Search results for: drug prediction
1821 Ultrafine Non Water Soluble Drug Particles
Authors: Shahnaz Mansouri, David Martin, Xiao Dong Chen, Meng Wai Woo
Abstract:
Ultrafine hydrophobic and non-water-soluble drugs can increase the percentage of absorbed compared to their initial dosage. This paper provides a scalable new method of making ultrafine particles of substantially insoluble water compounds specifically, submicron particles of ethanol soluble and water insoluble pharmaceutical materials by steaming an ethanol droplet to prepare a suspension and then followed by immediate drying. This suspension is formed by adding evaporated water molecules as an anti-solvent to the solute of the samples and in early stage of precipitation continued to dry by evaporating both solvent and anti-solvent. This fine particle formation has produced fast dispersion powder in water. The new method is an extension of the antisolvent vapour precipitation technique which exposes a droplet to an antisolvent vapour with reference to the dissolved materials within the droplet. Ultrafine vitamin D3 and ibuprofen particles in the submicron ranges were produced. This work will form the basis for using spray dryers as high-throughput scalable micro-precipitators.Keywords: single droplet drying, nano size particles, non-water-soluble drugs, precipitators
Procedia PDF Downloads 4831820 Mechanical Properties of Ancient Timber Structure Based on the Non Destructive Test Method: A Study to Feiyun Building, Shanxi, China
Authors: Annisa Dewanti Putri, Wang Juan, Y. Qing Shan
Abstract:
The structural assessment is one of a crucial part for ancient timber structure, in which this phase will be the reference for the maintenance and preservation phase. The mechanical properties of a structure are one of an important component of the structural assessment of building. Feiyun as one of the particular preserved building in China will become one of the Pioneer of Timber Structure Building Assessment. The 3-storey building which is located in Shanxi Province consists of complex ancient timber structure. Due to condition and preservation purpose, assessments (visual inspections, Non-Destructive Test and a Semi Non-Destructive test) were conducted. The stress wave measurement, moisture content analyzer, and the micro-drilling resistance meter data will overview the prediction of Mechanical Properties. As a result, the mechanical properties can be used for the next phase as reference for structural damage solutions.Keywords: ancient structure, mechanical properties, non destructive test, stress wave, structural assessment, timber structure
Procedia PDF Downloads 4741819 Water Demand Modelling Using Artificial Neural Network in Ramallah
Authors: F. Massri, M. Shkarneh, B. Almassri
Abstract:
Water scarcity and increasing water demand especially for residential use are major challenges facing Palestine. The need to accurately forecast water consumption is useful for the planning and management of this natural resource. The main objective of this paper is to (i) study the major factors influencing the water consumption in Palestine, (ii) understand the general pattern of Household water consumption, (iii) assess the possible changes in household water consumption and suggest appropriate remedies and (iv) develop prediction model based on the Artificial Neural Network to the water consumption in Palestinian cities. The paper is organized in four parts. The first part includes literature review of household water consumption studies. The second part concerns data collection methodology, conceptual frame work for the household water consumption surveys, survey descriptions and data processing methods. The third part presents descriptive statistics, multiple regression and analysis of the water consumption in the two Palestinian cities. The final part develops the use of Artificial Neural Network for modeling the water consumption in Palestinian cities.Keywords: water management, demand forecasting, consumption, ANN, Ramallah
Procedia PDF Downloads 2191818 PM10 Prediction and Forecasting Using CART: A Case Study for Pleven, Bulgaria
Authors: Snezhana G. Gocheva-Ilieva, Maya P. Stoimenova
Abstract:
Ambient air pollution with fine particulate matter (PM10) is a systematic permanent problem in many countries around the world. The accumulation of a large number of measurements of both the PM10 concentrations and the accompanying atmospheric factors allow for their statistical modeling to detect dependencies and forecast future pollution. This study applies the classification and regression trees (CART) method for building and analyzing PM10 models. In the empirical study, average daily air data for the city of Pleven, Bulgaria for a period of 5 years are used. Predictors in the models are seven meteorological variables, time variables, as well as lagged PM10 variables and some lagged meteorological variables, delayed by 1 or 2 days with respect to the initial time series, respectively. The degree of influence of the predictors in the models is determined. The selected best CART models are used to forecast future PM10 concentrations for two days ahead after the last date in the modeling procedure and show very accurate results.Keywords: cross-validation, decision tree, lagged variables, short-term forecasting
Procedia PDF Downloads 1941817 Antiprotozoal Activity of Peganum harmala against Babesiosis in Cattle
Authors: Muhammad Mustafa Jafar, Syed Ashar Mahfooz, Muhammad Ejaz Saleem, Muhammad Asif Raza, Asghar Abbas, Rao Zahid Abbas, Muhammad Kasib Khan, Hafiz Muhammad Ishaq
Abstract:
The Babesia gradually attained resistance against the synthetic medicines. To overcome the drug resistance, herbal therapy has gained more attention as compared to allopathic therapy. Peganumharmala (harmal) is a plant which has shown effective results against various protozoal diseases. Therefore, the present study was planned to monitor the efficacy of Peganumharmala (aqueous extract) against Babesiosis in cattle. For this purpose, a total of forty (n=40) infected animals were randomly divided into four equal groups (A, B, C, and D). Group A was treated with aqueous extract of Peganum harmala at 7.5 mg/kg, group B at 10 mg/kg and group C at 12.5 mg/kg of body weight. Group D served as a control group (normal). It was observed that there was a stabilization in hematological parameters (white and red blood cells, hemoglobin and Packed cell volume) in infected animals treated with Peganum harmala at different doses. Results of this study hence indicated that Peganum harmala extract at 12.5mg/kg BW is more effective against Babesiosis than lower doses.Keywords: Babesiosis, cattle, control, Peganum harmala
