Search results for: electronic microscopy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3480

Search results for: electronic microscopy

1110 The Review of Permanent Downhole Monitoring System

Authors: Jing Hu, Dong Yang

Abstract:

With the increasingly difficult development and operating environment of exploration, there are many new challenges and difficulties in developing and exploiting oil and gas resources. These include the ability to dynamically monitor wells and provide data and assurance for the completion and production of high-cost and complex wells. A key technology in providing these assurances and maximizing oilfield profitability is real-time permanent reservoir monitoring. The emergence of optical fiber sensing systems has gradually begun to replace traditional electronic systems. Traditional temperature sensors can only achieve single-point temperature monitoring, but fiber optic sensing systems based on the Bragg grating principle have a high level of reliability, accuracy, stability, and resolution, enabling cost-effective monitoring, which can be done in real-time, anytime, and without well intervention. Continuous data acquisition is performed along the entire wellbore. The integrated package with the downhole pressure gauge, packer, and surface system can also realize real-time dynamic monitoring of the pressure in some sections of the downhole, avoiding oil well intervention and eliminating the production delay and operational risks of conventional surveys. Real-time information obtained through permanent optical fibers can also provide critical reservoir monitoring data for production and recovery optimization.

Keywords: PDHM, optical fiber, coiled tubing, photoelectric composite cable, digital-oilfield

Procedia PDF Downloads 63
1109 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

Authors: Ziya Uddin

Abstract:

This paper deals with the theoretical and numerical investigation of magneto-hydrodynamic boundary layer flow of a nano fluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nano thermal layer formed around the nanoparticle and Brownian motion of nano particles etc., appropriate models are used for the effective thermal and physical properties of nano fluids. To model the rotation of nano particles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

Keywords: nanofluids, wedge shaped wick, heat pipe, numerical modeling, particle swarm optimization, nanofluid applications, Heat transfer

Procedia PDF Downloads 369
1108 Barrier Characteristics of Molecular Semiconductor-Based Organic/Inorganic Au/C₄₂H₂₈/n-InP Hybrid Junctions

Authors: Bahattin Abay

Abstract:

Thin film of polycyclic aromatic hydrocarbon rubrene, C₄₂H₂₈ (5,6,11,12-tetraphenyltetracene), has been surfaced on Moderately Doped (MD) n-InP substrate as an interfacial layer by means of spin coating technique for the electronic modification of Au/MD n-InP structure. Ex situ annealing has been carried out at 150 °C for three minutes under a brisk flow of nitrogen for the better adhesion of the deposited film with the substrate surface. Room temperature electrical characterization has been performed on the C₄₂H₂₈/MD n-InP hybrid junctions by current-voltage (I-V) and capacitance-voltage (C-V) measurement in the dark. It has been seen that the C₄₂H₂₈/MD n-InP structure demonstrated extraordinary rectifying behavior. An effective barrier height (BH) as high as 0.743 eV, along with an ideality factor very close to unity (n=1.203), has been achieved for C₄₂H₂₈/n-InP organic/inorganic device. A thin C₄₂H₂₈ interfacial layer between Au and MD n-InP also reduce the reverse leakage current by almost four orders of magnitude and enhance the BH about 0.278 eV. This good performance of the device is ascribed to the passivation effect of organic interfacial layer between Au and n-InP. By using C-V measurement, in addition, the value of BH of the C₄₂H₂₈/n-InP organic/inorganic hybrid junctions have been obtained as 0.796 eV. It has been seen that both of the BH value (0.743 and 0.796 eV) for the organic/inorganic hybrid junction obtained I-V and C-V measurement, respectively are significantly larger than that of the conventional Au/n-InP structure (0.465 and 0.503 eV). It was also seen that the device had good sensitivity to the light under 100 mW/cm² illumination conditions. The obtained results indicated that modification of the interfacial potential barrier for Metal/n-InP junctions might be attained using polycyclic aromatic hydrocarbon thin interlayer C₄₂H₂₈.

Keywords: I-V and C-V measurements, heterojunction, n-InP, rubrene, surface passivation

Procedia PDF Downloads 149
1107 Interaction Design In Home Appliance: An Integrated Approach InKanseiAnd Hedonomic “Cases: Rice Cooker, Juicer, Mixer”

Authors: Sara Mostowfi, Hassan Sadeghinaeini, Sana Behnamasl, Leila Ensaniat, Maryam Mostafaee

Abstract:

Nowadays, most of product producers, e.g. home appliance, electronic machines and vehicles focus on quality and comfort, and promise consumers ease of use and pleasurable experiences during product using. Consumers make their purchase decisions according to two needs: functional and emotional needs. Functional needs are fulfilled by product functionality, besides emotional needs are related to psychologists’ aspects of production. Emotions are distinctive elements which should be added to products and services to lead them up. In this case, the authors’ survey conducted pleasurable and hedonomic aspects in products of a home appliance company in Iran. In this regard, three samples of home appliance were selected: mixer, rice cooker, iron. Fifteen women (20-60) participated in this study. Every user evaluated each product by questionnaire based on 7 point semantic differential scale. After analyzing the results with statistical methods, results showed that 90% of users aren’t satisfied with hedonic and pleasurable criteria in interaction with these products. They notified that regarding hedonomics and pleasurable criteria’s they will have better ease of use and functionality. Our findings show a significant association between products’ features and user satisfaction. It seems that industrial design has a significant impression on the company’s products and with regard the pleasurable criteria the company sales will be more successful.

