Search results for: image quality metrics
10271 Board of Directors Characteristics and Credit Union Financial Performance
Authors: Luisa Unda, Kamran Ahmed, Paul Mather
Abstract:
We examine the effect of board characteristics on the performance and asset quality of credit unions in Australia, using a large sample covering the period 2004-2012. Credit unions are unique in that they are customer-owned financial institutions and directors are democratically elected by members, which is distinctly different from other financial institutions, such as commercial banks. We find that board remuneration, board expertise, and attendance at board meetings have significantly positive impacts on credit union performance and asset quality, while board members who hold multiple directorships (busy directors), have a significant negative impact on credit union performance. Financial performance also improves with larger boards and long-tenured directors in credit unions. All of these relations hold after we control for alternative measures of performance, credit union characteristics and endogeneity problem.Keywords: credit unions, corporate governance, board of directors, financial performance, Australia, asset quality
Procedia PDF Downloads 52510270 A Hybrid Data-Handler Module Based Approach for Prioritization in Quality Function Deployment
Authors: P. Venu, Joeju M. Issac
Abstract:
Quality Function Deployment (QFD) is a systematic technique that creates a platform where the customer responses can be positively converted to design attributes. The accuracy of a QFD process heavily depends on the data that it is handling which is captured from customers or QFD team members. Customized computer programs that perform Quality Function Deployment within a stipulated time have been used by various companies across the globe. These programs heavily rely on storage and retrieval of the data on a common database. This database must act as a perfect source with minimum missing values or error values in order perform actual prioritization. This paper introduces a missing/error data handler module which uses Genetic Algorithm and Fuzzy numbers. The prioritization of customer requirements of sesame oil is illustrated and a comparison is made between proposed data handler module-based deployment and manual deployment.Keywords: hybrid data handler, QFD, prioritization, module-based deployment
Procedia PDF Downloads 29910269 Preparation of n-type Bi2Te3 Films by Electrophoretic Deposition
Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya
Abstract:
A high quality crack-free film of Bi2Te3 material has been deposited for the first time using electrophoretic deposition (EPD) and microstructures of various films have been investigated. One of the most important thermoelectric (TE) applications is Bi2Te3 to manufacture TE generators (TEG) which can convert waste heat into electricity targeting the global warming issue. However, the high cost of the manufacturing process of TEGs keeps them expensive and out of reach for commercialization. Therefore, utilizing EPD as a simple and cost-effective method will open new opportunities for TEG’s commercialization. This method has been recently used for advanced materials such as microelectronics and has attracted a lot of attention from both scientists and industry. In this study, the effect of media of suspensions has been investigated on the quality of the deposited films as well as their microstructure. In summary, finding an appropriate suspension is a critical step for a successful EPD process and has an important effect on both the film’s quality and its future properties.Keywords: Bi2Te3, electrical conductivity, electrophoretic deposition, thermoelectric materials, thick films
Procedia PDF Downloads 25810268 Algorithm for Improved Tree Counting and Detection through Adaptive Machine Learning Approach with the Integration of Watershed Transformation and Local Maxima Analysis
Authors: Jigg Pelayo, Ricardo Villar
Abstract:
The Philippines is long considered as a valuable producer of high value crops globally. The country’s employment and economy have been dependent on agriculture, thus increasing its demand for the efficient agricultural mechanism. Remote sensing and geographic information technology have proven to effectively provide applications for precision agriculture through image-processing technique considering the development of the aerial scanning technology in the country. Accurate information concerning the spatial correlation within the field is very important for precision farming of high value crops, especially. The availability of height information and high spatial resolution images obtained from aerial scanning together with the development of new image analysis methods are offering relevant influence to precision agriculture techniques and applications. In this study, an algorithm was developed and implemented to detect and count high value crops simultaneously through adaptive scaling of support vector machine (SVM) algorithm subjected to object-oriented approach combining watershed transformation and local maxima filter in enhancing tree counting and detection. The methodology is compared to cutting-edge template matching algorithm procedures to demonstrate its effectiveness on a demanding tree is counting recognition and delineation problem. Since common data and image processing techniques are utilized, thus can be easily implemented in production processes to cover large agricultural areas. The algorithm is tested on high value crops like Palm, Mango and Coconut located in Misamis Oriental, Philippines - showing a good performance in particular for young adult and adult trees, significantly 90% above. The s inventories or database updating, allowing for the reduction of field work and manual interpretation tasks.Keywords: high value crop, LiDAR, OBIA, precision agriculture
