Search results for: dynamic properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12383

Search results for: dynamic properties

10013 Assignment of Airlines Technical Members under Disruption

Authors: Walid Moudani

Abstract:

The Crew Reserve Assignment Problem (CRAP) considers the assignment of the crew members to a set of reserve activities covering all the scheduled flights in order to ensure a continuous plan so that operations costs are minimized while its solution must meet hard constraints resulting from the safety regulations of Civil Aviation as well as from the airlines internal agreements. The problem considered in this study is of highest interest for airlines and may have important consequences on the service quality and on the economic return of the operations. In this communication, a new mathematical formulation for the CRAP is proposed which takes into account the regulations and the internal agreements. While current solutions make use of Artificial Intelligence techniques run on main frame computers, a low cost approach is proposed to provide on-line efficient solutions to face perturbed operating conditions. The proposed solution method uses a dynamic programming approach for the duties scheduling problem and when applied to the case of a medium airline while providing efficient solutions, shows good potential acceptability by the operations staff. This optimization scheme can then be considered as the core of an on-line Decision Support System for crew reserve assignment operations management.

Keywords: airlines operations management, combinatorial optimization, dynamic programming, crew scheduling

Procedia PDF Downloads 354
10012 Experimental Study of Application of Steel Slag as Aggregate in Road Construction

Authors: Meftah M. Elsaraiti, Samir Milad Elsariti

Abstract:

Steel slag is a by-product of the steel production and utilizing it potentially as new or substitute materials in road construction is advantageous regarding cost reduction and flattening improvement or properties pavement. Ease of use, low cost, and resource availability are some of few advantages of reuse and recycling of steel slag. This study assesses the use of Steel Slag Aggregates (SSA) as an alternative to natural road building aggregates. This paper discusses the basic characteristics of steel slag based on extensive laboratory tests, and to determine the possibilities of using steel slag in road construction. Samples were taken from the furnaces directly at different times and dates. Moreover, random samples were also taken from the slag field from various areas at different far distances from each other. A necessary analysis was performed through the use of (XRF). Three different percentages of SSA (0, 50 and 100%) were added as an alternative to natural aggregate in hot mix asphalt (HMA) production. The proposed design of the mix was made according to the Marshall mix design. The results of the experiments revealed that the percentages of iron oxide ranged from (9 to 26%) and that the addition of SSA has a significant improvement on HMA properties. It was observed that the Marshall stability obtained in the mix of 100% slag ranged from 600 to 800 N as a minimum, and the flow of Marshall obtained from 2.4 to 3.23 mm and the specification requires from 2 to 4 mm. The results may be showed possibilities to use steel slag as new or substitute materials in road construction in Libya.

Keywords: by-product material, properties, road construction, steel slag

Procedia PDF Downloads 186
10011 Microwave Dielectric Relaxation Study of Diethanolamine with Triethanolamine from 10 MHz-20 GHz

Authors: A. V. Patil

Abstract:

The microwave dielectric relaxation study of diethanolamine with triethanolamine binary mixture have been determined over the frequency range of 10 MHz to 20 GHz, at various temperatures using time domain reflectometry (TDR) method for 11 concentrations of the system. The present work reveals molecular interaction between same multi-functional groups [−OH and –NH2] of the alkanolamines (diethanolamine and triethanolamine) using different models such as Debye model, Excess model, and Kirkwood model. The dielectric parameters viz. static dielectric constant (ε0) and relaxation time (τ) have been obtained with Debye equation characterized by a single relaxation time without relaxation time distribution by the least squares fit method.

Keywords: diethanolamine, excess properties, kirkwood properties, time domain reflectometry, triethanolamine

Procedia PDF Downloads 304
10010 Multi Object Tracking for Predictive Collision Avoidance

Authors: Bruk Gebregziabher

Abstract:

The safe and efficient operation of Autonomous Mobile Robots (AMRs) in complex environments, such as manufacturing, logistics, and agriculture, necessitates accurate multiobject tracking and predictive collision avoidance. This paper presents algorithms and techniques for addressing these challenges using Lidar sensor data, emphasizing ensemble Kalman filter. The developed predictive collision avoidance algorithm employs the data provided by lidar sensors to track multiple objects and predict their velocities and future positions, enabling the AMR to navigate safely and effectively. A modification to the dynamic windowing approach is introduced to enhance the performance of the collision avoidance system. The overall system architecture encompasses object detection, multi-object tracking, and predictive collision avoidance control. The experimental results, obtained from both simulation and real-world data, demonstrate the effectiveness of the proposed methods in various scenarios, which lays the foundation for future research on global planners, other controllers, and the integration of additional sensors. This thesis contributes to the ongoing development of safe and efficient autonomous systems in complex and dynamic environments.

Keywords: autonomous mobile robots, multi-object tracking, predictive collision avoidance, ensemble Kalman filter, lidar sensors

Procedia PDF Downloads 84
10009 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks

Authors: Ruchi Makani, B. V. R. Reddy

Abstract:

Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.

Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system

Procedia PDF Downloads 178
10008 Assessment of the Change in Strength Properties of Biocomposites Based on PLA and PHA after 4 Years of Storage in a Highly Cooled Condition

Authors: Karolina Mazur, Stanislaw Kuciel

Abstract:

Polylactides (PLA) and polyhydroxyalkanoates (PHA) are the two groups of biodegradable and biocompatible thermoplastic polymers most commonly utilised in medicine and rehabilitation. The aim of this work is to determine the changes in the strength properties and the microstructures taking place in biodegradable polymer composites during their long-term storage in a highly cooled environment (i.e. a freezer at -24ºC) and to initially assess the durability of such biocomposites when used as single-use elements of rehabilitation or medical equipment. It is difficult to find any information relating to the feasibility of long-term storage of technical products made of PLA or PHA, but nonetheless, when using these materials to make products such as casings of hair dryers, laptops or mobile phones, it is safe to assume that without storing in optimal conditions their degradation time might last even several years. SEM images and the assessment of the strength properties (tensile, bending and impact testing) were carried out and the density and water sorption of two polymers, PLA and PHA (NaturePlast PLE 001 and PHE 001), filled with cellulose fibres (corncob grain – Rehofix MK100, Rettenmaier&Sohne) up to 10 and 20% mass were determined. The biocomposites had been stored at a temperature of -24ºC for 4 years. In order to find out the changes in the strength properties and the microstructure taking place after such a long time of storage, the results of the assessment have been compared with the results of the same research carried out 4 years before. Results shows a significant change in the manner of fractures – from ductile with developed surface for the PHA composite with corncob grain when the tensile testing was performed directly after the injection into a more brittle state after 4 years of storage, which is confirmed by the strength tests, where a decrease of deformation is observed at point of fracture. The research showed that there is a way of storing medical devices made out of PLA or PHA for a reasonably long time, as long as the required temperature of storage is met. The decrease of mechanical properties found during tensile testing and bending for PLA was less than 10% of the tensile strength, while the modulus of elasticity and deformation at fracturing slightly rose, which may implicate the beginning of degradation processes. The strength properties of PHA are even higher after 4 years of storage, although in that case the decrease of deformation at fracturing is significant, reaching even 40%, which suggests its degradation rate is higher than that of PLA. The addition of natural particles in both cases only slightly increases the biodegradation.

Keywords: biocomposites, PLA, PHA, storage

Procedia PDF Downloads 265
10007 New Platform of Biobased Aromatic Building Blocks for Polymers

Authors: Sylvain Caillol, Maxence Fache, Bernard Boutevin

Abstract:

Recent years have witnessed an increasing demand on renewable resource-derived polymers owing to increasing environmental concern and restricted availability of petrochemical resources. Thus, a great deal of attention was paid to renewable resources-derived polymers and to thermosetting materials especially, since they are crosslinked polymers and thus cannot be recycled. Also, most of thermosetting materials contain aromatic monomers, able to confer high mechanical and thermal properties to the network. Therefore, the access to biobased, non-harmful, and available aromatic monomers is one of the main challenges of the years to come. Starting from phenols available in large volumes from renewable resources, our team designed platforms of chemicals usable for the synthesis of various polymers. One of these phenols, vanillin, which is readily available from lignin, was more specifically studied. Various aromatic building blocks bearing polymerizable functions were synthesized: epoxy, amine, acid, carbonate, alcohol etc. These vanillin-based monomers can potentially lead to numerous polymers. The example of epoxy thermosets was taken, as there is also the problematic of bisphenol A substitution for these polymers. Materials were prepared from the biobased epoxy monomers obtained from vanillin. Their thermo-mechanical properties were investigated and the effect of the monomer structure was discussed. The properties of the materials prepared were found to be comparable to the current industrial reference, indicating a potential replacement of petrosourced, bisphenol A-based epoxy thermosets by biosourced, vanillin-based ones. The tunability of the final properties was achieved through the choice of monomer and through a well-controlled oligomerization reaction of these monomers. This follows the same strategy than the one currently used in industry, which supports the potential of these vanillin-derived epoxy thermosets as substitutes of their petro-based counterparts.

Keywords: lignin, vanillin, epoxy, amine, carbonate

Procedia PDF Downloads 232
10006 Properties of Fly Ash Brick Prepared in Local Environment of Bangladesh

Authors: Robiul Islam, Monjurul Hasan, Rezaul Karim, M. F. M. Zain

Abstract:

Coal fly ash, an industrial by product of coal combustion thermal power plants is considered as a hazardous material and its improper disposal has become an environmental issue. On the other hand, manufacturing conventional clay bricks involves on consumption of large amount of clay and leads substantial depletion of topsoil. This paper unveils the possibility of using fly ash as a partial replacement of clay for brick manufacturing considering the local technology practiced in Bangladesh. The effect of fly ash with different replacing ratio (0%, 20%, 30%, 40% and 50% by volume) of clay on properties of bricks were studied. Bricks were made in the field parallel to ordinary bricks marked with specific number for different percentage to identify them at time of testing. No physical distortion is observed in fly ash brick after burning in the kiln. Results from laboratory test show that compressive strength of brick is decreased with the increase of fly ash and maximum compressive strength is found to be 19.6 MPa at 20% of fly ash. In addition, water absorption of fly ash brick is increased with the increase of fly ash. The abrasion value and Specific gravity of coarse aggregate prepared from brick with fly ash also studied and the results of this study suggests that 20% fly ash can be considered as the optimum fly ash content for producing good quality bricks utilizing present practiced technology.