Keywords: home appliance, interaction, pleasure, hedonomy, ergonomy

Procedia PDF Downloads 364
1106 Investigation and Identification of a Number of Precious and Semi-precious Stones Related to Bam Historical Citadel Using Micro Raman Spectroscopy and Scanning Electron Microscopy (SEM/EDX)

Authors: Nazli Darkhal

Abstract:

The use of gems and ornaments has been common in Iran since the beginning of history. The prosperity of the country, the wealth, and the interest of the people of this land in luxurious and glorious life, combined with beauty, have always attracted the attention of the gems and ornaments of the Iranian people. Iranians are famous in the world for having a long history of collecting and recognizing precious stones. In this case, we can use the unique treasure of national jewelry. Raman spectroscopy method is one of the oscillating spectroscopy methods that is classified in the group of nondestructive study methods, and like other methods, in addition to several advantages, it also has disadvantages and problems. Micro Raman spectroscopy is one of the different types of Raman spectroscopy in which an optical microscope is combined with a Raman device to provide more capabilities and advantages than its original method. In this way, with the help of Raman spectroscopy and a light microscope, while observing more details from different parts of the historical sample, natural or artificial pigments can be identified in a small part of it. The EDX electron microscope also functions as the basis for the interaction of the electron beam with the matter. The beams emitted from this interaction can be used to examine samples. In this article, in addition to introducing the micro Raman spectroscopy method, studies have been conducted on the structure of three samples of existing stones in the historic citadel of Bam. Using this method of study on precious and semi-precious stones, in addition to requiring a short time, can provide us with complete information about the structure and theme of these samples. The results of experiments and gemology of the stones showed that the selected beads are agate and jasper, and they can be placed in the chalcedony group.

Keywords: bam citadel, precious and semi-precious stones, Raman spectroscopy, scanning electron microscope

Procedia PDF Downloads 112
1105 Investigating the Suitability of Utilizing Lyophilized Gels to Improve the Stability of Ufasomes

Authors: Mona Hassan Aburahma, Alaa Hamed Salama

Abstract:

Ufasomes “unsaturated fatty acids liposomes” are unique nano-sized self-assembled bilayered vesicles that can be easily created from the readily available unsaturated fatty acid. Ufasomes are formed due to weak associative interaction of the fully ionized and unionized fatty acids into bilayers structures. In the ufasomes constructs, the fatty acid molecules are oriented with their hydrocarbon tails directed toward the membrane interior and the carboxyl groups are in contact with water. Although ufasomes can be employed as a safe vesicular carrier for drugs, the extreme instability of their aqueous dispersions hinders their effective use in drug delivery field. Accordingly, in our study, lyophilized gels containing ufasomes were prepared using a simple assembling technique form the readily available oleic acid to overcome the colloidal instability of the ufasomes dispersions and convert them into accurate unit dosage forms. The influence of changing cholesterol percentage relative to oleic acid on the ufasomes vesicles were investigated using factorial design. The optimized oleic acid ufasomes comprised nanoscaled spherical vesicles. Scanning electron micrographs of the lyophilized gels revealed that the included ufasomes were intact, non-aggregating, and preserved their spherical morphology. Rheological characterization (viscosity and shear stress versus shear rate) of reconstituted ufasomal lyophilized gel ensured the ease of application. The capability of the ufasomes, included in the gel, to penetrate deep through the mucosa layers was illustrated using ex-vivo confocal laser imaging, thereby, highlighting the feasibility of stabilizing ufasomes using lyophilized gel platforms.

Keywords: ufasomes, lyophilized gel, confocal scanning microscopy, rheological characterization, oleic acid

Procedia PDF Downloads 394
1104 Single Ion Conductors for Lithium-Ion Battery Application

Authors: Seyda Tugba Gunday Anil, Ayhan Bozkurt

Abstract:

Next generation lithium batteries are taking more attention and single-ion polymer electrolytes are expected to play a significant role in the development of these kinds of energy storage systems. In the present work we used a different strategy to design of novel solid single-ion conducting inorganic polymer electrolytes based on lithium polyvinyl alcohol oxalate borate (Li(PVAOB), lithium polyacrylic acid oxalate borate (LiPAAOB) and poly (ethylene glycol) methacrylate (PEGMA). Free radical polymerization was used to convert PEGMA into PPEGMA and LiPAAOB is prepared from poly (acrylic acid), oxalic acid and boric acid. Blend polymer electrolytes were produced by mixing of LiPAAOB or Li (PVAOB with PPEGMA at different stoichiometric ratios to enhance the single ion conductivity of the systems. To exploit the flexible chemistry and increase the segmental mobility of the blend electrolyte, the composition was changed up to 80% with respect to the guest polymer, PPEGMA. FT-IR and differential scanning calorimeter techniques confirmed the interaction between the host and guest polymers. TGA verified that the thermal stability of the blends increased up to approximately 200 C. Scanning electron microscopy images confirm the homogeneity of the blend electrolytes. CV studies showed that electrochemical stability electrochemical stability window is approximately 5 V versus Li/Li⁺. The effect of PPEGMA on to the Lithium-ion conductivity was investigated using dielectric impedance analyzer. The maximum single ion conductivity was measured as 1.3 × 10⁻⁴ S/cm at 100 C for the sample LiPAAOB-80PPEGMA. Clearly, the results confirmed the positive effect to the increment in ionic conductivity of the blend electrolytes with the addition of PPEGMA.

Keywords: single-ion conductor, inorganic polymer, blends, polymer electrolyte

Procedia PDF Downloads 149
1103 A Comparative Study of the Athlete Health Records' Minimum Data Set in Selected Countries and Presenting a Model for Iran

Authors: Robab Abdolkhani, Farzin Halabchi, Reza Safdari, Goli Arji

Abstract:

Background and purpose: The quality of health record depends on the quality of its content and proper documentation. Minimum data set makes a standard method for collecting key data elements that make them easy to understand and enable comparison. The aim of this study was to determine the minimum data set for Iranian athletes’ health records. Methods: This study is an applied research of a descriptive comparative type which was carried out in 2013. By using internal and external forms of documentation, a checklist was created that included data elements of athletes health record and was subjected to debate in Delphi method by experts in the field of sports medicine and health information management. Results: From 97 elements which were subjected to discussion, 85 elements by more than 75 percent of the participants (as the main elements) and 12 elements by 50 to 75 percent of the participants (as the proposed elements) were agreed upon. In about 97 elements of the case, there was no significant difference between responses of alumni groups of sport pathology and sports medicine specialists with medical record, medical informatics and information management professionals. Conclusion: Minimum data set of Iranian athletes’ health record with four information categories including demographic information, health history, assessment and treatment plan was presented. The proposed model is available for manual and electronic medical records.