Procedia PDF Downloads 40410267 Quality Teaching Evaluation Instrument: A Student Learning-centred Approach
Authors: Thuy T. T. Tran, Hamish Coates, Sophie Arkoudis
Abstract:
Evaluation instruments of teaching are abundant; however, these do not prompt any enhancement in the quality of teaching, not least because these instruments are framed only by teacher-centered conceptions of teaching. There is a need for more sophisticated teaching evaluation measures that focus on student learning and multi-stakeholder involvement. This study aims to develop such an evaluation instrument for Vietnamese higher education. The study uses several kinds of methods. The instrument was initially drafted through in-depth review of research, paying close attention to Vietnamese higher education. Draft evaluation instruments were produced and reviewed by 34 experts. The outcomes of this qualitative and quantitative data reveal an instrument that highlights the value of a multisource student-centered approach, and the rich integration of contextual and cultural traits where Confucian values are emphasized. The validation affirms that evaluating teaching in such way will facilitate the continuous learning growth of all stakeholders involved.Keywords: multi stakeholders, quality teaching, student learning, teaching evaluation
Procedia PDF Downloads 31610266 An Automated R-Peak Detection Method Using Common Vector Approach
Authors: Ali Kirkbas
Abstract:
R peaks in an electrocardiogram (ECG) are signs of cardiac activity in individuals that reveal valuable information about cardiac abnormalities, which can lead to mortalities in some cases. This paper examines the problem of detecting R-peaks in ECG signals, which is a two-class pattern classification problem in fact. To handle this problem with a reliable high accuracy, we propose to use the common vector approach which is a successful machine learning algorithm. The dataset used in the proposed method is obtained from MIT-BIH, which is publicly available. The results are compared with the other popular methods under the performance metrics. The obtained results show that the proposed method shows good performance than that of the other. methods compared in the meaning of diagnosis accuracy and simplicity which can be operated on wearable devices.Keywords: ECG, R-peak classification, common vector approach, machine learning
Procedia PDF Downloads 6710265 Spanish University Governance Reporting
Authors: Agustin Baidez, Yolanda Ramirez
Abstract:
There is currently a growing interest in the improvement of university governance and the disclosure of information on governance processes as an essential part of the transparency and accountability of universities. This paper aims to examine the extent and quality of voluntary corporate governance disclosure by public Spanish universities on their websites in relation to information need of stakeholders. The results of this study show that Spanish university stakeholders attach great importance to the disclosure of specific information on aspects of corporate governance. However, the quality of disclosed information on university governance in public Spanish universities websites is in the middle level. In order to satisfy the information needs of university stakeholders, Spanish universities can be recommended to focus on reporting higher quality information on university autonomy in financing, autonomy in management, autonomy regarding student selection and assessment, degree of consanguinity of executive directors, report on assigned public funding based on results, and management reports.Keywords: university, governance, transparency, stakeholders
Procedia PDF Downloads 6210264 Clinical Factors of Quality Switched Ruby Laser Therapy for Lentigo Depigmentation
Authors: SunWoo Lee, TaeBum Lee, YoonHwa Park, YooJeong Kim
Abstract:
Solar lentigines appear predominantly on chronically sun-exposed areas of skin, such as the face and the back of the hands. Among the several ways to lentigines treatment, quality-switched lasers are well-known effective treatment for removing solar lentigines. The present pilot study was therefore designed to assess the efficacy of quality-switched ruby laser treatment of such lentigines compare between pretreatment and posttreatment of skin brightness. Twenty-two adults with chronic sun-damaged skin (mean age 52.8 years, range 37–74 years) were treated at the Korean site. A 694 nm Q-switched ruby laser was used, with the energy density set from 1.4 to 12.5 J/cm2, to treat solar lentigines. Average brightness of skin color before ruby laser treatment was 137.3 and its skin color was brightened after ruby laser treatment by 150.5. Also, standard deviation of skin color was decreased from 17.8 to 16.4. Regarding the multivariate model, age and energy were identified as significant factors for skin color brightness change in lentigo depigmentation by ruby laser treatment. Their respective odds ratios were 1.082 (95% CI, 1.007–1.163), and 1.431 (95% CI, 1.051–1.946). Lentigo depigmentation treatment using ruby lasers resulted in a high performance in skin color brightness. Among the relative factors involve with ruby laser treatment, age and energy were the most effective factors which skin color change to brighter than pretreatment.Keywords: depigmentation, lentigine, quality switched ruby laser, skin color