Keywords: Bangladesh brick, fly ash, clay brick, physical properties, compressive strength

Procedia PDF Downloads 254
10005 Solvent-Free Conductive Coatings Containing Chemically Coupled Particles for Functional Textiles

Authors: Jagadeshvaran P. L., Kamlesh Panwar, Indumathi Ramakrishnan, Suryasarathi Bose

Abstract:

The surge in the usage of wireless electronics and communication devices has engendered a different form of pollution, viz. the electromagnetic (EM) pollution and yet another serious issue, electromagnetic interference (EMI). There is a legitimate need to develop strategies and materials to combat this issue, otherwise leading to dreadful consequences. Functional textiles have emerged as the modern materials to help attenuate EM waves due to the numerous advantages – flexibility being the most important. In addition to this, there is an inherent advantage of multiple interfaces in coated fabrics that can engender significant attenuation. Herein we report a coating having multifunctional properties – capable of blocking both UV and EM radiation (predominantly of the microwave frequencies) with flame-retarding properties. The layer described here comprises iron titanate(FT) synthesized from its sustainable precursor – ilmenite sand and carbon nanotubes (CNT) dispersed in waterborne polyurethane. It is worth noting that FT's use as a multifunctional material is being reported for the first time. It was observed that a single layer of coated fabric shows EMI shielding effectiveness of -40 dB translating to 99.99% attenuation and similarly a UV blocking of 99.99% in the wavelength ranging from 200-400 nm. The microwave shielding properties of the fabric were demonstrated using a Bluetooth module – where the coated fabric was able to block the incoming Bluetooth signals to the module from a mobile phone. Besides, the coated fabrics exhibited phenomenal enhancement in thermal stability - a five percent increase in the limiting oxygen index (LOI) was observed upon the application of the coating. Such exceptional properties complement cotton fabrics' existing utility, thereby extending their use to specialty applications.

Keywords: multifunctional coatings, EMI shielding, UV blocking, iron titanate, CNT, waterborne polyurethane, cotton fabrics

Procedia PDF Downloads 116
10004 Ethnic Minority Small and Medium Enterprises and Entrepreneurial Resilience During the COVID-19 Pandemic: A Case of United Kingdom

Authors: Muhammad Bilal Mustafa, Javed Hussain, Simeon Babatunde

Abstract:

The Covid-19 pandemic has exposed the vulnerabilities of countless organisations beyond their size, type, and location. However, some groups and sectors are disproportionally get impacted by the pandemic. In the context of the UK, ethnic Small and Medium Enterprises (SMEs) turn out to be the most precarious group among all private sectors. Many ethnic SMEs shut down their business operations during a pandemic. A large portion of Black, Asian and minority ethnic (BAME) owners have huge concerns regarding their business’ survival and resilience. The current UK-centric studies have focused on the large business population, and there is a gap in ethnic SMEs and how they get affected by the Covid-19 pandemic. Moreover, there is a need to further knowledge and academic research to investigate the fundamental factors that could strengthen the resilience of ethnic SMEs as well as contribute to long-term sustainability. Therefore, this study aims to capture the effect of the Covid-19 pandemic on ethnic SMEs in the UK and assess the survival measures taken by ethnic SMEs during Covid-19. Besides, this study adopts a dynamic capabilities perspective that how firms' specific capabilities enable ethnic SMEs to exploit entrepreneurial opportunities during the Covid-19 pandemic. Finally, this research will help ethnic SMEs to develop vigorous resilience to address future external shocks and market uncertainties.

Keywords: COVID-19 pandemic, ethnic minority SMEs, entrepreneurial resilience, dynamic capabilities, sustainability

Procedia PDF Downloads 162
10003 Studies on Mechanical Properties of Concrete and Mortar Containing Waste Glass Aggregate

Authors: Nadjoua Bourmatte, Hacène Houari

Abstract:

Glass has been indispensable to men’s life due to its properties, including pliability to take any shape with ease, bright surface, resistance to abrasion, reasonable safety and durability. Waste glass creates serious environmental problems, mainly due to the inconsistency of waste glass streams. With increasing environmental pressure to reduce solid waste and to recycle as much as possible, the concrete industry has adopted a number of methods to achieve this goal. The object of this research work is to study the effect of using recycled glass waste, as a partial replacement of fine aggregate, on the fresh and hardened properties of concrete. Recycled glass was used to replace fine aggregate in proportions of 0%, 25% and 50%. We could observe that the Glass waste aggregates are lighter than natural aggregates and they show a very low water absorption. The experimental results showed that the slump flow increased with the increase of recycled glass content. On the other hand, the compressive strength and tensile strength of recycled glass mixtures decreased with the increase in the recycled glass content. The results showed that recycled glass aggregate can successfully be used with limited level for producing concrete. The standard sand was substituted with aggregates based on glass waste for manufacturing mortars, Mortar based on glass shows a compressive strength and low bending with a 1/2 ratio with control mortar strength.