Keywords: Documentation, Health record, Minimum data set, Sports medicine

Procedia PDF Downloads 456
1102 Solvent-Aided Dispersion of Tannic Acid to Enhance Flame Retardancy of Epoxy

Authors: Matthew Korey, Jeffrey Youngblood, John Howarter

Abstract:

Background and Significance: Tannic acid (TA) is a bio-based high molecular weight organic, aromatic molecule that has been found to increase thermal stability and flame retardancy of many polymer matrices when used as an additive. Although it is biologically sourced, TA is a pollutant in industrial wastewater streams, and there is a desire to find applications in which to downcycle this molecule after extraction from these streams. Additionally, epoxy thermosets have revolutionized many industries, but are too flammable to be used in many applications without additives which augment their flame retardancy (FR). Many flame retardants used in epoxy thermosets are synthesized from petroleum-based monomers leading to significant environmental impacts on the industrial scale. Many of these compounds also have significant impacts on human health. Various bio-based modifiers have been developed to improve the FR of the epoxy resin; however, increasing FR of the system without tradeoffs with other properties has proven challenging, especially for TA. Methodologies: In this work, TA was incorporated into the thermoset by use of solvent-exchange using methyl ethyl ketone, a co-solvent for TA, and epoxy resin. Samples were then characterized optically (UV-vis spectroscopy and optical microscopy), thermally (thermogravimetric analysis and differential scanning calorimetry), and for their flame retardancy (mass loss calorimetry). Major Findings: Compared to control samples, all samples were found to have increased thermal stability. Further, the addition of tannic acid to the polymer matrix by the use of solvent greatly increased the compatibility of the additive in epoxy thermosets. By using solvent-exchange, the highest loading level of TA found in literature was achieved in this work (40 wt%). Conclusions: The use of solvent-exchange shows promises for circumventing the limitations of TA in epoxy.

Keywords: sustainable, flame retardant, epoxy, tannic acid

Procedia PDF Downloads 113
1101 Electrochemical and Photoelectrochemical Study of Polybithiophene–MnO2 Composite Films

Authors: H. Zouaoui, D. Abdi, B. Nessark, F. Habelhames, A. Bahloul

Abstract:

Among the conjugated organic polymers, the polythiophenes constitute a particularly important class of conjugated polymers, which has been extensively studied for the relation between the geometrical structure and the optic and electronic properties, while the polythiophene is an intractable material. They are, furthermore, chemically and thermally stable materials, and are very attractive for exploitation of their physical properties. The polythiophenes are extensively studied due to the possibility of synthesizing low band gap materials by using substituted thiophenes as precursors. Low band gap polymers may convert visible light into electricity and some photoelectrochemical cells based on these materials have been prepared. Polythiophenes (PThs) are good candidates for polymer optoelectronic devices such as polymer solar cells (PSCs) polymer light-emitting diodes (PLEDs) field-effect transistors (FETs) electrochromics and biosensors. In this work, MnO2 has been synthesized by hydrothermal method and analyzed by infrared spectroscopy. The polybithiophene+MnO2 composite films were electrochemically prepared by cyclic voltammetry technic on a conductor glass substrate ITO (indium–tin-oxide). The composite films are characterized by cyclic voltammetry, impedance spectroscopy and photoelectrochemical analyses. The results confirmed the presence of manganese dioxide nanoparticles in the polymer layer. An application has been made by using these deposits as an electrode in a photoelectrochemical cell for measuring photocurrent tests. The composite films show a significant photocurrent intensity 80 μA.cm-2.

Keywords: polybithiophene, MnO2, photoelectrochemical cells, composite films

Procedia PDF Downloads 337
1100 Chemiluminescent Detection of Microorganisms in Food/Drug Product Using Reducing Agents and Gold Nanoplates

Authors: Minh-Phuong Ngoc Bui, Abdennour Abbas

Abstract:

Microbial spoilage of food/drug has been a constant nuisance and an unavoidable problem throughout history that affects food/drug quality and safety in a variety of ways. A simple and rapid test of fungi and bacteria in food/drugs and environmental clinical samples is essential for proper management of contamination. A number of different techniques have been developed for detection and enumeration of foodborne microorganism including plate counting, enzyme-linked immunosorbent assay (ELISA), polymer chain reaction (PCR), nucleic acid sensor, electrical and microscopy methods. However, the significant drawbacks of these techniques are highly demand of operation skills and the time and cost involved. In this report, we introduce a rapid method for detection of bacteria and fungi in food/drug products using a specific interaction between a reducing agent (tris(2-carboxylethyl)phosphine (TCEP)) and the microbial surface proteins. The chemical reaction was transferred to a transduction system using gold nanoplates-enhanced chemiluminescence. We have optimized our nanoplates synthetic conditions, characterized the chemiluminescence parameters and optimized conditions for the microbial assay. The new detection method was applied for rapid detection of bacteria (E.coli sp. and Lactobacillus sp.) and fungi (Mucor sp.), with limit of detection as low as single digit cells per mL within 10 min using a portable luminometer. We expect our simple and rapid detection method to be a powerful alternative to the conventional plate counting and immunoassay methods for rapid screening of microorganisms in food/drug products.