Procedia PDF Downloads 25510263 Guests’ Satisfaction and Intention to Revisit Smart Hotels: Qualitative Interviews Approach
Authors: Raymond Chi Fai Si Tou, Jacey Ja Young Choe, Amy Siu Ian So
Abstract:
Smart hotels can be defined as the hotel which has an intelligent system, through digitalization and networking which achieve hotel management and service information. In addition, smart hotels include high-end designs that integrate information and communication technology with hotel management fulfilling the guests’ needs and improving the quality, efficiency and satisfaction of hotel management. The purpose of this study is to identify appropriate factors that may influence guests’ satisfaction and intention to revisit Smart Hotels based on service quality measurement of lodging quality index and extended UTAUT theory. Unified Theory of Acceptance and Use of Technology (UTAUT) is adopted as a framework to explain technology acceptance and use. Since smart hotels are technology-based infrastructure hotels, UTATU theory could be as the theoretical background to examine the guests’ acceptance and use after staying in smart hotels. The UTAUT identifies four key drivers of the adoption of information systems: performance expectancy, effort expectancy, social influence, and facilitating conditions. The extended UTAUT modifies the definitions of the seven constructs for consideration; the four previously cited constructs of the UTAUT model together with three new additional constructs, which including hedonic motivation, price value and habit. Thus, the seven constructs from the extended UTAUT theory could be adopted to understand their intention to revisit smart hotels. The service quality model will also be adopted and integrated into the framework to understand the guests’ intention of smart hotels. There are rare studies to examine the service quality on guests’ satisfaction and intention to revisit in smart hotels. In this study, Lodging Quality Index (LQI) will be adopted to measure the service quality in smart hotels. Using integrated UTAUT theory and service quality model because technological applications and services require using more than one model to understand the complicated situation for customers’ acceptance of new technology. Moreover, an integrated model could provide more perspective insights to explain the relationships of the constructs that could not be obtained from only one model. For this research, ten in-depth interviews are planned to recruit this study. In order to confirm the applicability of the proposed framework and gain an overview of the guest experience of smart hotels from the hospitality industry, in-depth interviews with the hotel guests and industry practitioners will be accomplished. In terms of the theoretical contribution, it predicts that the integrated models from the UTAUT theory and the service quality will provide new insights to understand factors that influence the guests’ satisfaction and intention to revisit smart hotels. After this study identifies influential factors, smart hotel practitioners could understand which factors may significantly influence smart hotel guests’ satisfaction and intention to revisit. In addition, smart hotel practitioners could also provide outstanding guests experience by improving their service quality based on the identified dimensions from the service quality measurement. Thus, it will be beneficial to the sustainability of the smart hotels business.Keywords: intention to revisit, guest satisfaction, qualitative interviews, smart hotels
Procedia PDF Downloads 21310262 Classification of Foliar Nitrogen in Common Bean (Phaseolus Vulgaris L.) Using Deep Learning Models and Images
Authors: Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Murilo Mesquita Baesso
Abstract:
Common beans are a widely cultivated and consumed legume globally, serving as a staple food for humans, especially in developing countries, due to their nutritional characteristics. Nitrogen (N) is the most limiting nutrient for productivity, and foliar analysis is crucial to ensure balanced nitrogen fertilization. Excessive N applications can cause, either isolated or cumulatively, soil and water contamination, plant toxicity, and increase their susceptibility to diseases and pests. However, the quantification of N using conventional methods is time-consuming and costly, demanding new technologies to optimize the adequate supply of N to plants. Thus, it becomes necessary to establish constant monitoring of the foliar content of this macronutrient in plants, mainly at the V4 stage, aiming at precision management of nitrogen fertilization. In this work, the objective was to evaluate the performance of a deep learning model, Resnet-50, in the classification of foliar nitrogen in common beans using RGB images. The BRS Estilo cultivar was sown in a greenhouse in a completely randomized design with four nitrogen doses (T1 = 0 kg N ha-1, T2 = 25 kg N ha-1, T3 = 75 kg N ha-1, and T4 = 100 kg N ha-1) and 12 replications. Pots with 5L capacity were used with a substrate composed of 43% soil (Neossolo Quartzarênico), 28.5% crushed sugarcane bagasse, and 28.5% cured bovine manure. The water supply of the plants was done with 5mm of water per day. The application of