for CMV infection but considering its relatively low specificity, the seropositive cases are better to be confirmed by further PCR study.

Keywords: cytomegalovirus, renal transplantation, ELISA, IgM, PCR

Procedia PDF Downloads 302
7259 FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points

Authors: Daniel Bulanda, Janusz A. Starzyk, Adrian Horzyk

Abstract:

The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms.

Keywords: characteristic points, electrocardiogram, ECG, machine learning, signal compression

Procedia PDF Downloads 159
7258 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer

Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom

Abstract:

Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.

Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN

Procedia PDF Downloads 74
7257 Australian Football Supporters Engagement Patterns; Manchester United vs a-League

Authors: Trevor R. Higgins, Ben Lopez

Abstract:

Australian football fans have a tendency to indulge in foreign football clubs, often assigning a greater value to foreign clubs, in preference to the Australian National football competition; the A-League. There currently exists a gap in the knowledge available in relation to football fans in Australia, their engagement with foreign football teams and the impact that this may have with their engagement with A-League. The purpose of this study was to compare the engagement of the members of the Manchester United Supporters Club - Australia (MUSC-Aus) with Manchester United and the A-League. An online survey was implemented to gather the relevant data from members of the MUSC-Aus. Results from completed surveys were collected, and analyzed in relation to engagement levels with Manchester United and the A-League. Members of MUSC-Aus who responded to the survey were predominantly male (94%) and born in Australia (46%), England (25%), Ireland (7%), were greatly influenced in their choice of Manchester United by family (43%) and team history (16%), whereas location was the overwhelming influence in supporting the A-League (88%). Importantly, there was a reduced level of engagement in the A-League on two accounts. Firstly, only 64% of MUSC-Aus engaged with the A-League, reporting perceptions of low standard as the major reason (50%). Secondly, MUSC-Aus members who engaged in the A-League reported reduced engagement in the A-League, identified through spending patterns. MUSC-Aus members’ expenditure on Manchester United engagement was 400% greater than expenditure on A-League engagement. Furthermore, additional survey responses indicated that the level of commitment towards the A-League overall was less than Manchester United. The greatest impact on fan engagement in the A-League by MUSC-Aus can be attributed to several primary factors; family support, team history and perceptions to on-field performance and quality of players. Currently, there is little that can be done in regards to enhancing family and history as the A-League is still in its infancy. Therefore, perceptions of on-field performances and player quality should be addressed. Introducing short-term international marquee contracts to A-League rosters, across the entire competition, may provide the platform to raise the perception of the A-League player quality with minimal impact on local player development. In addition, a national marketing campaign promoting the success of A-League clubs in the ACL, as well as promoting the skill on display in the A-League may address the negative association with the standard of the A-League competition.

Keywords: engagement, football, perceptions of performance, team

Procedia PDF Downloads 281
7256 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time

Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl

Abstract:

In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.

Keywords: SQL injection, attacks, web application, accuracy, database

Procedia PDF Downloads 150
7255 Connecting Lives Inside and Outside the Classroom: Why and How to Implement Technology in the Language Learning Classroom

Authors: Geoffrey Sinha

Abstract:

This paper is primarily addressed to teachers who stand on the threshold of bringing technology and new media into their classrooms. Technology and new media, such as smart phones and tablets have changed the face of communication in general and of language teaching more specifically. New media has widespread appeal among young people in particular, so it is in the teacher’s best interests to bring new media into their lessons. It is the author’s firm belief that technology will never replace the teacher, but it is without question that the twenty-first century teacher must employ technology and new media in some form, or run the risk of failure. The level that one chooses to incorporate new media within their class is entirely in their hands.

Keywords: new media, social media, technology, education, language learning

Procedia PDF Downloads 332
7254 Information and Communication Technology Application in the Face of COVID-19 Pandemic in Effective Service Delivery in Schools

Authors: Odigie Veronica

Abstract:

The paper focused on the application of Information and Communication Technology (ICT) in effective service delivery in view of the ongoing COVID-19 experience. It adopted the exploratory research method with three research objectives captured. Consequently, the objectives were to ascertain the meaning of online education, understand the concept of COVID-19 and to determine the relevance of online education in effective service delivery in institutions of learning. It is evident from the findings that through ICT, online mode of learning can be adopted in schools which helps greatly in promoting continual education. Online mode of education is practiced online; it brings both the teacher and learners from different places together, without any physical boundary/contact (at least 75%); and has helped greatly in human development in countries where it has been practiced. It is also a welcome development owing to its many benefits such as exposure to digital learning, having access to works of great teachers and educationists such as Socrates, Plato, Dewey, R.S. Peters, J. J. Rosseau, Nnamdi Azikwe, Carol Gilligan, J. I. Omoregbe, Jane Roland Martin, Jean Piaget, among others; and the facilitation of uninterrupted learning for class promotion and graduation of students. Developing the learners all round is part of human development which helps in developing a nation. These and many more are some benefits online education offers which make ICT very relevant in our contemporary society

Keywords: online education, COVID-19 pandemic, effective service delivery, human development

Procedia PDF Downloads 99
7253 Aligning Informatics Study Programs with Occupational and Qualifications Standards

Authors: Patrizia Poscic, Sanja Candrlic, Danijela Jaksic

Abstract:

The University of Rijeka, Department of Informatics participated in the Stand4Info project, co-financed by the European Union, with the main idea of an alignment of study programs with occupational and qualifications standards in the field of Informatics. A brief overview of our research methodology, goals and deliverables is shown. Our main research and project objectives were: a) development of occupational standards, qualification standards and study programs based on the Croatian Qualifications Framework (CROQF), b) higher education quality improvement in the field of information and communication sciences, c) increasing the employability of students of information and communication technology (ICT) and science, and d) continuously improving competencies of teachers in accordance with the principles of CROQF. CROQF is a reform instrument in the Republic of Croatia for regulating the system of qualifications at all levels through qualifications standards based on learning outcomes and following the needs of the labor market, individuals and society. The central elements of CROQF are learning outcomes - competences acquired by the individual through the learning process and proved afterward. The place of each acquired qualification is set by the level of the learning outcomes belonging to that qualification. The placement of qualifications at respective levels allows the comparison and linking of different qualifications, as well as linking of Croatian qualifications' levels to the levels of the European Qualifications Framework and the levels of the Qualifications framework of the European Higher Education Area. This research has made 3 proposals of occupational standards for undergraduate study level (System Analyst, Developer, ICT Operations Manager), and 2 for graduate (master) level (System Architect, Business Architect). For each occupational standard employers have provided a list of key tasks and associated competencies necessary to perform them. A set of competencies required for each particular job in the workplace was defined and each set of competencies as described in more details by its individual competencies. Based on sets of competencies from occupational standards, sets of learning outcomes were defined and competencies from the occupational standard were linked with learning outcomes. For each learning outcome, as well as for the set of learning outcomes, it was necessary to specify verification method, material, and human resources. The task of the project was to suggest revision and improvement of the existing study programs. It was necessary to analyze existing programs and determine how they meet and fulfill defined learning outcomes. This way, one could see: a) which learning outcomes from the qualifications standards are covered by existing courses, b) which learning outcomes have yet to be covered, c) are they covered by mandatory or elective courses, and d) are some courses unnecessary or redundant. Overall, the main research results are: a) completed proposals of qualification and occupational standards in the field of ICT, b) revised curricula of undergraduate and master study programs in ICT, c) sustainable partnership and association stakeholders network, d) knowledge network - informing the public and stakeholders (teachers, students, and employers) about the importance of CROQF establishment, and e) teachers educated in innovative methods of teaching.

Keywords: study program, qualification standard, occupational standard, higher education, informatics and computer science

Procedia PDF Downloads 141
7252 Best Practices in Designing a Mentoring Programme for Soft Skills Development

Authors: D. Kokt, T. F. Dreyer

Abstract:

The main objective of the study was to design a mentoring programme aimed at developing the soft skills of mentors. The mentors are all employed by a multinational corporation. The company had a mentoring plan in place that did not yield the required results, especially related to the development of soft skills. This prompted the researchers to conduct an extensive literature review followed by a mixed methods approach to ascertain the best practices in developing the soft skills of mentors. The outcomes of the study led to the development of a structured mentoring programme using 25 modules to be completed by mentors. The design incorporated a blended modular approach using both face-to-face teaching and teaching supported by Information Communication Technology (ICT). Blended learning was ideal as the ICT component helped to minimise instructor-mentor physical contact as part of the health measures during the Covid-19 pandemic. The blended learning approach also allowed instructors and mentors an online or offline mode, so that mentors could have more time for creative and cooperative exercises. A range of delivery methodologies were spread out across the different modules to ensure mentor engagement and accelerate mentor development. This included concept development through in-person instructor-led training sessions, concept development through virtual instructor-led training sessions, simulations, case studies, e-learning, role plays, interactive learning using mentoring toolkits, and experiential learning through application. The mentor development journey included formal modular competency assessments. All modules contained post-competency assessment consisting of 10 questions (comprising of a combination of explanatory questions and multiple-choice questions) to ensure understanding and deal with identified competency gaps. The minimum pass mark for all modular competency assessments was 80%. Mentors were allowed to retake the assessment if they scored less than 80% until they demonstrated understanding at the required level.

