Search results for: foundation models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7962

Search results for: foundation models

5592 The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron

Authors: Tebogo Emma Makaba, Barnabas Ndlovu Gatsheni

Abstract:

The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter’s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro’s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross—validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending.

Keywords: bagging ensemble methods, confusion matrix, multi-layer perceptron, vehicle traffic flow

Procedia PDF Downloads 343
5591 Supply Chain Design: Criteria Considered in Decision Making Process

Authors: Lenka Krsnakova, Petr Jirsak

Abstract:

Prior research on facility location in supply chain is mostly focused on improvement of mathematical models. It is due to the fact that supply chain design has been for the long time the area of operational research that underscores mainly quantitative criteria. Qualitative criteria are still highly neglected within the supply chain design research. Facility location in the supply chain has become multi-criteria decision-making problem rather than single criteria decision due to changes of market conditions. Thus, both qualitative and quantitative criteria have to be included in the decision making process. The aim of this study is to emphasize the importance of qualitative criteria as key parameters of relevant mathematical models. We examine which criteria are taken into consideration when Czech companies decide about their facility location. A literature review on criteria being used in facility location decision making process creates a theoretical background for the study. The data collection was conducted through questionnaire survey. Questionnaire was sent to manufacturing and business companies of all sizes (small, medium and large enterprises) with the representation in the Czech Republic within following sectors: automotive, toys, clothing industry, electronics and pharmaceutical industry. Comparison of which criteria prevail in the current research and which are considered important by companies in the Czech Republic is made. Despite the number of articles focused on supply chain design, only minority of them consider qualitative criteria and rarely process supply chain design as a multi-criteria decision making problem. Preliminary results of the questionnaire survey outlines that companies in the Czech Republic see the qualitative criteria and their impact on facility location decision as crucial. Qualitative criteria as company strategy, quality of working environment or future development expectations are confirmed to be considered by Czech companies. This study confirms that the qualitative criteria can significantly influence whether a particular location could or could not be right place for a logistic facility. The research has two major limitations: researchers who focus on improving of mathematical models mostly do not mention criteria that enter the model. Czech supply chain managers selected important criteria from the group of 18 available criteria and assign them importance weights. It does not necessarily mean that these criteria were taken into consideration when the last facility location was chosen, but how they perceive that today. Since the study confirmed the necessity of future research on how qualitative criteria influence decision making process about facility location, the authors have already started in-depth interviews with participating companies to reveal how the inclusion of qualitative criteria into decision making process about facility location influence the company´s performance.

Keywords: criteria influencing facility location, Czech Republic, facility location decision-making, qualitative criteria

Procedia PDF Downloads 321
5590 Australian Multiculturalism in Refugee Education

Authors: N. Coskun

Abstract:

Australia has received over 840,000 refugees since its establishment as a federation. Despite the long history of refugee intake, Australia appears to have prolonged problems in refugee education such as academic and social isolations of refugee background students (RBS), the discriminations towards RBS and the high number of RBS drop-outs. This paper examines the place of RBS in educational policies, which can help to identify the problems and set a foundation for solutions. This paper investigates the educational provisions for RBS in three stages. First, the paper identifies the needs of RBS through a comprehensive literature review, using the framework of Bronfenbrenner’s bio-ecological model. Second, the study explores the place of these needs in Australian national and state educational policies which are informed by multiculturalism. The findings conclude that social, academic and psychological needs of RBS hardly find a place in multicultural educational policies. The students and their specific needs are mostly invisible and are placed under a general category of newly arrived immigrants who learn English as a second language. Third, the study explores the possible reasons for the overlook on RBS and their needs with examining the general socio-political context surrounding refugees in Australia. The overall findings suggest that Australian multiculturalism policy in education are inadequate to address RBS' social, academic and psychological needs due to the disadvantaging socio-political context where refugees are placed.

Keywords: Australia, bio-ecological model, multiculturalism, refugee education

Procedia PDF Downloads 132
5589 4D Modelling of Low Visibility Underwater Archaeological Excavations Using Multi-Source Photogrammetry in the Bulgarian Black Sea

Authors: Rodrigo Pacheco-Ruiz, Jonathan Adams, Felix Pedrotti

Abstract:

This paper introduces the applicability of underwater photogrammetric survey within challenging conditions as the main tool to enhance and enrich the process of documenting archaeological excavation through the creation of 4D models. Photogrammetry was being attempted on underwater archaeological sites at least as early as the 1970s’ and today the production of traditional 3D models is becoming a common practice within the discipline. Photogrammetry underwater is more often implemented to record exposed underwater archaeological remains and less so as a dynamic interpretative tool.  Therefore, it tends to be applied in bright environments and when underwater visibility is > 1m, reducing its implementation on most submerged archaeological sites in more turbid conditions. Recent years have seen significant development of better digital photographic sensors and the improvement of optical technology, ideal for darker environments. Such developments, in tandem with powerful processing computing systems, have allowed underwater photogrammetry to be used by this research as a standard recording and interpretative tool. Using multi-source photogrammetry (5, GoPro5 Hero Black cameras) this paper presents the accumulation of daily (4D) underwater surveys carried out in the Early Bronze Age (3,300 BC) to Late Ottoman (17th Century AD) archaeological site of Ropotamo in the Bulgarian Black Sea under challenging conditions (< 0.5m visibility). It proves that underwater photogrammetry can and should be used as one of the main recording methods even in low light and poor underwater conditions as a way to better understand the complexity of the underwater archaeological record.

Keywords: 4D modelling, Black Sea Maritime Archaeology Project, multi-source photogrammetry, low visibility underwater survey

Procedia PDF Downloads 235
5588 Macroeconomic Measure of Projectification: An Empirical Study of Pakistani Economy

Authors: Shafaq Rana, Hina Ansar

Abstract:

Projectification is an emerging phenomenon in Western economies. The projects have become the key driver of the economic actions. The impact of projectification is understudy for over a decade. A methodology was developed to measure the degree of projectification at economical level, which was later adapted to measure the degree of projectification in Germany, Norway, and Iceland; and compared the differences in these project societies, considering their industrial structure, organizational size, and the share of project work. Using the same methodology, this study aims to provide empirical evidence of the project work in the context of Pakistan –a developing nation, keeping into consideration the macroeconomic measures, qualitative and quantitative measures of the project i/c GDP, monetary measures, and project success. The research includes a qualitative pre-study to define these macro-measures in the country-specific context and a quantitative study to measure the project work w.r.t hours working in the organizations on projects. The outcome of this study provides the key data on the projectification in a developing economy, which will help industry practitioners and decision-makers to examine the consequences of projectification and strategize, respectively. This study also provides a foundation for further research in individual sectors of the country while exploring different macroeconomic questions, including the effect of projectification on project productivity, income effects, and labor market.

Keywords: developing economy, Pakistan, project work, projectification

Procedia PDF Downloads 114
5587 Leveraging Business to Business Collaborations to Optimize Reverse Haul Logistics

Authors: Pallav Singh, Rajesh Yabaji, Rajesh Dhir, Chanakya Hridaya

Abstract:

Supply Chain Costs for the Indian Industries have been on an exponential trend due to steep inflation on fundamental cost factors – Fuel, Labour, Rents. In this changing context organizations have been focusing on adopting multiple approaches to keep logistics costs under control to protect the profit margins. The lever of ‘Business to Business (B2B) collaboration’ can be used by organizations to garner higher value. Given the context of Indian Logistics Industry the penetration of B2B Collaboration initiatives have been limited. This paper outlines a structured framework for adoption of B2B collaboration through discussion of a successful initiative between ITC’s Leaf Tobacco Business and a leading Indian Media House. Multiple barriers to such a collaborative process exist which need to be addressed through comprehensive structured approaches. This paper outlines a generic framework approach to B2B collaboration for the Indian Logistics Space, outlining the guidelines for arriving at potential opportunities, identification of collaborators, effective tie-up process, design of operations and sustenance factors. The generic methods outlined can be used in any other industry and also builds a foundation for further research on many topics.

Keywords: business to business collaboration, reverse haul logistics, transportation cost optimization, exports logistics

Procedia PDF Downloads 325
5586 Local Energy and Flexibility Markets to Foster Demand Response Services within the Energy Community

Authors: Eduardo Rodrigues, Gisela Mendes, José M. Torres, José E. Sousa

Abstract:

In the sequence of the liberalisation of the electricity sector a progressive engagement of consumers has been considered and targeted by sector regulatory policies. With the objective of promoting market competition while protecting consumers interests, by transferring some of the upstream benefits to the end users while reaching a fair distribution of system costs, different market models to value consumers’ demand flexibility at the energy community level are envisioned. Local Energy and Flexibility Markets (LEFM) involve stakeholders interested in providing or procure local flexibility for community, services and markets’ value. Under the scope of DOMINOES, a European research project supported by Horizon 2020, the local market concept developed is expected to: • Enable consumers/prosumers empowerment, by allowing them to value their demand flexibility and Distributed Energy Resources (DER); • Value local liquid flexibility to support innovative distribution grid management, e.g., local balancing and congestion management, voltage control and grid restoration; • Ease the wholesale market uptake of DER, namely small-scale flexible loads aggregation as Virtual Power Plants (VPPs), facilitating Demand Response (DR) service provision; • Optimise the management and local sharing of Renewable Energy Sources (RES) in Medium Voltage (MV) and Low Voltage (LV) grids, trough energy transactions within an energy community; • Enhance the development of energy markets through innovative business models, compatible with ongoing policy developments, that promote the easy access of retailers and other service providers to the local markets, allowing them to take advantage of communities’ flexibility to optimise their portfolio and subsequently their participation in external markets. The general concept proposed foresees a flow of market actions, technical validations, subsequent deliveries of energy and/or flexibility and balance settlements. Since the market operation should be dynamic and capable of addressing different requests, either prioritising balancing and prosumer services or system’s operation, direct procurement of flexibility within the local market must also be considered. This paper aims to highlight the research on the definition of suitable DR models to be used by the Distribution System Operator (DSO), in case of technical needs, and by the retailer, mainly for portfolio optimisation and solve unbalances. The models to be proposed and implemented within relevant smart distribution grid and microgrid validation environments, are focused on day-ahead and intraday operation scenarios, for predictive management and near-real-time control respectively under the DSO’s perspective. At local level, the DSO will be able to procure flexibility in advance to tackle different grid constrains (e.g., demand peaks, forecasted voltage and current problems and maintenance works), or during the operating day-to-day, to answer unpredictable constraints (e.g., outages, frequency deviations and voltage problems). Due to the inherent risks of their active market participation retailers may resort to DR models to manage their portfolio, by optimising their market actions and solve unbalances. The interaction among the market actors involved in the DR activation and in flexibility exchange is explained by a set of sequence diagrams for the DR modes of use from the DSO and the energy provider perspectives. • DR for DSO’s predictive management – before the operating day; • DR for DSO’s real-time control – during the operating day; • DR for retailer’s day-ahead operation; • DR for retailer’s intraday operation.

Keywords: demand response, energy communities, flexible demand, local energy and flexibility markets

Procedia PDF Downloads 98
5585 Implementation of Conceptual Real-Time Embedded Functional Design via Drive-By-Wire ECU Development

Authors: Ananchai Ukaew, Choopong Chauypen

Abstract:

Design concepts of real-time embedded system can be realized initially by introducing novel design approaches. In this literature, model based design approach and in-the-loop testing were employed early in the conceptual and preliminary phase to formulate design requirements and perform quick real-time verification. The design and analysis methodology includes simulation analysis, model based testing, and in-the-loop testing. The design of conceptual drive-by-wire, or DBW, algorithm for electronic control unit, or ECU, was presented to demonstrate the conceptual design process, analysis, and functionality evaluation. The concepts of DBW ECU function can be implemented in the vehicle system to improve electric vehicle, or EV, conversion drivability. However, within a new development process, conceptual ECU functions and parameters are needed to be evaluated. As a result, the testing system was employed to support conceptual DBW ECU functions evaluation. For the current setup, the system components were consisted of actual DBW ECU hardware, electric vehicle models, and control area network or CAN protocol. The vehicle models and CAN bus interface were both implemented as real-time applications where ECU and CAN protocol functionality were verified according to the design requirements. The proposed system could potentially benefit in performing rapid real-time analysis of design parameters for conceptual system or software algorithm development.

Keywords: drive-by-wire ECU, in-the-loop testing, model-based design, real-time embedded system

Procedia PDF Downloads 348
5584 Groundwater Potential Mapping using Frequency Ratio and Shannon’s Entropy Models in Lesser Himalaya Zone, Nepal

Authors: Yagya Murti Aryal, Bipin Adhikari, Pradeep Gyawali

Abstract:

The Lesser Himalaya zone of Nepal consists of thrusting and folding belts, which play an important role in the sustainable management of groundwater in the Himalayan regions. The study area is located in the Dolakha and Ramechhap Districts of Bagmati Province, Nepal. Geologically, these districts are situated in the Lesser Himalayas and partly encompass the Higher Himalayan rock sequence, which includes low-grade to high-grade metamorphic rocks. Following the Gorkha Earthquake in 2015, numerous springs dried up, and many others are currently experiencing depletion due to the distortion of the natural groundwater flow. The primary objective of this study is to identify potential groundwater areas and determine suitable sites for artificial groundwater recharge. Two distinct statistical approaches were used to develop models: The Frequency Ratio (FR) and Shannon Entropy (SE) methods. The study utilized both primary and secondary datasets and incorporated significant role and controlling factors derived from field works and literature reviews. Field data collection involved spring inventory, soil analysis, lithology assessment, and hydro-geomorphology study. Additionally, slope, aspect, drainage density, and lineament density were extracted from a Digital Elevation Model (DEM) using GIS and transformed into thematic layers. For training and validation, 114 springs were divided into a 70/30 ratio, with an equal number of non-spring pixels. After assigning weights to each class based on the two proposed models, a groundwater potential map was generated using GIS, classifying the area into five levels: very low, low, moderate, high, and very high. The model's outcome reveals that over 41% of the area falls into the low and very low potential categories, while only 30% of the area demonstrates a high probability of groundwater potential. To evaluate model performance, accuracy was assessed using the Area under the Curve (AUC). The success rate AUC values for the FR and SE methods were determined to be 78.73% and 77.09%, respectively. Additionally, the prediction rate AUC values for the FR and SE methods were calculated as 76.31% and 74.08%. The results indicate that the FR model exhibits greater prediction capability compared to the SE model in this case study.