urea (45% N) and the acquisition of images occurred 14 and 32 days after sowing, respectively. A code developed in Matlab© R2022b was used to cut the original images into smaller blocks, originating an image bank composed of 4 folders representing the four classes and labeled as T1, T2, T3, and T4, each containing 500 images of 224x224 pixels obtained from plants cultivated under different N doses. The Matlab© R2022b software was used for the implementation and performance analysis of the model. The evaluation of the efficiency was done by a set of metrics, including accuracy (AC), F1-score (F1), specificity (SP), area under the curve (AUC), and precision (P). The ResNet-50 showed high performance in the classification of foliar N levels in common beans, with AC values of 85.6%. The F1 for classes T1, T2, T3, and T4 was 76, 72, 74, and 77%, respectively. This study revealed that the use of RGB images combined with deep learning can be a promising alternative to slow laboratory analyses, capable of optimizing the estimation of foliar N. This can allow rapid intervention by the producer to achieve higher productivity and less fertilizer waste. Future approaches are encouraged to develop mobile devices capable of handling images using deep learning for the classification of the nutritional status of plants in situ.Keywords: convolutional neural network, residual network 50, nutritional status, artificial intelligence
Procedia PDF Downloads 2710261 The Quality of Business Relationships in the Tourism System: An Imaginary Organisation Approach
Authors: Armando Luis Vieira, Carlos Costa, Arthur Araújo
Abstract:
The tourism system is viewable as a network of relationships amongst business partners where the success of each actor will ultimately be determined by the success of the whole network. Especially since the publication of Gümmesson’s (1996) ‘theory of imaginary organisations’, which suggests that organisational effectiveness largely depends on managing relationships and sharing resources and activities, relationship quality (RQ) has been increasingly recognised as a main source of value creation and competitive advantage. However, there is still ambiguity around this topic, and managers and researchers have been recurrently reporting the need to better understand and capitalise on the quality of interactions with business partners. This research aims at testing an RQ model from a relational, imaginary organisation’s approach. Two mail surveys provide the perceptions of 725 hotel representatives about their business relationships with tour operators, and 1,224 corporate client representatives about their business relationships with hotels (21.9 % and 38.8 % response rate, respectively). The analysis contributes to enhance our understanding on the linkages between RQ and its determinants, and identifies the role of their dimensions. Structural equation modelling results highlight trust as the dominant dimension, the crucial role of commitment and satisfaction, and suggest customer orientation as complementary building block. Findings also emphasise problem solving behaviour and selling orientation as the most relevant dimensions of customer orientation. The comparison of the two ‘dyads’ deepens the discussion and enriches the suggested theoretical and managerial guidelines concerning the contribution of quality relationships to business performance.Keywords: corporate clients, destination competitiveness, hotels, relationship quality, structural equations modelling, tour operators
Procedia PDF Downloads 40010260 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations
Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu
Abstract:
Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10
Procedia PDF Downloads 11510259 Evaluating the Performance of Offensive Lineman in the National Football League
Authors: Nikhil Byanna, Abdolghani Ebrahimi, Diego Klabjan
Abstract:
How does one objectively measure the performance of an individual offensive lineman in the NFL? The existing literature proposes various measures that rely on subjective assessments of game film, but has yet to develop an objective methodology to evaluate performance. Using a variety of statistics related to an offensive lineman’s performance, we develop a framework to objectively analyze the overall performance of an individual offensive lineman and determine specific linemen who are overvalued or undervalued relative to their salary. We identify eight players across the 2013-2014 and 2014-2015 NFL seasons that are considered to be overvalued or undervalued and corroborate the results with existing metrics that are based on subjective evaluation. To the best of our knowledge, the techniques set forth in this work have not been utilized in previous works to evaluate the performance of NFL players at any position, including offensive linemen.Keywords: offensive lineman, player performance, NFL, machine learning
Procedia PDF Downloads 14810258 Impact of Brassinosteroid with GA3, CPPU on Yield and Quality of Newly Introduced Grape cv. Italia
Authors: Senthilkumar S, Vijayakumar R M , Soorianathasundaram K, Durga Devi D
Abstract:
A study was conducted to assess the influence of brassinosteroid and other bioregulators as pre-harvest sprays on yield and quality of newly introduced Californian grape cv. Italia. The vines were exposed to standardized pruning level of pruning 50% of the canes to 5-6 bud level for fruiting and 50% of the canes to two bud level for vegetative growth. The influence of brassinosteroid was assessed using BR (1 ppm) alone and in combination with GA3 and CPPU, sprayed at three different stages over the control (water spray) were given as treatments. The results revealed that the bunches treated with Brassinosteroid (1 ppm) + GA3 (10 ppm) at pea stage i.e., 7-8 mm berry size, recorded the maximum values on yield characters like bunch weight (719.94 g), yield per vine (12.70 kg/vine) and yield per hectare (15.88 t). The berry characters and quality traits were also significantly influenced by the application of bioregulators. The maximum value for all those characters was registered under bunch sprays of Brassinosteroid (1 ppm) + GA3 (10 ppm) at pea stage. The economic feasibility indicated that the treatment combination Brassinosteroid (1 ppm) + GA3 (10 ppm) at pea stage (7-8 mm berry size) had registered the maximum benefit cost ratio of 3.13, as compared to 1.89 in control (water spray). Overall, it was observed that a combined bunch spray of Brassinosteroid (1 ppm) + GA3 (10 ppm) at pea stage (7-8 mm berry size) was adjudged as the best treatment for promoting the crop for better the bunch quality and yield.Keywords: bioregulators, brassinosteroid, CPPU, GA3, Italia grape cultivar
Procedia PDF Downloads 24210257 Financial Development, Institutional Quality and Environmental Conditions in the Middle East and North Africa Region: Evidence From Oil- And Non-oil-Producing Countries
Authors: Jamel Boukhatem, Semia Rachid, Marmar Nasr
Abstract:
Considering the differences between oil- and non-oil-producing countries, this paper aims to evaluate the impact of financial development (FD) and institutional quality (IQ) on CO2 emissions in 15 MENA (Middle East and North Africa) countries over the period 1996-2018 using the Panel ARDL approach. We found evidence to support an unconditional long run effect of FD on environmental conditions (EC), with quite significant differences between the two groups of countries. While FD leads to environmental degradation (ED) in non-oil-producing countries, it helps protect the environment in oil-producing ones. Regarding the effects of IQ on EC, they are not significant in both short- and long run for non-oil-producing countries, but they are significant for oil-producing ones only in the long run. In the short run, IQ indicators haven’t significant effects on EC for the two groups of countries.Keywords: financial development, institutional quality, environmental conditions, Panel ARDL
Procedia PDF Downloads 8810256 Investigation in Gassy Ozone Influence on Flaxes Made from Biologically Activated Whole Wheat Grains Quality Parameters
Authors: Tatjana Rakcejeva, Jelena Zagorska, Elina Zvezdina
Abstract:
The aim of the current research was to investigate the gassy ozone effect on quality parameters of flaxes made form whole biologically activated wheat grains. The research was accomplished on in year 2012 harvested wheat grains variety ′Zentos′. Grains were washed, wetted; grain biological activation was performed in the climatic chamber up to 24 hours. After biological activation grains was compressed; than flaxes was dried in convective drier till constant moisture content 9±1%. For grain treatment gassy ozone concentration as 0.0002% and treatment time – 6 min was used. In the processed flaxes the content of A and G tocopherol decrease by 23% and by 9%; content of B2 and B6 vitamins – by 11% and by 10%; elaidic acid – by 46%, oleic acid – by 29%; arginine (by 80%), glutamine (by 74%), asparagine and serine (by 68%), valine (by 62%), cysteine (by 54%) and tyrosine (by 47%).Keywords: gassy ozone, flaxes, biologically activated grains, quality parameters, treatment
Procedia PDF Downloads 23910255 A Framework for Automating Software Testing: A Practical Approach
Authors: Ana Paula Cavalcanti Furtado, Silvio Meira
Abstract:
Context: The quality of a software product can be directly influenced by the quality of its development process. Therefore, immature or ad-hoc test processes are means that are unsuited for introducing systematic test automation, and should not be used to support improving the quality of software. Objective: In order to conduct this research, the benefits and limitations of and gaps in automating software testing had to be assessed in order to identify the best practices and to propose a strategy for systematically introducing test automation into software development processes. Method: To conduct this research, an exploratory bibliographical survey was undertaken so as to underpin the search by theory and the recent literature. After defining the proposal, two case studies were conducted so as to analyze the proposal in a real-world environment. In addition, the proposal was also assessed through a focus group with specialists in the field. Results: The proposal of a Framework for Automating Software Testing (FAST), which is a theoretical framework consisting of a hierarchical structure to introduce test automation. Conclusion: The findings of this research showed that the absence of systematic processes is one of the factors that hinder the introduction of test automation. Based on the results of the case studies, FAST can be considered as a satisfactory alternative that lies within the scope of introducing and maintaining test automation in software development.Keywords: software process improvement, software quality, software testing, test automation
Procedia PDF Downloads 14910254 Data Disorders in Healthcare Organizations: Symptoms, Diagnoses, and Treatments