Keywords: mentor, mentee, soft skills, mentor development, blended learning, modular approach

Procedia PDF Downloads 28
7251 The Development of Educational Video Games Aimed at Enhancing Academic Motivation and Learning Among African American Males

Authors: Kenneth Philip Jones

Abstract:

This dissertation investigates the potential of developing educational-based video games to motivate and engage African American males. The study employed a qualitative methodological approach by investigating African American males who are avid video game players and are currently enrolled at a college or university. The participants were individually and collectively video and audio recorded during the interviews and observations. Situated Learning theory analyzed how motivation and engagement can transfer from a video game to an educational context. The research aims to address the disparities in our educational systems when it comes to providing a culture, climate, and atmosphere that will enable the academic development of African American males. The primary objective of the findings is based on the participants’ responses and the data collected to provide recommendations to educators and scholars on how to address the issues that have demoralized African American males in education and provide a platform that will allow for equality in educational development and advancement.

Keywords: video games, motivation, behavioral, learning transfer

Procedia PDF Downloads 119
7250 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 161
7249 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning

Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie

Abstract:

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.

Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue

Procedia PDF Downloads 188
7248 Distangling Biological Noise in Cellular Images with a Focus on Explainability

Authors: Manik Sharma, Ganapathy Krishnamurthi

Abstract:

The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.

Keywords: cellular images, genetic perturbations, deep-learning, explainability

Procedia PDF Downloads 109
7247 A Deep Learning Based Approach for Dynamically Selecting Pre-processing Technique for Images

Authors: Revoti Prasad Bora, Nikita Katyal, Saurabh Yadav

Abstract:

Pre-processing plays an important role in various image processing applications. Most of the time due to the similar nature of images, a particular pre-processing or a set of pre-processing steps are sufficient to produce the desired results. However, in the education domain, there is a wide variety of images in various aspects like images with line-based diagrams, chemical formulas, mathematical equations, etc. Hence a single pre-processing or a set of pre-processing steps may not yield good results. Therefore, a Deep Learning based approach for dynamically selecting a relevant pre-processing technique for each image is proposed. The proposed method works as a classifier to detect hidden patterns in the images and predicts the relevant pre-processing technique needed for the image. This approach experimented for an image similarity matching problem but it can be adapted to other use cases too. Experimental results showed significant improvement in average similarity ranking with the proposed method as opposed to static pre-processing techniques.

Keywords: deep-learning, classification, pre-processing, computer vision, image processing, educational data mining

Procedia PDF Downloads 162
7246 Learning the Dynamics of Articulated Tracked Vehicles

Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri

Abstract:

In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.

Keywords: Dirichlet processes, gaussian mixture models, learning motion patterns, tracked robots for urban search and rescue

Procedia PDF Downloads 448
7245 A Machine Learning-Based Approach to Capture Extreme Rainfall Events

Authors: Willy Mbenza, Sho Kenjiro

Abstract:

Increasing efforts are directed towards a better understanding and foreknowledge of extreme precipitation likelihood, given the adverse effects associated with their occurrence. This knowledge plays a crucial role in long-term planning and the formulation of effective emergency response. However, predicting extreme events reliably presents a challenge to conventional empirical/statistics due to the involvement of numerous variables spanning different time and space scales. In the recent time, Machine Learning has emerged as a promising tool for predicting the dynamics of extreme precipitation. ML techniques enables the consideration of both local and regional physical variables that have a strong influence on the likelihood of extreme precipitation. These variables encompasses factors such as air temperature, soil moisture, specific humidity, aerosol concentration, among others. In this study, we develop an ML model that incorporates both local and regional variables while establishing a robust relationship between physical variables and precipitation during the downscaling process. Furthermore, the model provides valuable information on the frequency and duration of a given intensity of precipitation.

Keywords: machine learning (ML), predictions, rainfall events, regional variables

Procedia PDF Downloads 85