Keywords: concrete, environment, glass waste, recycling

Procedia PDF Downloads 232
10002 Experimental Investigation of Physical Properties of Bambusa Oldhamii and Yushania Alpina on the Influence of Age and Harvesting Season

Authors: Tigist Girma Kedane

Abstract:

The purpose of the current research work is to measure the physical properties of bamboo species in Ethiopia on the impact of age, harvesting seasons and culm height. Three representatives of bamboo plants are harvested in three groups of ages, 2 harvesting months, and 3 regions of Ethiopia. Research has not been done on the physical properties of bamboo species in Ethiopia so far. Moisture content and shrinkage of bamboo culm increase when the culm ages younger and moves from top to bottom position. The harvesting month of November has a higher moisture content and shrinkage compared to February. One year old of Injibara, Kombolcha, and Mekaneselam bamboo culm has 40%, 30%, and 33% higher moisture content, 29%, 24%, and 28% higher radial shrinkage, 32%, 37%, and 32% higher tangential shrinkage compared to 3 years old respectively. The bottom position of Injibara, Kombolcha, and Mekaneselam in November have 45%, 28%, and 25% higher moisture content, 41%, 29%, and 34% radial shrinkage, 29%, 28%, and 42% tangential shrinkage than the top position, respectively. The basic density increases as the age of the bamboo becomes older and moves from the bottom to the top position. November has the lowest basic density compared to February. 3 years old of Injibara, Kombolcha, and Mekaneselam at the age of 3 years have 32%, 50%, and 24% higher basic density compared to 1 year, whereas the top position has 35%, 26%, and 22% higher than the bottom position in February, respectively. The current research proposed that 3 years and February are suited for structural purposes and furniture making, but 1 year and November are suited for fiber extraction in the composite industry. The existence of water in the culm improves an easy extraction of the fibers without damage from the culm.

Keywords: bamboo age, bamboo height, harvesting seasons, physical properties

Procedia PDF Downloads 61
10001 Stabilization Control of the Nonlinear AIDS Model Based on the Theory of Polynomial Fuzzy Control Systems

Authors: Shahrokh Barati

Abstract:

In this paper, we introduced AIDS disease at first, then proposed dynamic model illustrate its progress, after expression of a short history of nonlinear modeling by polynomial phasing systems, we considered the stability conditions of the systems, which contained a huge amount of researches in order to modeling and control of AIDS in dynamic nonlinear form, in this approach using a frame work of control any polynomial phasing modeling system which have been generalized by part of phasing model of T-S, in order to control the system in better way, the stability conditions were achieved based on polynomial functions, then we focused to design the appropriate controller, firstly we considered the equilibrium points of system and their conditions and in order to examine changes in the parameters, we presented polynomial phase model that was the generalized approach rather than previous Takagi Sugeno models, then with using case we evaluated the equations in both open loop and close loop and with helping the controlling feedback, the close loop equations of system were calculated, to simulate nonlinear model of AIDS disease, we used polynomial phasing controller output that was capable to make the parameters of a nonlinear system to follow a sustainable reference model properly.

Keywords: polynomial fuzzy, AIDS, nonlinear AIDS model, fuzzy control systems

Procedia PDF Downloads 468
10000 Utilization Reactive Dilutes to Improve the Properties of Epoxy Resin as Anticorrosion Coating

Authors: El-Sayed Negim, Ainakulova D. T., Puteri S. M., Khaldun M. Azzam, Bekbayeva L. K., Arpit Goyal, Ganjian E.

Abstract:

Anticorrosion coatings protect metal surfaces from environmental factors including moisture, oxygen, and gases that caused corrosion to the metal. Various types of anticorrosion coatings are available, with different properties and application methods. Many researchers have been developing methods to prevent corrosion, and epoxy polymers are one of the wide methods due to their excellent adhesion, chemical resistance, and durability. In this study, synthesis reactive dilute based on glycidyl methacrylate (GMA) with each of 2-ethylhexyl acrylate (2-EHA) and butyl acrylate (BuA) to improve the performance of epoxy resin and anticorrosion coating. The copolymers were synthesized with composition ratio (5/5) by bulk polymerization technique using benzoyl peroxide as a catalyst and temperature at 85 oC for 2 hours and at 90 oC for 30 minutes to complete the polymerization process. The obtained copolymers were characterized by FTIR, viscosity and thixotropic index. The effect of copolymers as reactive dilute on the physical and mechanical properties of epoxy resin was investigated. Metal plates coated by the modified epoxy resins with different contents of copolymers were tested using alkali and salt test methods, and the copolymer based on GMA and BUA showed the best protection efficiency due to the barrier effect of the polymer layer.

Keywords: epoxy, coating, dilute, corrosion, reactive

Procedia PDF Downloads 52
9999 Composite Base Natural Fiber

Authors: Noureddine Mahmoudi

Abstract:

The use of natural fibers in the development of composite materials is a sector in full expansion. These fibers were used for their low cost, their availability and their renewable character. The fibers of the palm (palm tree) were used as reinforcement in polypropylene (PP). The date palm fibers have some potential because of their ecological and economic interest. Both unmodified and compatibilized fibers are used. Compatibilization was carried out with the use of maleic anhydride copolymers. The morphology and mechanical properties were characterized by electron microscopy scanning (SEM) and tensile tests. The influence of fiber content on mechanical properties of composite PP / date palm has been evaluated and demonstrated, that the maximum stress and elongation decreases with increasing fiber volume rate. On the other hand, an increase of the tensile modulus has been noticed, but after the fibers improvement, the maximum stress increases significantly up to 25% weight.