Keywords: groundwater potential mapping, frequency ratio, Shannon’s Entropy, Lesser Himalaya Zone, sustainable groundwater management

Procedia PDF Downloads 80
5583 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.

Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost

Procedia PDF Downloads 5
5582 Hysteresis Modeling in Iron-Dominated Magnets Based on a Deep Neural Network Approach

Authors: Maria Amodeo, Pasquale Arpaia, Marco Buzio, Vincenzo Di Capua, Francesco Donnarumma

Abstract:

Different deep neural network architectures have been compared and tested to predict magnetic hysteresis in the context of pulsed electromagnets for experimental physics applications. Modelling quasi-static or dynamic major and especially minor hysteresis loops is one of the most challenging topics for computational magnetism. Recent attempts at mathematical prediction in this context using Preisach models could not attain better than percent-level accuracy. Hence, this work explores neural network approaches and shows that the architecture that best fits the measured magnetic field behaviour, including the effects of hysteresis and eddy currents, is the nonlinear autoregressive exogenous neural network (NARX) model. This architecture aims to achieve a relative RMSE of the order of a few 100 ppm for complex magnetic field cycling, including arbitrary sequences of pseudo-random high field and low field cycles. The NARX-based architecture is compared with the state-of-the-art, showing better performance than the classical operator-based and differential models, and is tested on a reference quadrupole magnetic lens used for CERN particle beams, chosen as a case study. The training and test datasets are a representative example of real-world magnet operation; this makes the good result obtained very promising for future applications in this context.

Keywords: deep neural network, magnetic modelling, measurement and empirical software engineering, NARX

Procedia PDF Downloads 129
5581 Analysis of Geotechnical Parameters from Geophysical Information

Authors: Adewoyin O. Olusegun, Akinwumi I. Isaac

Abstract:

In some part of the world where legislations related to site investigations before constructions are not strictly enforced, the expenses and time required for carrying out a comprehensive geotechnical investigation to characterize a site can discourage prospective private residential building developers. Another factor that can discourage a developer is the fact that most of the geotechnical tests procedures utilized during site investigations, to a certain extent, alter the existing environment of the site. This study suggests a quick, non-destructive and non-intrusive method of obtaining key subsoil geotechnical properties necessary for foundation design for proposed engineering facilities. Seismic wave velocities generated from near surface refraction method was used to determine the bulk density of soil, Young’s modulus, bulk modulus, shear modulus and allowable bearing capacity of a competent layer that can bear structural load at the particular study site. Also, regression equations were developed in order to directly obtain the bulk density of soil, Young’s modulus, bulk modulus, shear modulus and allowable bearing capacity from the compressional wave velocities. The results obtained correlated with the results of standard geotechnical investigations carried out.

Keywords: characterize, environment, geophysical, geotechnical, regression

Procedia PDF Downloads 368
5580 Reliability Based Performance Evaluation of Stone Column Improved Soft Ground

Authors: A. GuhaRay, C. V. S. P. Kiranmayi, S. Rudraraju

Abstract:

The present study considers the effect of variation of different geotechnical random variables in the design of stone column-foundation systems for assessing the bearing capacity and consolidation settlement of highly compressible soil. The soil and stone column properties, spacing, diameter and arrangement of stone columns are considered as the random variables. Probability of failure (Pf) is computed for a target degree of consolidation and a target safe load by Monte Carlo Simulation (MCS). The study shows that the variation in coefficient of radial consolidation (cr) and cohesion of soil (cs) are two most important factors influencing Pf. If the coefficient of variation (COV) of cr exceeds 20%, Pf exceeds 0.001, which is unsafe following the guidelines of US Army Corps of Engineers. The bearing capacity also exceeds its safe value for COV of cs > 30%. It is also observed that as the spacing between the stone column increases, the probability of reaching a target degree of consolidation decreases. Accordingly, design guidelines, considering both consolidation and bearing capacity of improved ground, are proposed for different spacing and diameter of stone columns and geotechnical random variables.