Authors: Zakieh Piri, Shahla Damanabi, Peyman Rezaii Hachesoo
Abstract:
Introduction: Healthcare organizations like other organizations suffer from a number of disorders such as Business Sponsor Disorder, Business Acceptance Disorder, Cultural/Political Disorder, Data Disorder, etc. As quality in healthcare care mostly depends on the quality of data, we aimed to identify data disorders and its symptoms in two teaching hospitals. Methods: Using a self-constructed questionnaire, we asked 20 questions in related to quality and usability of patient data stored in patient records. Research population consisted of 150 managers, physicians, nurses, medical record staff who were working at the time of study. We also asked their views about the symptoms and treatments for any data disorders they mentioned in the questionnaire. Using qualitative methods we analyzed the answers. Results: After classifying the answers, we found six main data disorders: incomplete data, missed data, late data, blurred data, manipulated data, illegible data. The majority of participants believed in their important roles in treatment of data disorders while others believed in health system problems. Discussion: As clinicians have important roles in producing of data, they can easily identify symptoms and disorders of patient data. Health information managers can also play important roles in early detection of data disorders by proactively monitoring and periodic check-ups of data.Keywords: data disorders, quality, healthcare, treatment
Procedia PDF Downloads 43710253 Preliminary Investigation of Hospital Buildings Maintenance Management in Malaysia
Authors: Christtestimony Oluwafemi Jesumoroti, AbdulLateef Ashola Olanrewaju, Khor Soo Cheen
Abstract:
The worth of buildings is known by the quality of the maintenance imbibe in them. Maintenance management being carried out in the hospitals has a direct impact on the performance of the hospital buildings, environment, and sustainable infrastructure, and as such, there is a need to give it adequate attention. The media and reports on hospital buildings maintenance management in Malaysia were not favorable. Hospital buildings in Malaysia need to have proper structure for maintenance management and sustainability as this will enhance the good infrastructure for users and the entire nation. The paper reports the preliminary results of the determinants of maintenance in hospital buildings. To achieve the aim of this research, a survey questionnaire was administered to the users of the hospital buildings. The findings of the study revealed that there are lack of maintenance standard, use of poor quality components and materials, Improper response time, Poor complaint reporting system. Hence, the influent of rework, thorough responsibilities of quality performance of hospital buildings, and others are the results of the investigations.Keywords: sustainable infrastructure, optimum performance, implementation, key performance indicators, maintenance policies
Procedia PDF Downloads 16010252 Irrigation Water Quality Evaluation in Jiaokou Irrigation District, Guanzhong Basin
Authors: Qiying Zhang, Panpan Xu, Hui Qian
Abstract:
Groundwater is an important water resource in the world, especially in arid and semi-arid regions. In the present study, 141 groundwater samples were collected and analyzed for various physicochemical parameters to assess the irrigation water quality using six indicators (sodium percentage (Na%), sodium adsorption ratio (SAR), magnesium hazard (MH), residual sodium carbonate (RSC), permeability index (PI), and potential salinity (PS)). The results show that the patterns for the average cation and anion concentrations were in decreasing orders of Na+ > Mg2+ > Ca2+ > K+and SO42- > HCO3- > Cl- > NO3- > CO32- > F-, respectively. The values of Na%, MH, and PS show that most of the groundwater samples are not suitable for irrigation. The same conclusion is drawn from the USSL and Wilcox diagrams. PS values indicate that Cl-and SO42-have a great influence on irrigation water in Jiaokou Irrigation District. RSC and PI values indicate that more than half of groundwater samples are suitable for irrigation. The finding is beneficial for the policymakers for future water management schemes to achieve a sustainable development goal.Keywords: groundwater chemistry, Guanzhong Basin, irrigation water quality evaluation, Jiaokou Irrigation District
Procedia PDF Downloads 21610251 Illness Perception and Health-Related Quality of Life among Young Females Living with Polycystic Ovary Syndrome
Authors: Vibha Kriti
Abstract:
Background: Polycystic ovary syndrome (PCOS) is a common endocrine disorder generally found in reproductive women. It is associated with significant reproductive, metabolic, cosmetic, and psychological consequences. Objective: There is a high prevalence of PCOS found among reproductive-age women, therefore, the major objective of the present study is to identify the illness perception of PCOS women and to explore the relationship between illness perception and health-related quality of life (HRQoL). Material and Method: A cross-sectional study was conducted in a university tertiary-care center, Sir Sunder Lal Hospital, Banaras Hindu University (B.H.U). Tools used for data collection were self-structured, which included socio-demographic status, illness perception questionnaire (revised version), and short-form 36 for assessing illness perception and health-related quality of life, respectively. Statistical analysis was done by SPSS version ‘24’. Results: The results of correlation analyses indicated that there is a strong relationship between strong illness perception and HRQoL. Stepwise regression indicated that illness identity, long illness duration, and severe consequences were associated with the worse outcome on emotional functioning and on social functioning. A high score on the controllability of the disease and seeking social support was significantly related to better functioning. Conclusion: Illness perception is an important factor in self-care behaviors in PCOS females and has a strong association with health-related quality of life and has a profound effect on it.Keywords: polycystic ovary syndrome, illness perception, quality of life, young females, mental health