Keywords: plant fiber, palm, SEM, compatibilizer

Procedia PDF Downloads 459
9998 The Effect of Super-Plasticizer and Ultra-sonic Process on the Carbon Nano Tubes Dispersion in Combination with Nano Silica in Cement Composites to Enhance Its Mechanical Properties

Authors: M.S. El-Feky, Passant Youssef, Mohamed I. Serag

Abstract:

nowadays, nanotechnology is the main trend of research in different areas due to the new potential of using nanometer materials sized less than 100nm. Nanomaterials are needed in cement composites to act as bridging for Nano and micro-cracks to increase tensile strength, reduce the permeability of gases and water in concrete to solve corrosion problem, react with excess Calcium Hydroxide, produce additional C-S-H, act as filler materials to densify the cement matrix and increase its mechanical properties. The present study focuses on the effectiveness of super-plasticizers and ultrasonic processing on the dispersion of Carbon Nanotube at first in water and then in cement composites in combination with Nano silica to enhance the mechanical properties of cement composites. A qualitative analysis using a compressive strength test is conducted with a view to investigate the influence of different dispersion techniques on the mechanical properties of cement composites containing Carbon Nanotube (CNT) and Nano Silica (NS) particles with different percentages. In addition, micro-structural analysis was carried out to understand the surface morphology and microstructure of cement composites with different dosages of NS addition. The investigational study results showed that the combination of NS with a low amount of CNT had a positive effect on the hydration reaction; on the other hand, the combination of CNT and a high amount of NS had a negative effect on the hydration reaction. The compressive strength can be improved by optimum combination 0.02% CNT and 1% NS with gain in strength by 72% and 35% after 7 and 28 days compared to control samples; these results were with an agreement with the morphology structure of composites using microstructure analysis.

Keywords: nano silica, dispersion, sonication, carbon nano tubes

Procedia PDF Downloads 146
9997 Structural, Optical, And Ferroelectric Properties Of BaTiO3 Sintered At Different Temperatures

Authors: Anurag Gaur, Neha Sharma

Abstract:

In this work, we have synthesized BaTiO3 via sol gel method by sintering at different temperatures (600-1000 0C) and studied their structural, optical and ferroelectric properties through X-Ray diffraction (XRD), UV-Vis spectrophotometer and PE Loop Tracer. X-Ray diffraction patterns of barium titanate samples show that the peaks of the diffractogram are successfully indexed with the tetragonal structure of BaTiO3 along with some minor impurities of BaCO3. The optical band gap calculated through UV Visible spectrophotometer varies from 4.37 to 3.80 eV for the samples sintered at 600 to 1000 0 C, respectively. The particle size calculated through transmission electron microscopy varies from 20 to 60 nm for the samples sintered at 600 to 1000 0C, respectively. Moreover, it has been observed that the ferroelectricity reduces as we increase the sintering temperature.

Keywords: nanostructures, ferroelectricity, sol-gel method, diffractogram

Procedia PDF Downloads 427
9996 Material Chemistry Level Deformation and Failure in Cementitious Materials

Authors: Ram V. Mohan, John Rivas-Murillo, Ahmed Mohamed, Wayne D. Hodo

Abstract:

Cementitious materials, an excellent example of highly complex, heterogeneous material systems, are cement-based systems that include cement paste, mortar, and concrete that are heavily used in civil infrastructure; though commonly used are one of the most complex in terms of the material morphology and structure than most materials, for example, crystalline metals. Processes and features occurring at the nanometer sized morphological structures affect the performance, deformation/failure behavior at larger length scales. In addition, cementitious materials undergo chemical and morphological changes gaining strength during the transient hydration process. Hydration in cement is a very complex process creating complex microstructures and the associated molecular structures that vary with hydration. A fundamental understanding can be gained through multi-scale level modeling for the behavior and properties of cementitious materials starting from the material chemistry level atomistic scale to further explore their role and the manifested effects at larger length and engineering scales. This predictive modeling enables the understanding, and studying the influence of material chemistry level changes and nanomaterial additives on the expected resultant material characteristics and deformation behavior. Atomistic-molecular dynamic level modeling is required to couple material science to engineering mechanics. Starting at the molecular level a comprehensive description of the material’s chemistry is required to understand the fundamental properties that govern behavior occurring across each relevant length scale. Material chemistry level models and molecular dynamics modeling and simulations are employed in our work to describe the molecular-level chemistry features of calcium-silicate-hydrate (CSH), one of the key hydrated constituents of cement paste, their associated deformation and failure. The molecular level atomic structure for CSH can be represented by Jennite mineral structure. Jennite has been widely accepted by researchers and is typically used to represent the molecular structure of the CSH gel formed during the hydration of cement clinkers. This paper will focus on our recent work on the shear and compressive deformation and failure behavior of CSH represented by Jennite mineral structure that has been widely accepted by researchers and is typically used to represent the molecular structure of CSH formed during the hydration of cement clinkers. The deformation and failure behavior under shear and compression loading deformation in traditional hydrated CSH; effect of material chemistry changes on the predicted stress-strain behavior, transition from linear to non-linear behavior and identify the on-set of failure based on material chemistry structures of CSH Jennite and changes in its chemistry structure will be discussed.