Keywords: microorganism testing, gold nanoplates, chemiluminescence, reducing agents, luminol

Procedia PDF Downloads 280
1099 Cement Bond Characteristics of Artificially Fabricated Sandstones

Authors: Ashirgul Kozhagulova, Ainash Shabdirova, Galym Tokazhanov, Minh Nguyen

Abstract:

The synthetic rocks have been advantageous over the natural rocks in terms of availability and the consistent studying the impact of a particular parameter. The artificial rocks can be fabricated using variety of techniques such as mixing sand and Portland cement or gypsum, firing the mixture of sand and fine powder of borosilicate glass or by in-situ precipitation of calcite solution. In this study, sodium silicate solution has been used as the cementing agent for the quartz sand. The molded soft cylindrical sandstone samples are placed in the gas-tight pressure vessel, where the hardening of the material takes place as the chemical reaction between carbon dioxide and the silicate solution progresses. The vessel allows uniform disperse of carbon dioxide and control over the ambient gas pressure. Current paper shows how the bonding material is initially distributed in the intergranular space and the surface of the sand particles by the usage of Electron Microscopy and the Energy Dispersive Spectroscopy. During the study, the strength of the cement bond as a function of temperature is observed. The impact of cementing agent dosage on the micro and macro characteristics of the sandstone is investigated. The analysis of the cement bond at micro level helps to trace the changes to particles bonding damage after a potential yielding. Shearing behavior and compressional response have been examined resulting in the estimation of the shearing resistance and cohesion force of the sandstone. These are considered to be main input values to the mathematical prediction models of sand production from weak clastic oil reservoir formations.

Keywords: artificial sanstone, cement bond, microstructure, SEM, triaxial shearing

Procedia PDF Downloads 156
1098 Quantum Inspired Security on a Mobile Phone

Authors: Yu Qin, Wanjiaman Li

Abstract:

The widespread use of mobile electronic devices increases the complexities of mobile security. This thesis aims to provide a secure communication environment for smartphone users. Some research proves that the one-time pad is one of the securest encryption methods, and that the key distribution problem can be solved by using the QKD (quantum key distribution). The objective of this project is to design an Android APP (application) to exchange several random keys between mobile phones. Inspired by QKD, the developed APP uses the quick response (QR) code as a carrier to dispatch large amounts of one-time keys. After evaluating the performance of APP, it allows the mobile phone to capture and decode 1800 bytes of random data in 600ms. The continuous scanning mode of APP is designed to improve the overall transmission performance and user experience, and the maximum transmission rate of this mode is around 2200 bytes/s. The omnidirectional readability and error correction capability of QR code gives it a better real-life application, and the features of adequate storage capacity and quick response optimize overall transmission efficiency. The security of this APP is guaranteed since QR code is exchanged face-to-face, eliminating the risk of being eavesdropped. Also, the id of QR code is the only message that would be transmitted through the whole communication. The experimental results show this project can achieve superior transmission performance, and the correlation between the transmission rate of the system and several parameters, such as the QR code size, has been analyzed. In addition, some existing technologies and the main findings in the context of the project are summarized and critically compared in detail.

Keywords: one-time pad, QKD (quantum key distribution), QR code, application

Procedia PDF Downloads 132
1097 Medication Errors in a Juvenile Justice Youth Development Center

Authors: Tanja Salary

Abstract:

This paper discusses a study conducted in a juvenile justice facility regarding medication errors. It includes an introduction to data collected about medication errors in a juvenile justice facility from 2011 - 2019 and explores contributing factors that relate to those errors. The data was obtained from electronic incident records of medication errors that were documented from the years 2011 through 2019. In addition, the presentation reviews both current and historical research of empirical data about patient safety standards and quality care comparing traditional health care facilities to juvenile justice residential facilities and acknowledges a gap in research. The theoretical/conceptual framework for the research study was Bandura and Adams’s self-efficacy theory of behavioral change and Mark Friedman’s results-based accountability theory. Despite the lack of evidence in previous studies addressing medication errors in juvenile justice facilities, this presenter will share information that adds to the body of knowledge, including the potential relationship of medication errors and contributing factors of race and age. Implications for future research include the effect that education and training will have on the communication among juvenile justice staff, including nurses, who administer medications to juveniles to ensure adherence to patient safety standards. There are several opportunities for future research concerning other characteristics about factors that may affect medication administration errors within the residential juvenile justice facility.

Keywords: Juvenile justice, medication errors, juveniles, error reduction strategies

Procedia PDF Downloads 47
1096 Understanding Chromosome Movement in Starfish Oocytes

Authors: Bryony Davies

Abstract:

Many cell and tissue culture practices ignore the effects of gravity on cell biology, and little is known about how cell components may move in response to gravitational forces. Starfish oocytes provide an excellent model for interrogating the movement of cell components due to their unusually large size, ease of handling, and high transparency. Chromosomes from starfish oocytes can be visualised by microinjection of the histone-H2B-mCherry plasmid into the oocytes. The movement of the chromosomes can then be tracked by live-cell fluorescence microscopy. The results from experiments using these methods suggest that there is a replicable downward movement of centrally located chromosomes at a median velocity of 0.39 μm/min. Chromosomes nearer the nuclear boundary showed more restricted movement. Chromosome density and shape could also be altered by microinjection of restriction enzymes, primarily Alu1, before imaging. This was found to alter the speed of chromosome movement, with chromosomes from Alu1-injected nuclei showing a median downward velocity of 0.60 μm/min. Overall, these results suggest that there is a non-negligible movement of chromosomes in response to gravitational forces and that this movement can be altered by enzyme activity. Future directions based on these results could interrogate if this observed downward movement extends to other cell components and to other cell types. Additionally, it may be important to understand whether gravitational orientation and vertical positioning of cell components alter cell behaviour. The findings here may have implications for current cell culture practices, which do not replicate cell orientations or external forces experienced in vivo. It is possible that a failure to account for gravitational forces in 2D cell culture alters experimental results and the accuracy of conclusions drawn from them. Understanding possible behavioural changes in cells due to the effects of gravity would therefore be beneficial.