Keywords: bearing capacity, consolidation, geotechnical random variables, probability of failure, stone columns

Procedia PDF Downloads 357
5579 Formation of an Empire in the 21st Century: Theoretical Approach in International Relations and a Worldview of the New World Order

Authors: Rami Georg Johann

Abstract:

Against the background of the current geopolitical constellations, the author looks at various empire models, which are discussed and compared with each other with regard to their stability and functioning. The focus is on the fifth concept as a possible new world order in the 21st century. These will be discussed and compared to one another according to their stability and functioning. All empires to be designed will be conceptualised based on one, two, three, four, and five worlds. All worlds are made up of a different constellation of states and relating coalitions. All systems will be discussed in detail. The one-world-system, the“Western Empire,” will be presented as a possible solution to a new world order in the 21st century (fifth concept). The term “Western” in “Western Empire” describes the Western concept after World War II. This Western concept was the result of two horrible world wars in the 20th century.” With this in mind, the fifth concept forms a stable empire system, the “Western Empire,” by political measures tied to two issues. Thus, this world order provides a significantly higher long-term stability in contrast to all other empire models (comprising five, four, three, or two worlds). Confrontations and threats of war are reduced to a minimum. The two issues mentioned are “merger” and “competition.” These are the main differences in forming an empire compared to all empires and realms in the history of mankind. The fifth concept of this theory, the “Western Empire,” acts explicitly as a counter model. The Western Empire (fifth concept) is formed by the merger of world powers without war. Thus, a world order without competition is created. This merged entity secures long-term peace, stability, democratic values, freedom, human rights, equality, and justice in the new world order.

Keywords: empire formation, theory of international relations, Western Empire, world order

Procedia PDF Downloads 146
5578 Predicting Photovoltaic Energy Profile of Birzeit University Campus Based on Weather Forecast

Authors: Muhammad Abu-Khaizaran, Ahmad Faza’, Tariq Othman, Yahia Yousef

Abstract:

This paper presents a study to provide sufficient and reliable information about constructing a Photovoltaic energy profile of the Birzeit University campus (BZU) based on the weather forecast. The developed Photovoltaic energy profile helps to predict the energy yield of the Photovoltaic systems based on the weather forecast and hence helps planning energy production and consumption. Two models will be developed in this paper; a Clear Sky Irradiance model and a Cloud-Cover Radiation model to predict the irradiance for a clear sky day and a cloudy day, respectively. The adopted procedure for developing such models takes into consideration two levels of abstraction. First, irradiance and weather data were acquired by a sensory (measurement) system installed on the rooftop of the Information Technology College building at Birzeit University campus. Second, power readings of a fully operational 51kW commercial Photovoltaic system installed in the University at the rooftop of the adjacent College of Pharmacy-Nursing and Health Professions building are used to validate the output of a simulation model and to help refine its structure. Based on a comparison between a mathematical model, which calculates Clear Sky Irradiance for the University location and two sets of accumulated measured data, it is found that the simulation system offers an accurate resemblance to the installed PV power station on clear sky days. However, these comparisons show a divergence between the expected energy yield and actual energy yield in extreme weather conditions, including clouding and soiling effects. Therefore, a more accurate prediction model for irradiance that takes into consideration weather factors, such as relative humidity and cloudiness, which affect irradiance, was developed; Cloud-Cover Radiation Model (CRM). The equivalent mathematical formulas implement corrections to provide more accurate inputs to the simulation system. The results of the CRM show a very good match with the actual measured irradiance during a cloudy day. The developed Photovoltaic profile helps in predicting the output energy yield of the Photovoltaic system installed at the University campus based on the predicted weather conditions. The simulation and practical results for both models are in a very good match.

Keywords: clear-sky irradiance model, cloud-cover radiation model, photovoltaic, weather forecast

Procedia PDF Downloads 130
5577 Educators’ Adherence to Learning Theories and Their Perceptions on the Advantages and Disadvantages of E-Learning

Authors: Samson T. Obafemi, Seraphin D. Eyono-Obono

Abstract:

Information and Communication Technologies (ICTs) are pervasive nowadays, including in education where they are expected to improve the performance of learners. However, the hope placed in ICTs to find viable solutions to the problem of poor academic performance in schools in the developing world has not yet yielded the expected benefits. This problem serves as a motivation to this study whose aim is to examine the perceptions of educators on the advantages and disadvantages of e-learning. This aim will be subdivided into two types of research objectives. Objectives on the identification and design of theories and models will be achieved using content analysis and literature review. However, the objective on the empirical testing of such theories and models will be achieved through the survey of educators from different schools in the Pinetown District of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyse the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after assessing the validity and the reliability of the data. The main hypothesis driving this study is that there is a relationship between the demographics of educators’ and their adherence to learning theories on one side, and their perceptions on the advantages and disadvantages of e-learning on the other side, as argued by existing research; but this research views these learning theories under three perspectives: educators’ adherence to self-regulated learning, to constructivism, and to progressivism. This hypothesis was fully confirmed by the empirical study except for the demographic factor where teachers’ level of education was found to be the only demographic factor affecting the perceptions of educators on the advantages and disadvantages of e-learning.