Keywords: cementitious materials, deformation, failure, material chemistry modeling

Procedia PDF Downloads 286
9995 The Effect of Carbon Nanofibers on the Electrical Resistance of Cementitious Composites

Authors: Reza Pourjafar, Morteza Sohrabi-Gilani, Mostafa Jamshidi Avanaki, Malek Mohammad Ranjbar

Abstract:

Cementitious composites like concrete, are the most widely used materials in civil infrastructures. Numerous investigations on fiber’s effect on the properties of cement-based composites have been conducted in the last few decades. The use of fibers such as carbon nanofibers (CNFs) and carbon nanotubes (CNTs) in these materials is an ongoing field and needs further researches and studies. Excellent mechanical, thermal, and electrical properties of carbon nanotubes and nanofibers have motivated the development of advanced nanocomposites with outstanding and multifunctional properties. In this study, the electrical resistance of CNF reinforced cement mortar was examined. Three different dosages of CNF were used, and the resistances were compared to plain cement mortar. One of the biggest challenges in this study is dispersing CNF particles in the mortar mixture. Therefore, polycarboxylate superplasticizer and ultrasonication of the mixture have been selected for the purpose of dispersing CNFs in the cement matrix. The obtained results indicated that the electrical resistance of the CNF reinforced mortar samples decreases with increasing CNF content, which would be the first step towards examining strain and damage monitoring ability of cementitious composites containing CNF for structural health monitoring purposes.

Keywords: carbon nanofiber, cement and concrete, CNF reinforced mortar, smart mater, strain monitoring, structural health monitoring

Procedia PDF Downloads 146
9994 A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure

Authors: Mohamed Ouzzane, Mahmoud Bady

Abstract:

Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season).

Keywords: air cooling system, refrigeration, thermal ejector, thermal compression

Procedia PDF Downloads 160
9993 Recovery of Heavy Metals by Ion Exchange on the Zeolite Materials

Authors: K. Menad, A. Faddeg

Abstract:

Zeolites are a family of mineral compounds. With special properties that have led to several important industrial applications. Ion exchange has enabled the first industrial application in the field of water treatment. The exchange by aqueous pathway is the method most used in the case of such microporous materials and this technique will be used in this work. The objective of this work is to find performance materials for the recovery of heavy metals such as cadmium. The study is to compare the properties of different ion exchange zeolite Na-X, Na-A, their physical mixture and the composite A (LTA) / X (FAU). After the synthesis of various zeolites X and A, it was designed a model Core-Shell to form a composite zeolite A on zeolite X. Finally, ion exchange studies were performed on these zeolite materials. The cation is exclusively tested for cadmium, a toxic element and is harmful to health and the environment.

Keywords: zeolite A, zeolite X, ion exchange, water treatment

Procedia PDF Downloads 432
9992 Carbon Nanofilms on Diamond for All-Carbon Chemical Sensors

Authors: Vivek Kumar, Alexander M. Zaitsev

Abstract:

A study on chemical sensing properties of carbon nanofilms on diamond for developing all-carbon chemical sensors is presented. The films were obtained by high temperature graphitization of diamond followed by successive plasma etchings. Characterization of the films was done by Raman spectroscopy, atomic force microscopy, and electrical measurements. Fast and selective response to common organic vapors as seen as sensitivity of electrical conductance was observed. The phenomenological description of the chemical sensitivity is proposed as a function of the surface and bulk material properties of the films.

Keywords: chemical sensor, carbon nanofilm, graphitization of diamond, plasma etching, Raman spectroscopy, atomic force microscopy

Procedia PDF Downloads 446
9991 Ultra-Low Loss Dielectric Properties of (Mg1-xNix)2(Ti0.95Sn0.05)O4 Microwave Ceramics

Authors: Bing-Jing Li, Sih-Yin Wang, Tse-Chun Yeh, Yuan-Bin Chen

Abstract:

Microwave dielectric ceramic materials of (Mg1-xNix)2(Ti0.95Sn0.05)O4 for x = 0.01, 0.03, 0.05, 0.07 and 0.09 were prepared and sintered at 1250–1400ºC. The microstructure and microwave dielectric properties of the ceramic materials were examined and measured. The observations shows that the content of Ni2+ ions has little effect on the crystal structure, dielectric constant, temperature coefficient of resonant frequency (τf) and sintering temperatures of the ceramics. However, the quality values (Q×f) are greatly improved due to the addition of Ni2+ ions. The present study showed that the ceramic material prepared for x = 0.05 and sintered at 1325ºC had the best Q×f value of 392,000 GHz, about 23% improvement compared with that of Mg2(Ti0.95Sn0.05)O4.