Procedia PDF Downloads 9610250 Impact of Neuropsychological Intervention in Mild Cognitive Impairment: A Controlled, Randomized and Blind Study
Authors: Amanda de Oliveira Ferreira Leite, Ana Luiza del Pino Ferreira, Bruna Garcez Correa, Janaíne de Souza Mello, Marla Manquevich, Mirna Wetters Portuguez
Abstract:
Objective: We sought to investigate a neuropsychological intervention focused on improving cognition, psychological aspects, and quality of life of elderly people with mild cognitive impairment. Method: A controlled and randomized study, blind to the evaluator, was executed. We evaluated 78 elderly people, divided into the neuropsychological and control groups, through a semi-structured interview, Addenbrooke’s Cognitive Examination, Katz Index, Lawton and Brody Scale, Geriatric Depression Scale, Beck Anxiety Inventory, Personal Development Scale, WHOQOL-bref and WHOQOL--old. Results: After the intervention, the neuropsychological group showed improvement in the cognitive subtests and in the total score, reduction in the frequency of symptoms associated with anxiety and depression, better psychological well-being, and quality of life. The research highlights useful intervention strategies for improving the general condition of these patients and rehabilitating damaged areas. Conclusion: We concluded that there is a relationship between neuropsychological intervention and improvement in cognitive and psychological performance, as well as in the quality of life in elderly people with mild cognitive impairment.Keywords: aging, mild cognitive impairment, neuropsychology, quality of life
Procedia PDF Downloads 12010249 Virtual Metrology for Copper Clad Laminate Manufacturing
Authors: Misuk Kim, Seokho Kang, Jehyuk Lee, Hyunchang Cho, Sungzoon Cho
Abstract:
In semiconductor manufacturing, virtual metrology (VM) refers to methods to predict properties of a wafer based on machine parameters and sensor data of the production equipment, without performing the (costly) physical measurement of the wafer properties (Wikipedia). Additional benefits include avoidance of human bias and identification of important factors affecting the quality of the process which allow improving the process quality in the future. It is however rare to find VM applied to other areas of manufacturing. In this work, we propose to use VM to copper clad laminate (CCL) manufacturing. CCL is a core element of a printed circuit board (PCB) which is used in smartphones, tablets, digital cameras, and laptop computers. The manufacturing of CCL consists of three processes: Treating, lay-up, and pressing. Treating, the most important process among the three, puts resin on glass cloth, heat up in a drying oven, then produces prepreg for lay-up process. In this process, three important quality factors are inspected: Treated weight (T/W), Minimum Viscosity (M/V), and Gel Time (G/T). They are manually inspected, incurring heavy cost in terms of time and money, which makes it a good candidate for VM application. We developed prediction models of the three quality factors T/W, M/V, and G/T, respectively, with process variables, raw material, and environment variables. The actual process data was obtained from a CCL manufacturer. A variety of variable selection methods and learning algorithms were employed to find the best prediction model. We obtained prediction models of M/V and G/T with a high enough accuracy. They also provided us with information on “important” predictor variables, some of which the process engineers had been already aware and the rest of which they had not. They were quite excited to find new insights that the model revealed and set out to do further analysis on them to gain process control implications. T/W did not turn out to be possible to predict with a reasonable accuracy with given factors. The very fact indicates that the factors currently monitored may not affect T/W, thus an effort has to be made to find other factors which are not currently monitored in order to understand the process better and improve the quality of it. In conclusion, VM application to CCL’s treating process was quite successful. The newly built quality prediction model allowed one to reduce the cost associated with actual metrology as well as reveal some insights on the factors affecting the important quality factors and on the level of our less than perfect understanding of the treating process.Keywords: copper clad laminate, predictive modeling, quality control, virtual metrology
Procedia PDF Downloads 35210248 Offline Signature Verification Using Minutiae and Curvature Orientation
Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee
Abstract:
A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.Keywords: signature, ridge breaks, minutiae, orientation
Procedia PDF Downloads 15310247 Effect of Mutagenic Compounds on the Yield of Cultivated Pleurotus Pulmonarius
Authors: Simbiat O. Ayilara-Akande, Soji Fakoya
Abstract:
Quality and yield are always the target of farmers, including mushroom farmers. This study investigated how better Pleurotus pulmonarius can be obtained with the induction of mutagens into the process of spawn production in order to improve both the quality and the yield. Mushroom spawns were treated with ultraviolet radiation (UV) and hydroxylamine hydrochloride (HA) at different exposure times (2, 6, and 10 minutes) and different concentrations (10, 30, and 50Mm), respectively. The treated spawns were used to cultivate mushrooms on five substrates in the family of Gramineae viz: sorghum, rice, bamboo, sugarcane, and corn straws. Matured fruit bodies were harvested after a few weeks, and their parameters were taken and recorded. This study reveals a significant yield increase in mushroom grown on all the substrates when treated with ultraviolet radiation (UV) for 10 minutes and 6 minutes, respectively. Mushroom spawns treated with hydroxylamine hydrochloride showed a negative correlation in the yield with an increased in mutagen concentration. Hence, Ultraviolet light could be employed to enhance the quality and yield of mushroom production.Keywords: mushroom, protein, mutagens, yield
Procedia PDF Downloads 15210246 Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity
Authors: Osayande Pascal Omondiagbe, Sherlock a Licorish
Abstract:
Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models.Keywords: feature selection, modeling and prediction, neural network, random forest, stack overflow
Procedia PDF Downloads 13510245 Pre-Analytical Laboratory Performance Evaluation Utilizing Quality Indicators between Private and Government-Owned Hospitals Affiliated to University of Santo Tomas
Authors: A. J. Francisco, K. C. Gallosa, R. J. Gasacao, J. R. Ros, B. J. Viado
Abstract:
The study focuses on the use of quality indicators (QI)s based on the standards made by the (IFCC), that could effectively identify and minimize errors occurring throughout the total testing process (TTP), in order to improve patient safety. The study was conducted through a survey questionnaire that was given to a random sample of 19 respondents (eight privately-owned and eleven government-owned hospitals), mainly CMTs, MTs, and Supervisors from UST-affiliated hospitals. The pre-analytical laboratory errors, which include misidentification errors, transcription errors, sample collection errors and sample handling and transportation errors, were considered as variables according to the IFCC WG-LEPS. Data gathered were analyzed using the Mann-Whitney U test, Percentile, Linear Regression, Percentage, and Frequency. The laboratory performance of both hospitals is High level. There is no significant difference between the laboratory performance between the two stated variables. Moreover, among the four QIs, sample handling and transportation errors contributed most to the difference between the two variables. Outcomes indicate satisfactory performance between both variables. However, in order to ensure high-quality and efficient laboratory operation, constant vigilance and improvements in pre-analytical QI are still needed. Expanding the coverage of the study, the inclusion of other phases, utilization of parametric tests are recommended.Keywords: pre-analytical phase, quality indicators, laboratory performance, pre-analytical error
Procedia PDF Downloads 15210244 Influence of Optical Fluence Distribution on Photoacoustic Imaging
Authors: Mohamed K. Metwally, Sherif H. El-Gohary, Kyung Min Byun, Seung Moo Han, Soo Yeol Lee, Min Hyoung Cho, Gon Khang, Jinsung Cho, Tae-Seong Kim
Abstract:
Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect.Keywords: finite element method, fluence distribution, Monte Carlo method, photoacoustic imaging
Procedia PDF Downloads 38210243 Identifying Learning Support Patterns for Enhancing Quality Outputs in Massive Open Online Courses
Authors: Cristina Galván-Fernández, Elena Barberà, Jingjing Zhang
Abstract:
In recent years, MOOCs have been in the spotlight for its high drop-out rates, which potentially impact on the quality of the learning experience. This study attempts to explore how learning support can be used to keep student retention, and in turn to improve the quality of learning in MOOCs. In this study, the patterns of learning support were identified from a total of 4202592 units of video sessions, clickstream data of 25600 students, and 382 threads generated in 10 forums (optional and mandatory) in five different types of MOOCs (e.g. conventional MOOCs, professional MOOCs, and informal MOOCs). The results of this study have shown a clear correlation between the types of MOOCs, the design framework of the MOOCs, and the learning support. The patterns of tutor-peer interaction are identified, and are found to be highly correlated with student retention in all five types of MOOCs. In addition, different patterns of ‘good’ students were identified, which could potentially inform the instruction design of MOOCs.Keywords: higher education, learning support, MOOC, retention
Procedia PDF Downloads 33910242 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation
Authors: Miguel Contreras, David Long, Will Bachman
Abstract:
Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models
Procedia PDF Downloads 209