Keywords: academic performance, e-learning, learning theories, teaching and learning

Procedia PDF Downloads 272
5576 Policies and Politics of Infrastructure Provisioning in Nigeria

Authors: Olufemi Adedamola Oyedele

Abstract:

Infrastructure provision in Nigeria is now at its lowest ebb in spite of its being critical to the socio-economic and political development of any nation. This is partly because the policy that will ensure its adequate provisioning is missing and partly because politics is affecting its provision. Policy is the basic principles by which a government is guided. Infrastructural development is the basis for measuring the performance of governments and it is the foundation of good governance. Demand for infrastructural development is higher and resources used in its provision are limited. Ethnic-interest agitation and lobbying for infrastructure provision are common things in multi-ethnic state like Nigeria. Most infrastructures are now decayed and need repair or replacement. Government is the system that organizes, control and sensitizes the people in a society in other for all to have an acceptable level of living. Governments have the power to put in place all measures that they deem fit will make an environment conducive for living for everybody. Infrastructure development in any environment requires needs assessment, feasibility and viability studies and carrying out physical development of the project. The challenge in Nigeria is largely carrying out development where they are not needed but where the people are loyal. There are numerous abandoned projects because they were started due to politics and not because they are feasible. Policies and politics greatly affect infrastructure provisioning in Nigeria and this is the premise of this paper.

Keywords: infrastructure challenges, infrastructure development, policy making, politics, project finance

Procedia PDF Downloads 278
5575 Effectiveness of Parent Coaching Intervention for Parents of Children with Developmental Disabilities in the Home and Community

Authors: Elnaz Alimi, Keriakoula Andriopoulos, Sam Boyer, Weronika Zuczek

Abstract:

Occupational therapists can use coaching strategies to guide parents in providing therapy for their children with developmental disabilities. Evidence from various fields has shown increased parental self-efficacy and positive child outcomes as benefits of home and community-based parent coaching models. A literature review was conducted to investigate the effectiveness of parent coaching interventions delivered in home and community settings for children with developmental disabilities ages 0-12, on a variety of parent and child outcomes. CINAHL Plus, PsycINFO, PubMed, OTseeker were used as databases. The inclusion criteria consisted of: children with developmental disabilities ages 0-12 and their parents, parent coaching models conducted in the home and community, and parent and child outcomes. Studies were excluded if they were in a language other than English and published before 2000. Results showed that parent coaching interventions led to more positive therapy outcomes in child behaviors and symptoms related to their diagnosis or disorder. Additionally, coaching strategies had positive effects on parental satisfaction with therapy, parental self-efficacy, and family dynamics. Findings revealed decreased parental stress and improved parent-child relationships. Further research on parent coaching could involve studying the feasibility of coaching within occupational therapy specifically, incorporating cultural elements into coaching, qualitative studies on parental satisfaction with coaching, and measuring the quality of life outcomes for the whole family.

Keywords: coaching model, developmental disabilities, occupational therapy, pediatrics

Procedia PDF Downloads 191
5574 Corpus-Based Analysis on the Translatability of Conceptual Vagueness in Traditional Chinese Medicine Classics Huang Di Nei Jing

Authors: Yan Yue

Abstract:

Huang Di Nei Jing (HDNJ) is one of the significant traditional Chinese medicine (TCM) classics which lays the foundation of TCM theory and practice. It is an important work for the world to study the ancient civilizations and medical history of China. Language in HDNJ is highly concise and vague, and notably challenging to translate. This paper investigates the translatability of one particular vagueness in HDNJ: the conceptual vagueness which carries the Chinese philosophical and cultural connotations. The corpora tool Sketch Engine is used to provide potential online contexts and word behaviors. Selected two English translations of HDNJ by TCM practitioner and non-practitioner are used to examine frequency and distribution of linguistic features of the translation. It was found the hypothesis about the universals of translated language (explicitation, normalisation) is true in one translation, but it is on the sacrifice of some original contextual connotations. Transliteration is purposefully used in the second translation to retain the original flavor, which is argued as a violation of the principle of relevance in communication because it yields little contextual effects and demands more processing effort of the reader. The translatability of conceptual vagueness in HDNJ is constrained by source language context and the reader’s cognitive environment.