Keywords: (Mg1-xNix)2(Ti0.95Sn0.05)O4, microwave dielectric ceramics, high quality factor, high frequency wireless communication

Procedia PDF Downloads 487
9990 Low Sulfur Diesel-Like Fuel From Quick Remediation Process of Waste Oil Sludge

Authors: Isam A. H. Al Zubaidy

Abstract:

A quick process may be needed to get the benefit the big generated quantity of waste oil sludge (WOS). The process includes the mixing process of WOS with commercial diesel fuel. Different ratios of WOS to diesel fuel were prepared ranging 1:1 to 20:1 by mass. The mixture was continuously mixing for 10 minutes using bench type overhead stirrer and followed by filtration process to separate the soil waste from filtrate oil product. The quantity and the physical properties of the oil filtrate were measured. It was found that the addition of up to 15% WOS to diesel fuel was accepted without dramatic changes to the properties of diesel fuel. The amount of waste oil sludge was decreased by about 60% by mass. This means that about 60 % of the mass of sludge was recovered as light fuel oil. The physical properties of the resulting fuel from 10% sludge mixing ratio showed that the specific gravity, ash content, carbon residue, asphaltene content, viscosity, diesel index, cetane number, and calorific value were affected slightly. The color was changed to light black color. The sulfur content was increased also. This requires other processes to reduce the sulfur content of the resulting light fuel. A new desulfurization process was achieved using adsorption techniques with activated biomaterial to reduce the sulfur content to acceptable limits. Adsorption process by ZnCl₂ activated date palm kernel powder was effective for improvement of the physical properties of diesel like fuel. The final sulfur content was increased to 0.185 wt%. This diesel like fuel can be used in all tractors, buses, tracks inside and outside the refineries. The solid remaining seems to be smooth and can be mixed with asphalt mixture for asphalting the roads or can be used with other materials as an asphalt coating material for constructed buildings. Through this process, valuable fuel has been recovered, and the amount of waste material had decreased.

Keywords: oil sludge, diesel fuel, blending process, filtration process

Procedia PDF Downloads 118
9989 Novel Anticorrosion Epoxy Reinforced Graphitic Nanocomposite as a Durable Surface

Authors: Shimaa A. Higazy, Mohamed S. Selim, Olfat E. El-Azabawy, Abeer A. Hassan

Abstract:

We designed novel epoxy/graphitic carbon nitride (g-C₃N₄) nanocomposite materials as suitable surface coatings. g-C₃N₄ nanosheets were facilely prepared and dispersed in the epoxy resin via solution casting. This research focuses on the mechanical and anticorrosion properties of g-C₃N₄ nanofiller reinforced epoxy nanocomposites. The structures, sizes, and morphologies of designed polymeric nanocomposites and nanofillers were elucidated using various techniques such as FT-IR, NMR, FE-TEM, FE-SEM. The developed nanocomposite was applied as a surface coating by air-assisted spray method. The structure-property relationship was studied for different concentrations of nanofiller in the epoxy matrix. The anticorrosive properties were studied via electrochemical experiments, including potentiodynamic polarization, electrochemical impedance, and open-circuit potential analyses, as well as salt spray test. Mechanical durability was assessed by various methods, such as impact, T-bending, and crosscut tests. Surface heterogeneity, elasticity, and corrosion-resistance features are among the merits of developed composite. The highest improvement was achieved with well dispersion of g-C₃N₄ sheets fillers. This fascinating epoxy nanostructured coating provides a promising anticorrosive coatings for a sustainable future environment.

Keywords: epoxy, nanocomposite, surface coating, anticorrosive properties, mechanical durability

Procedia PDF Downloads 88
9988 Laccase Catalysed Conjugation of Tea Polyphenols for Enhanced Antioxidant Properties

Authors: Parikshit Gogo, N. N. Dutta

Abstract:

The oxidative enzymes specially laccase (benzenediol: oxygen oxidoreductase, E.C.1.10.3.2) from bacteria, fungi and plants have been playing an important role in green technologies due to their specific advantageous properties. Laccase from different sources and in different forms was used as a biocatalyst in many oxidation and conjugation reactions starting from phenol to hydrocarbons. Tea polyphenols and its derivatives attract the scientific community because of their potential use as antioxidants in food, pharmaceutical and cosmetic industries. Conjugate of polyphenols emerged as a novel materials which shows better stability and antioxidant properties in applied fields. The conjugation reaction of catechin with poly (allylamine) has been studied using free, immobilized and cross-linked enzyme crystals (CLEC) of laccase from Trametes versicolor with particular emphasis on the effect of pertinent variables and kinetic aspects of the reaction. The stability and antioxidant property of the conjugated product was improved as compared to the unconjugated tea polyphenols. The reaction was studied in 11 different solvents in order to deduce the solvent effect through an attempt to correlate the initial reaction rate with solvent properties such as hydrophobicity (logP), water solubility (logSw), electron pair acceptance (ETN) and donation abilities (DNN), polarisibility and dielectric constant which exhibit reasonable correlations. The study revealed, in general that polar solvents favour the initial reaction rate. The kinetics of the conjugation reaction conformed to the so-called Ping-Pong-Bi-Bi mechanism with catechin inhibition. The stability as well as activity of the CLEC was better than the free enzymes and immobilized laccase for practical application. In case of immobilized laccase system marginal diffusional limitation could be inferred from the experimental data. The kinetic parameters estimated by non-linear regression analysis were found to be KmPAA(mM) = 0.75, 1.8967 and Kmcat (mM) = 11.769, 15.1816 for free and immobilized laccase respectively. An attempt has been made to assess the activity of the laccase for the conjugation reaction in relation to other reactions such as dimerisation of ferulic acids and develop a protocol to enhance polyphenol antioxidant activity.