Keywords: starfish, oocytes, live-cell imaging, microinjection, chromosome dynamics

Procedia PDF Downloads 89
1095 Application of Bacteriophages as Natural Antibiotics in Aquaculture

Authors: Chamilani Nikapitiya, Mahanama De Zoysa, Jehee Lee

Abstract:

Most of the bacterial diseases are associated with high mortalities in aquaculture species and causing huge economic losses. Different approaches have been taken to prevent or control of bacterial diseases including use of vaccines, probiotics, chemotherapy, water quality management, etc. Antibiotics are widely applying as chemotherapy to control bacterial diseases, however, it has been shown that frequent use of antibiotics is favored to develop multi-drug resistance bacteria. Therefore, phages and phage encoded lytic proteins are known to be one of the most promising alternatives for antibiotics to avoid the emergence of antibiotic-resistant bacteria. We isolated and characterized the two lytic phages, namely pAh-1 and pAs-1 against pathogenic Aeromonas hydrophila and Aeromonas salmonicida, respectively. Morphological characteristics were analyzed by Transmission electron microscopy (TEM) and host strain specificities were tested with Aeromonas and other closely related bacterial strains. TEM analysis revealed that both pAh-1 and pAsm-1 are composed of an icosahedral head and a segmented tail, and we suggest that, they are new members of Myoviridae family. Genome sizes of isolated phages were estimated by restriction enzyme digestion of genomic DNA using selected endonucleases followed by agarose gel electrophoresis. Estimated genome size of pAh-1 and pAs-1 were approximately 64 Kbp and 120 Kbp, respectively. Both pAh-1 and pAs-1 have shown narrow host specificity. Moreover, protective effects of phage therapy against fish pathogenic A. hydrophila were investigated in zebrafish model. The survival rate was 40% higher when zebrafish received intra-peritoneal injection (i.p.) of pAh-1 were simultaneously challenge A. hydrophila (2 x 106 CFU/fish) compared to that without phage treatment. Overall results suggest that both pAh-1 and pAs-1 can be used as a potential phage therapy to control Aeromonas infections in aquaculture.

Keywords: Aeromonas infections, antibiotic resistance, bacteriophage, bio-control, lytic phage

Procedia PDF Downloads 179
1094 Recent Advances in Pulse Width Modulation Techniques and Multilevel Inverters

Authors: Satish Kumar Peddapelli

Abstract:

This paper presents advances in pulse width modulation techniques which refers to a method of carrying information on train of pulses and the information be encoded in the width of pulses. Pulse Width Modulation is used to control the inverter output voltage. This is done by exercising the control within the inverter itself by adjusting the ON and OFF periods of inverter. By fixing the DC input voltage we get AC output voltage. In variable speed AC motors the AC output voltage from a constant DC voltage is obtained by using inverter. Recent developments in power electronics and semiconductor technology have lead improvements in power electronic systems. Hence, different circuit configurations namely multilevel inverters have become popular and considerable interest by researcher are given on them. A fast Space-Vector Pulse Width Modulation (SVPWM) method for five-level inverter is also discussed. In this method, the space vector diagram of the five-level inverter is decomposed into six space vector diagrams of three-level inverters. In turn, each of these six space vector diagrams of three-level inverter is decomposed into six space vector diagrams of two-level inverters. After decomposition, all the remaining necessary procedures for the three-level SVPWM are done like conventional two-level inverter. The proposed method reduces the algorithm complexity and the execution time. It can be applied to the multilevel inverters above the five-level also. The experimental setup for three-level diode-clamped inverter is developed using TMS320LF2407 DSP controller and the experimental results are analysed.

Keywords: five-level inverter, space vector pulse wide modulation, diode clamped inverter, electrical engineering

Procedia PDF Downloads 374
1093 From Sampling to Sustainable Phosphate Recovery from Mine Waste Rock Piles

Authors: Hicham Amar, Mustapha El Ghorfi, Yassine Taha, Abdellatif Elghali, Rachid Hakkou, Mostafa Benzaazoua

Abstract:

Phosphate mine waste rock (PMWR) generated during ore extraction is continuously increasing, resulting in a significant environmental footprint. The main objectives of this study consist of i) elaboration of the sampling strategy of PMWR piles, ii) a mineralogical and chemical characterization of PMWR piles, and iii) 3D block model creation to evaluate the potential valorization of the existing PMWR. Destructive drilling using reverse circulation from 13 drills was used to collect samples for chemical (X-ray fluorescence analysis) and mineralogical assays. The 3D block model was created based on the data set, including chemical data of the realized drills using Datamine RM software. The optical microscopy observations showed that the sandy phosphate from drills in the PMWR piles is characterized by the abundance of carbonate fluorapatite with the presence of calcite, dolomite, and quartz. The mean grade of composite samples was around 19.5±2.7% for P₂O₅. The mean grade of P₂O₅ exhibited an increasing tendency by depth profile from bottom to top of PMWR piles. 3D block model generated with chemical data confirmed the tendency of the mean grades’ variation and may allow a potential selective extraction according to %P₂O₅. The 3D block model of P₂O₅ grade is an efficient sampling approach that confirmed the variation of P₂O₅ grade. This integrated approach for PMWR management will be a helpful tool for decision-making to recover the residual phosphate, adopting the circular economy and sustainability in the phosphate mining industry.

Keywords: 3D modelling, reverse circulation drilling, circular economy, phosphate mine waste rock, sampling

Procedia PDF Downloads 54
1092 Treatment of Porphyromonas gingivalis Induced Gingivitis in Albino Rats with Tetracycline-Loaded Nanochitosan, an Immunohistochemical Analysis

Authors: Rania Hanafi Said, Rasha Mohamed Taha

Abstract:

Background: By using nanoparticles as drug delivery, it may be possible to avoid the drawbacks of systemic antibiotic dosing, including bacterial antibiotic resistance. The goal of this study was to see how well tetracycline loaded on nanochitosan worked to treat gingival inflammation in albino rats caused by Porphyromonas gingivalis. The study analyzed immunohistochemically the localization of the pro-inflammatory cytokine Interleukin-1beta (IL-1β). Material and methods: In this study, fifty mature male albino rats weighing 150 to 180 grams each were used. They were randomly divided into five groups. We checked for weight changes in rats. Ten male albino rats were included in Group I, which served as a negative control group. Ten rats were included in Group II, where they were exposed once to Porphyromonas. Group III contained ten rats, which were treated the same as Group II plus daily injections of diluted tetracycline powder at the infection sites. Ten rats in Group IV received the same procedure as those in Group II before receiving daily injections of nanochitosan at the injection sites. Finally, Group V, which had ten rats. Following the same protocol as Group II, they received localized injections of tetracycline loaded on nanochitosan once daily. Rats' gingivae were extracted and prepared after they were anesthetized. The biopsies were examined histologically and immunohistochemically by light microscopy. Results: Groups I and V had a nearly normal histological appearance of gingival tissue. In Groups II, III, and IV, degeneration was seen because the epithelial cells were bigger, collagen fibers were pulling away from the lamina propria connective tissue, and the basement membranes had come to an end. There was no discernible difference between groups V and I when they were examined immunohistochemically. Conclusion: The use of nano chitosan as a tetracycline carrier is a novel technique to overcome the drug's rising level of resistance.