Keywords: corpus-based translation, translatability, TCM classics, vague language

Procedia PDF Downloads 376
5573 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization

Authors: Wenqi Liu, Reginald Bailey

Abstract:

This study explores an advanced approach to enhancing B2B sales forecasting by integrating machine learning models with a rule-based decision framework. The methodology begins with the development of a machine learning classification model to predict conversion likelihood, aiming to improve accuracy over traditional methods like logistic regression. The classification model's effectiveness is measured using metrics such as accuracy, precision, recall, and F1 score, alongside a feature importance analysis to identify key predictors. Following this, a machine learning regression model is used to forecast sales value, with the objective of reducing mean absolute error (MAE) compared to linear regression techniques. The regression model's performance is assessed using MAE, root mean square error (RMSE), and R-squared metrics, emphasizing feature contribution to the prediction. To bridge the gap between predictive analytics and decision-making, a rule-based decision model is introduced that prioritizes customers based on predefined thresholds for conversion probability and predicted sales value. This approach significantly enhances customer prioritization and improves overall sales performance by increasing conversion rates and optimizing revenue generation. The findings suggest that this combined framework offers a practical, data-driven solution for sales teams, facilitating more strategic decision-making in B2B environments.

Keywords: sales forecasting, machine learning, rule-based decision model, customer prioritization, predictive analytics

Procedia PDF Downloads 14
5572 Gaia (Earth) Education Philosophy – A Journey Back to the Future

Authors: Darius Singh

Abstract:

This study adopts a research, develop, and deploy methodology to create a state-of-the-art forest preschool environment using technology and the Gaia (Earth) Education Philosophy as design support. The new philosophy adopts an ancient Greek terminology, “Gaia,” meaning “Mother Earth”, and it take its principle to model everything with the oldest living and breathing entity that it know – Earth. This includes using nature and biomimicry-based principles in building design, environments, curricula, teaching, learning, values and outcomes for children. The study highlights the potential effectiveness of the Gaia (Earth) Education Philosophy as a means of designing Earth-inspired environments for children’s learning. The discuss the strengths of biomimicry-based design principles and propose a curriculum that emphasizes natural outcomes for early childhood learning. Theoretical implications of the study are that the Gaia (Earth) Education Philosophy could serve as a strong foundation for educating young learners.it present a unique approach that promotes connections with Earth-principles and lessons that can contribute to the development of social and environmental consciousness among children and help educate generations to come into a stable and balanced future.

Keywords: earth science, nature education, sustainability, gaia, forest school, nature, inspirational teaching and learning

Procedia PDF Downloads 63
5571 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic

Authors: Fei Gao, Rodolfo C. Raga Jr.

Abstract:

This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.

Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle

Procedia PDF Downloads 73
5570 Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for near Field Earthquakes

Authors: Alok Madan, Ashok Gupta, Arshad K. Hashmi

Abstract:

Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. And, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete (R/C) frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis (pushover analysis) in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.

Keywords: nonlinear analysis, capacity spectrum method, response spectrum, seismic demand, near-field earthquakes

Procedia PDF Downloads 402
5569 Predictive Analytics of Bike Sharing Rider Parameters

Authors: Bongs Lainjo

Abstract:

The evolution and escalation of bike-sharing programs (BSP) continue unabated. Since the sixties, many countries have introduced different models and strategies of BSP. These include variations ranging from dockless models to electronic real-time monitoring systems. Reasons for using this BSP include recreation, errands, work, etc. And there is all indication that complex, and more innovative rider-friendly systems are yet to be introduced. The objective of this paper is to analyze current variables established by different operators and streamline them identifying the most compelling ones using analytics. Given the contents of available databases, there is a lack of uniformity and common standard on what is required and what is not. Two factors appear to be common: user type (registered and unregistered, and duration of each trip). This article uses historical data provided by one operator based in the greater Washington, District of Columbia, USA area. Several variables including categorical and continuous data types were screened. Eight out of 18 were considered acceptable and significantly contribute to determining a useful and reliable predictive model. Bike-sharing systems have become popular in recent years all around the world. Although this trend has resulted in many studies on public cycling systems, there have been few previous studies on the factors influencing public bicycle travel behavior. A bike-sharing system is a computer-controlled system in which individuals can borrow bikes for a fee or free for a limited period. This study has identified unprecedented useful, and pragmatic parameters required in improving BSP ridership dynamics.

Keywords: sharing program, historical data, parameters, ridership dynamics, trip duration

Procedia PDF Downloads 138
5568 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material

Authors: S. Boria

Abstract:

In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.

Keywords: composite material, crashworthiness, finite element analysis, optimization

Procedia PDF Downloads 253
5567 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 80
5566 Degradation of Heating, Ventilation, and Air Conditioning Components across Locations

Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White

Abstract:

Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.