Keywords: laccase, catechin, conjugation reaction, antioxidant properties

Procedia PDF Downloads 270
9987 Effect of Thickness on Structural and Electrical Properties of CuAlS2 Thin Films Grown by Two Stage Vacuum Thermal Evaporation Technique

Authors: A. U. Moreh, M. Momoh, H. N. Yahya, B. Hamza, I. G. Saidu, S. Abdullahi

Abstract:

This work studies the effect of thickness on structural and electrical properties of CuAlS2 thin films grown by two stage vacuum thermal evaporation technique. CuAlS2 thin films of thicknesses 50nm, 100nm and 200nm were deposited on suitably cleaned corning 7059 glass substrate at room temperature (RT). In the first stage Cu-Al precursors were grown at room temperature by thermal evaporation and in the second stage Cu-Al precursors were converted to CuAlS2 thin films by sulfurisation under sulfur atmosphere at the temperature of 673K. The structural properties of the films were examined by X-ray diffraction (XRD) technique while electrical properties of the specimens were studied using four point probe method. The XRD studies revealed that the films are of crystalline in nature having tetragonal structure. The variations of the micro-structural parameters, such as crystallite size (D), dislocation density ( ), and micro-strain ( ), with film thickness were investigated. The results showed that the crystallite sizes increase as the thickness of the film increases. The dislocation density and micro-strain decreases as the thickness increases. The resistivity (  ) of CuAlS2 film is found to decrease with increase in film thickness, which is related to the increase of carrier concentration with film thickness. Thus thicker films exhibit the lowest resistivity and high carrier concentration, implying these are the most conductive films. Low electrical resistivity and high carrier concentration are widely used as the essential components in various optoelectronic devices such as light-emitting diode and photovoltaic cells.

Keywords: CuAlS2, evaporation, sulfurisation, thickness, resistivity, crystalline

Procedia PDF Downloads 483
9986 Special Properties of the Zeros of the Analytic Representations of Finite Quantum Systems

Authors: Muna Tabuni

Abstract:

The paper contains an investigation on the special properties of the zeros of the analytic representations of finite quantum systems. These zeros and their paths completely define the finite quantum system. The present paper studies the construction of the analytic representation from its zeros. The analytic functions of finite quantum systems are introduced. The zeros of the analytic theta functions and their paths have been studied. The analytic function f(z) have exactly d zeros. The analytic function has been constructed from its zeros.

Keywords: construction, analytic, representation, zeros

Procedia PDF Downloads 207
9985 Investigation of Single Particle Breakage inside an Impact Mill

Authors: E. Ghasemi Ardi, K. J. Dong, A. B. Yu, R. Y. Yang

Abstract:

In current work, a numerical model based on the discrete element method (DEM) was developed which provided information about particle dynamic and impact event condition inside a laboratory scale impact mill (Fritsch). It showed that each particle mostly experiences three impacts inside the mill. While the first impact frequently happens at front surface of the rotor’s rib, the frequent location of the second impact is side surfaces of the rotor’s rib. It was also showed that while the first impact happens at small impact angle mostly varying around 35º, the second impact happens at around 70º which is close to normal impact condition. Also analyzing impact energy revealed that varying mill speed from 6000 to 14000 rpm, the ratio of first impact’s average impact energy and minimum required energy to break particle (Wₘᵢₙ) increased from 0.30 to 0.85. Moreover, it was seen that second impact poses intense impact energy on particle which can be considered as the main cause of particle splitting. Finally, obtained information from DEM simulation along with obtained data from conducted experiments was implemented in semi-empirical equations in order to find selection and breakage functions. Then, using a back-calculation approach, those parameters were used to predict the PSDs of ground particles under different impact energies. Results were compared with experiment results and showed reasonable accuracy and prediction ability.

Keywords: single particle breakage, particle dynamic, population balance model, particle size distribution, discrete element method

Procedia PDF Downloads 291
9984 Thermodynamic Trends in Co-Based Alloys via Inelastic Neutron Scattering

Authors: Paul Stonaha, Mariia Romashchenko, Xaio Xu

Abstract:

Magnetic shape memory alloys (MSMAs) are promising technological materials for a range of fields, from biomaterials to energy harvesting. We have performed inelastic neutron scattering on two powder samples of cobalt-based high-entropy MSMAs across a range of temperatures in an effort to compare calculations of thermodynamic properties (entropy, specific heat, etc.) to the measured ones. The measurements were correct for multiphonon scattering and multiple scattering contributions. We present herein the neutron-weighted vibrational density of states. Future work will utilize DFT calculations of the disordered lattice to correct for the neutron weighting and retrieve the true thermodynamical properties.

Keywords: neutron scattering, vibrational dynamics, computational physics, material science

Procedia PDF Downloads 32