Keywords: Immunohistochemistry, Nanochitosan, porphyromonas gingivitis, Tetracycline

Procedia PDF Downloads 65
1091 Marginalized Two-Part Joint Models for Generalized Gamma Family of Distributions

Authors: Mohadeseh Shojaei Shahrokhabadi, Ding-Geng (Din) Chen

Abstract:

Positive continuous outcomes with a substantial number of zero values and incomplete longitudinal follow-up are quite common in medical cost data. To jointly model semi-continuous longitudinal cost data and survival data and to provide marginalized covariate effect estimates, a marginalized two-part joint model (MTJM) has been developed for outcome variables with lognormal distributions. In this paper, we propose MTJM models for outcome variables from a generalized gamma (GG) family of distributions. The GG distribution constitutes a general family that includes approximately all of the most frequently used distributions like the Gamma, Exponential, Weibull, and Log Normal. In the proposed MTJM-GG model, the conditional mean from a conventional two-part model with a three-parameter GG distribution is parameterized to provide the marginal interpretation for regression coefficients. In addition, MTJM-gamma and MTJM-Weibull are developed as special cases of MTJM-GG. To illustrate the applicability of the MTJM-GG, we applied the model to a set of real electronic health record data recently collected in Iran, and we provided SAS code for application. The simulation results showed that when the outcome distribution is unknown or misspecified, which is usually the case in real data sets, the MTJM-GG consistently outperforms other models. The GG family of distribution facilitates estimating a model with improved fit over the MTJM-gamma, standard Weibull, or Log-Normal distributions.

Keywords: marginalized two-part model, zero-inflated, right-skewed, semi-continuous, generalized gamma

Procedia PDF Downloads 160
1090 Electrochemical Sensing of L-Histidine Based on Fullerene-C60 Mediated Gold Nanocomposite

Authors: Sanjeeb Sutradhar, Archita Patnaik

Abstract:

Histidine is one of the twenty-two naturally occurring essential amino acids exhibiting two conformations, L-histidine and D-histidine. D-Histidine is biologically inert, while L-histidine is bioactive because of its conversion to neurotransmitter or neuromodulator histamine in both brain as well as central nervous system. The deficiency of L-histidine causes serious diseases like Parkinson’s disease, epilepsy and the failure of normal erythropoiesis development. Gold nanocomposites are attractive materials due to their excellent biocompatibility and are easy to adsorb on the electrode surface. In the present investigation, hydrophobic fullerene-C60 was functionalized with homocysteine via nucleophilic addition reaction to make it hydrophilic and to successively make the nanocomposite with in-situ prepared gold nanoparticles with ascorbic acid as reducing agent. The electronic structure calculations of the AuNPs@Hcys-C60 nanocomposite showed a drastic reduction of HOMO-LUMO gap compared to the corresponding molecules of interest, indicating enhanced electron transportability to the electrode surface. In addition, the electrostatic potential map of the nanocomposite showed the charge was distributed over either end of the nanocomposite, evidencing faster direct electron transfer from nanocomposite to the electrode surface. This nanocomposite showed catalytic activity; the nanocomposite modified glassy carbon electrode showed a tenfold higher kₑt, the electron transfer rate constant than the bare glassy carbon electrode. Significant improvement in its sensing behavior by square wave voltammetry was noted.

Keywords: fullerene-C60, gold nanocomposites, L-Histidine, square wave voltammetry

Procedia PDF Downloads 236
1089 Preparation and Optimization of Curcumin-HPβCD Complex Bioadhesive Vaginal Films for Vaginal Candidiasis by Factorial Design

Authors: Umme Hani, H. G. Shivakumar, M. D. Younus Pasha

Abstract:

The purpose of this work was to design and optimize a novel vaginal drug delivery system for more effective treatment against vaginal candidiasis. To achieve a better therapeutic efficacy and patient compliance in the treatment for vaginal candidiasis, herbal antifungal agent Curcumin which is 2.5 fold more potent than fluconazole at inhibiting the adhesion of candida albicans has been formulated in a bio-adhesive vaginal film. Curcumin was formulated in bio-adhesive film formulations that could be retained in the vagina for prolonged intervals. The polymeric films were prepared by solvent evaporation and optimized for various physicodynamic and aesthetic properties. Curcumin HPβCD (Hydroxypropyl β Cyclodextrin) was first developed to increase the solubility of curcumin. The formation of the Curcumin HPβCD complex was characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and FT-IR and evaluated for its solubility. Curcumin HPβCD complex was formulated in a bio-adhesive film using hydroxypropyl methyl cellulose (HPMC) and Carbopol 934P and characterized. DSC and FT-IR data of Curcumin HPβCD indicate there was complex formation between the drug and HPβCD. The little moisture content (8.02±0.34% w/w) was present in the film, which helps them to remain stable and kept them from being completely dry and brittle. The mechanical properties, tensile strength, and percentage elongation at break reveal that the formulations were found to be soft and tough. The films showed good peelability, relatively good swelling index, and moderate tensile strength and retained vaginal mucosa up to 8 h. The developed Curcumin vaginal film could be a promising safe herbal medication and can ensure longer residence at the vagina and provide an efficient therapy for vaginal candidiasis.