Keywords: climate, degradation, HVAC, neighborhood component analysis

Procedia PDF Downloads 427
5565 Additive Manufacturing of Titanium Metamaterials for Tissue Engineering

Authors: Tuba Kizilirmak

Abstract:

Distinct properties of porous metamaterials have been largely processed for biomedicine requiring a three-dimensional (3D) porous structure engaged with fine mechanical features, biodegradation ability, and biocompatibility. Applications of metamaterials are (i) porous orthopedic and dental implants; (ii) in vitro cell culture of metamaterials and bone regeneration of metamaterials in vivo; (iii) macro-, micro, and nano-level porous metamaterials for sensors, diagnosis, and drug delivery. There are some specific properties to design metamaterials for tissue engineering. These are surface to volume ratio, pore size, and interconnection degrees are selected to control cell behavior and bone ingrowth. In this study, additive manufacturing technique selective laser melting will be used to print the scaffolds. Selective Laser Melting prints the 3D components according to designed 3D CAD models and manufactured materials, adding layers progressively by layer. This study aims to design metamaterials with Ti6Al4V material, which gives benefit in respect of mechanical and biological properties. Ti6Al4V scaffolds will support cell attachment by conferring a suitable area for cell adhesion. This study will control the osteoblast cell attachment on Ti6Al4V scaffolds after the determination of optimum stiffness and other mechanical properties which are close to mechanical properties of bone. Before we produce the samples, we will use a modeling technique to simulate the mechanical behavior of samples. These samples include different lattice models with varying amounts of porosity and density.

Keywords: additive manufacturing, titanium lattices, metamaterials, porous metals

Procedia PDF Downloads 190
5564 Coping Mechanisms of Batangueño Families Facing Cancer

Authors: Aiza G. Clanor, Lotlot B. Hernandez, Jonna Marie T. Ibuna

Abstract:

This study aimed to know the coping mechanisms of Batangueño families facing cancer, specifically, those from Cancer Warriors Foundation, Inc. Batangas chapter. The researchers used purposive sampling. This study was limited to the responses provided by the Batangueño families of the cancer patients. A family member of the immediate family with a child facing cancer represents the family as a whole. A total number of forty six (46) respondents were given the questionnaires. Upon analysis, most of the respondents came from rural areas and nuclear family and have Php 5000 and below family monthly income. Most of them have their own houses, and 3 to 5 members, one of whom is a cancer patient diagnosed for more than 2 years. The two most frequently utilized coping strategies were mobilizing the family to acquire and accept help, and reframing. Passive appraisal is the least utilized one. There was a significant difference on the coping mechanisms of the family relative to passive appraisal based on the length of time since the illness was first diagnosed. Based from the study, the researchers developed modules with discussions and activities on cancer awareness, ideas on coping and how to deal with the cancer patients that may help the respondents and other Batangueño families overcome the difficulties in facing cancer. The researchers recommend the modules for they are found to be effective ways to help the families relieve stress, reduce anxiety and improve quality of life.

Keywords: coping with chronic illness, family, psychology, cancer

Procedia PDF Downloads 538
5563 Finite Element Molecular Modeling: A Structural Method for Large Deformations

Authors: A. Rezaei, M. Huisman, W. Van Paepegem

Abstract:

Atomic interactions in molecular systems are mainly studied by particle mechanics. Nevertheless, researches have also put on considerable effort to simulate them using continuum methods. In early 2000, simple equivalent finite element models have been developed to study the mechanical properties of carbon nanotubes and graphene in composite materials. Afterward, many researchers have employed similar structural simulation approaches to obtain mechanical properties of nanostructured materials, to simplify interface behavior of fiber-reinforced composites, and to simulate defects in carbon nanotubes or graphene sheets, etc. These structural approaches, however, are limited to small deformations due to complicated local rotational coordinates. This article proposes a method for the finite element simulation of molecular mechanics. For ease in addressing the approach, here it is called Structural Finite Element Molecular Modeling (SFEMM). SFEMM method improves the available structural approaches for large deformations, without using any rotational degrees of freedom. Moreover, the method simulates molecular conformation, which is a big advantage over the previous approaches. Technically, this method uses nonlinear multipoint constraints to simulate kinematics of the atomic multibody interactions. Only truss elements are employed, and the bond potentials are implemented through constitutive material models. Because the equilibrium bond- length, bond angles, and bond-torsion potential energies are intrinsic material parameters, the model is independent of initial strains or stresses. In this paper, the SFEMM method has been implemented in ABAQUS finite element software. The constraints and material behaviors are modeled through two Fortran subroutines. The method is verified for the bond-stretch, bond-angle and bond-torsion of carbon atoms. Furthermore, the capability of the method in the conformation simulation of molecular structures is demonstrated via a case study of a graphene sheet. Briefly, SFEMM builds up a framework that offers more flexible features over the conventional molecular finite element models, serving the structural relaxation modeling and large deformations without incorporating local rotational degrees of freedom. Potentially, the method is a big step towards comprehensive molecular modeling with finite element technique, and thereby concurrently coupling an atomistic domain to a solid continuum domain within a single finite element platform.

Keywords: finite element, large deformation, molecular mechanics, structural method

Procedia PDF Downloads 151