Keywords: curcumin, curcumin-HPβCD complex, bio-adhesive vaginal film, vaginal candidiasis, 23 factorial design

Procedia PDF Downloads 365
1088 Defect Correlation of Computed Tomography and Serial Sectioning in Additively Manufactured Ti-6Al-4V

Authors: Bryce R. Jolley, Michael Uchic

Abstract:

This study presents initial results toward the correlative characterization of inherent defects of Ti-6Al-4V additive manufacture (AM). X-Ray Computed Tomography (CT) defect data are compared and correlated with microscopic photographs obtained via automated serial sectioning. The metal AM specimen was manufactured out of Ti-6Al-4V virgin powder to specified dimensions. A post-contour was applied during the fabrication process with a speed of 1050 mm/s, power of 260 W, and a width of 140 µm. The specimen was stress relief heat-treated at 16°F for 3 hours. Microfocus CT imaging was accomplished on the specimen within a predetermined region of the build. Microfocus CT imaging was conducted with parameters optimized for Ti-6Al-4V additive manufacture. After CT imaging, a modified RoboMet. 3D version 2 was employed for serial sectioning and optical microscopy characterization of the same predetermined region. Automated montage capture with sub-micron resolution, bright-field reflection, 12-bit monochrome optical images were performed in an automated fashion. These optical images were post-processed to produce 2D and 3D data sets. This processing included thresholding and segmentation to improve visualization of defect features. The defects observed from optical imaging were compared and correlated with the defects observed from CT imaging over the same predetermined region of the specimen. Quantitative results of area fraction and equivalent pore diameters obtained via each method are presented for this correlation. It is shown that Microfocus CT imaging does not capture all inherent defects within this Ti-6Al-4V AM sample. Best practices for this correlative effort are also presented as well as the future direction of research resultant from this current study.

Keywords: additive manufacture, automated serial sectioning, computed tomography, nondestructive evaluation

Procedia PDF Downloads 126
1087 Ab Initio Calculations of Structure and Elastic Properties of BexZn1−xO Alloys

Authors: S. Lakel, F. Elhamra, M. Ibrir, K. Almi

Abstract:

There is a growing interest in Zn1-xBexO (ZBO)/ZnO hetero structures and quantum wells since the band gap energy of Zn1-xBexO solid solutions can be turned over a very large range (3.37–10.6 eV) as a function of the Be composition. ZBO/ZnO has been utilized in ultraviolet light emission diodes and lasers, and may find applications as active elements of various other electronic and optoelectronic devices. Band gap engineering by Be substitution enables the facile preparation of barrier layers and quantum wells in device structures. In addition, ZnO and its ternary alloys, as piezoelectric semiconductors, have been used for high-frequency surface acoustic wave devices in wireless communication systems due to their high acoustic velocities and large electromechanical coupling. However, many important parameters such as elastic constants, bulk modulus, Young’s modulus and band-gap bowing. First-principles calculations of the structural, electrical and elastic properties of Zn1-xBexO as a function of the Be concentration x have been performed within density functional theory using norm-conserving pseudopotentials and local density approximation (LDA) for the exchange and correlation energy. The alloys’ lattice constants may deviate from the Vegard law. As Be concentration increases, the elastic constants, the bulk modulus and Young’s modulus of the alloys increase, the band gap increases with increasing Be concentration and Zn1-xBexO alloys have direct band. Our calculated results are in good agreement with experimental data and other theoretical calculations.

Keywords: DFT calculation, norm-conserving pseudopotentials, ZnBeO alloys, ZnO

Procedia PDF Downloads 504
1086 The Analysis of Internet and Social Media Behaviors of the Students in Vocational High School

Authors: Mehmet Balci, Sakir Tasdemir, Mustafa Altin, Ozlem Bozok

Abstract:

Our globalizing world has become almost a small village and everyone can access any information at any time. Everyone lets each other know who does whatever in which place. We can learn which social events occur in which place in the world. From the perspective of education, the course notes that a lecturer use in lessons in a university in any state of America can be examined by a student studying in a city of Africa or the Far East. This dizzying communication we have mentioned happened thanks to fast developments in computer technologies and in parallel with this, internet technology. While these developments in the world, has a very large young population and a rapidly evolving electronic communications infrastructure Turkey has been affected by this situation. Researches has shown that almost all young people in Turkey has an account in a social network. Especially becoming common of mobile devices causes data traffic in social networks to increase. In this study, has been surveyed on students in the different age groups and at the Selcuk University Vocational School of Technical Sciences Department of Computer Technology. Student’s opinions about the use of internet and social media has been gotten. Using the Internet and social media skills, purposes, operating frequency, access facilities and tools, social life and effects on vocational education etc. have been explored. Both internet and use of social media positive and negative effects on this department students results have been obtained by the obtained findings evaluating from various aspects. Relations and differences have been found out with statistic.

Keywords: computer technologies, internet use, social network, higher vocational school

Procedia PDF Downloads 522
1085 Energy Recovery Potential from Food Waste and Yard Waste in New York and Montréal

Authors: T. Malmir, U. Eicker

Abstract:

Landfilling of organic waste is still the predominant waste management method in the USA and Canada. Strategic plans for waste diversion from landfills are needed to increase material recovery and energy generation from waste. In this paper, we carried out a statistical survey on waste flow in the two cities New York and Montréal and estimated the energy recovery potential for each case. Data collection and analysis of the organic waste (food waste, yard waste, etc.), paper and cardboard, metal, glass, plastic, carton, textile, electronic products and other materials were done based on the reports published by the Department of Sanitation in New York and Service de l'Environnement in Montréal. In order to calculate the gas generation potential of organic waste, Buswell equation was used in which the molar mass of the elements was calculated based on their atomic weight and the amount of organic waste in New York and Montréal. Also, the higher and lower calorific value of the organic waste (solid base) and biogas (gas base) were calculated. According to the results, only 19% (598 kt) and 45% (415 kt) of New York and Montréal waste were diverted from landfills in 2017, respectively. The biogas generation potential of the generated food waste and yard waste amounted to 631 million m3 in New York and 173 million m3 in Montréal. The higher and lower calorific value of food waste were 3482 and 2792 GWh in New York and 441 and 354 GWh in Montréal, respectively. In case of yard waste, they were 816 and 681 GWh in New York and 636 and 531 GWh in Montréal, respectively. Considering the higher calorific value, this amount would mean a contribution of around 2.5% energy in these cities.

Keywords: energy recovery, organic waste, urban energy modelling with INSEL, waste flow

Procedia PDF Downloads 117
1084 Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.

Abstract:

In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.

Keywords: hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness

Procedia PDF Downloads 401
1083 Effect of Fiddler Crab Burrows on Bacterial Communities of Mangrove Sediments

Authors: Mohammad Mokhtari, Gires Usup, Zaidi Che Cob

Abstract:

Bacteria communities as mediators of the biogeochemical process are the main component of the mangrove ecosystems. Crab burrows by increasing oxic-anoxic interfaces and facilitating the flux rate between sediment and tidal water affect biogeochemical properties of sediments. The effect of fiddler crab burrows on the density and diversity of bacteria were investigated to elucidate the effect of burrow on bacterial distribution. Samples collected from the burrow walls of three species of fiddler crabs including Uca paradussumieri, Uca rosea, and Uca forcipata. Sediment properties including grain size, temperature, Redox potential, pH, chlorophyll, water and organic content were measured from the burrow walls to assess the correlation between environmental variables and bacterial communities. Bacteria were enumerated with epifluorescence microscopy after staining with SYBR green. Bacterial DNA extracted from sediment samples and the community profiles of bacteria were determined with Terminal Restriction Fragment Length Polymorphism (T-RFLP). High endemism was observed among bacterial communities. Among the 152 observed OTU’s, 22 were found only in crab burrows. The highest bacterial density and diversity were recorded in burrow wall. The results of ANOSIM indicated a significant difference between the bacterial communities from the three species of fiddler crab burrows. Only 3% of explained bacteria variability in the constrained ordination model of CCA was contributed to depth, while much of the bacteria’s variability was attributed to coarse sand, pH, and chlorophyll content. Our findings suggest that crab burrows by affecting sediment properties such as redox potential, pH, water, and chlorophyll content induce significant effects on the bacterial communities.

Keywords: bioturbation, canonical corresponding analysis, fiddler crab, microbial ecology

Procedia PDF Downloads 141
1082 Formulation and Evaluation of Silibilin Loaded PLGA Nanoparticles for Cancer Therapy

Authors: Priya Patel, Paresh Patel, Mihir Raval

Abstract:

Silibinin, a flavanone as an antimicrotubular agent used in the treatment of cancer, was encapsulated in nanoparticles (NPs) of poly (lactide-co-glycolide) (PLGA) polymer using the spray-drying technique. The effects of various experimental parameters were optimized by box-behnken experimental design. Production yield, encapsulation efficiency and dissolution study along with characterization by scanning electron microscopy, DSC, FTIR followed by bioavailability study. Particle size and zeta potential were evaluated by using zetatrac particle size analyzer. Experimental design it was evaluated that inlet temperature and polymer concentration influence on the drug release. Feed flow rate impact on particle size. Results showed that spray drying technique yield 149 nm indicate nanosize range. The small size of the nanoparticle resulted in an enhanced cellular entry and greater bioavailability. Entrapment efficiency was found between 89.35% and 98.36%. Zeta potential shows good stability index of nanoparticle formulation. The in vitro release studies indicated the silibinin loaded PLGA nanoparticles provide controlled drug release over a period of 32 h. Pharmacokinetic studies demonstrated that after oral administration of silibinin-loaded PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 8.85-fold, compared to silibinin suspension as control hence, this investigation demonstrated the potential of the experimental design in understanding the effect of the formulation variables on the quality of silibinin loaded PLGA nanoparticles. These results describe an effective strategy of silibinin loaded PLGA nanoparticles and might provide a promising approach against the cancer.

Keywords: silibinin, cancer, nanoparticles, PLGA, bioavailability

Procedia PDF Downloads 406
1081 Peripheral Nerves Cross-Sectional Area for the Diagnosis of Diabetic Polyneuropathy: A Meta-Analysis of Ultrasonographic Measurements

Authors: Saeed Pourhassan, Nastaran Maghbouli

Abstract:

1) Background It has been hypothesized that, in individuals with diabetes mellitus, the peripheral nerve is swollen due to sorbitol over-accumulation. Additionally growing evidence supported electro diagnostic study of diabetes induced neuropathy as a method having some challenges. 2) Objective To examine the performance of sonographic cross-sectional area (CSA) measurements in the diagnosis of diabetic polyneuropathy (DPN). 3) Data Sources Electronic databases, comprising PubMed and EMBASE and Google scholar, were searched for the appropriate studies before Jan 1, 2020. 4) Study Selection Eleven trials comparing different peripheral nerve CSA measurements between participants with and without DPN were included. 5) Data Extraction Study design, participants' demographic characteristics, diagnostic reference of DPN, and evaluated peripheral nerves and methods of CSA measurement. 6) Data Synthesis Among different peripheral nerves, Tibial nerve diagnostic odds ratios pooled from five studies (713 participants) were 4.46 (95% CI, 0.35–8.57) and the largest one with P<0.0001, I²:64%. Median nerve CSA at wrist and mid-arm took second and third place with ORs= 2.82 (1.50-4.15), 2.02(0.26-3.77) respectively. The sensitivities and specificities pooled from two studies for Sural nerve were 0.78 (95% CI, 0.68–0.89), and 0.68 (95% CI, 0.53–0.74). Included studies for other nerves were limited to one study. The largest sensitivity was for Sural nerve and the largest specificity was for Tibial nerve. 7) Conclusions The peripheral nerves CSA measured by ultrasound imaging is useful for the diagnosis of DPN and is most significantly different between patients and participants without DPN at the Tibial nerve. Because the Tibial nerve CSA in healthy participants, at various locations, rarely exceeds 24 mm2, this value can be considered as a cutoff point for diagnosing DPN.

Keywords: diabetes, diagnosis, polyneuropathy, ultrasound

Procedia PDF Downloads 117