Procedia PDF Downloads 2861816 Radionuclides Transport Phenomena in Vadose Zone
Authors: R. Testoni, R. Levizzari, M. De Salve
Abstract:
Radioactive waste management is fundamental to safeguard population and environment by radiological risks. Environmental assessment of a site, where nuclear activities are located, allows understanding the hydro geological system and the radionuclides transport in groundwater and subsoil. Use of dedicated software is the basis of transport phenomena investigation and for dynamic scenarios prediction; this permits to understand the evolution of accidental contamination events, but at the same time the potentiality of the software itself can be verified. The aim of this paper is to perform a numerical analysis by means of HYDRUS 1D code, so as to evaluate radionuclides transport in a nuclear site in Piedmont region (Italy). In particular, the behaviour in vadose zone was investigated. An iterative assessment process was performed for risk assessment of radioactive contamination. The analysis therein developed considers the following aspects: i) hydro geological site characterization; ii) individuation of the main intrinsic and external site factors influencing water flow and radionuclides transport phenomena; iii) software potential for radionuclides leakage simulation purposes.Keywords: HYDRUS 1D, radionuclides transport phenomena, site characterization, radiation protection
Procedia PDF Downloads 3971815 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors
Authors: Yaxin Bi
Abstract:
Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors
Procedia PDF Downloads 321814 Identification of CLV for Online Shoppers Using RFM Matrix: A Case Based on Features of B2C Architecture
Authors: Riktesh Srivastava
Abstract:
Online Shopping have established an astonishing evolution in the last few years. And it is now apparent that B2C architecture is becoming progressively imperative channel for even traditional brick and mortar type traders as well. In this completion knowing customers and predicting behavior are extremely important. More important, when any customer logs onto the B2C architecture, the traces of their buying patterns can be stored and used for future predictions. Such a prediction is called Customer Lifetime Value (CLV). Earlier, we used Net Present Value to do so, however, it ignores two important aspects of B2C architecture, “market risks” and “big amount of customer data”. Now, we use RFM- Recency, Frequency and Monetary Value to estimate the CLV, and as the term exemplifies, market risks, is well sheltered. Big Data Analysis is also roofed in RFM, which gives real exploration of the Big Data and lead to a better estimation for future cash flow from customers. In the present paper, 6 factors (collected from varied sources) are used to determine as to what attracts the customers to the B2C architecture. For these 6 factors, RFM is computed for 3 years (2013, 2014 and 2015) respectively. CLV and Revenue are the two parameters defined using RFM analysis, which gives the clear picture of the future predictions.Keywords: CLV, RFM, revenue, recency, frequency, monetary value
Procedia PDF Downloads 2201813 Lifetime Assessment for Test Strips of POCT Device through Accelerated Degradation Test
Authors: Jinyoung Choi, Sunmook Lee
Abstract:
In general, single parameter, i.e. temperature, as an accelerating parameter is used to assess the accelerated stability of Point-of-Care Testing (POCT) diagnostic devices. However, humidity also plays an important role in deteriorating the strip performance since major components of test strips are proteins such as enzymes. 4 different Temp./Humi. Conditions were used to assess the lifetime of strips. Degradation of test strips were studied through the accelerated stability test and the lifetime was assessed using commercial POCT products. The life distribution of strips, which were obtained by monitoring the failure time of test strip under each stress condition, revealed that the weibull distribution was the most proper distribution describing the life distribution of strips used in the present study. Equal shape parameters were calculated to be 0.9395 and 0.9132 for low and high concentrations, respectively. The lifetime prediction was made by adopting Peck Eq. Model for Stress-Life relationship, and the B10 life was calculated to be 70.09 and 46.65 hrs for low and high concentrations, respectively.Keywords: accelerated degradation, diagnostic device, lifetime assessment, POCT
Procedia PDF Downloads 4151812 Inhibitory Effect of 13-Butoxyberberine Bromide on Metastasis of Skin Cancer A431 Cells
Authors: Phuriwat Laomethakorn, Siritron Samosorn, Ramida Watanapokasin
Abstract:
Cancer metastasis is the major cause of cancer-related death. Therefore searching for a compound that could inhibit cancer metastasis is necessary. 13-Butoxyberberine bromide is a berberine derivative that has not been reported an anti-metastatic effect on skin cancer cells. This study aimed to investigate the anti-metastatic effect of 13-butoxyberberine bromide on skin cancer A431 cells. The effect of 13-butoxyberberine bromide on A431 cell viability was examined by MTT assay. Suppression of cell migration and invasion in A431 cells were determined by wound healing assay, transwell migration assay, and transwell invasion assay. Metastasis proteins were determined by western blotting. The results demonstrated that 13-butoxyberberine bromide decreased A431 cell viability in a dose-dependent manner. In addition, sub-toxic concentrations of 13-butoxyberberine bromide suppressed cell migration and invasion in A431 cells. In addition, 13-butoxyberberine bromide showed anti-metastatic effects by down-regulated MMP-2 and MMP-9 expression. These findings may be useful in the development of 13-butoxyberberine bromide as an anti-metastatic drug in the future.Keywords: 13-butoxyberberine bromide, metastasis, skin cancer, MMP
Procedia PDF Downloads 1041811 Target and Biomarker Identification Platform to Design New Drugs against Aging and Age-Related Diseases
Authors: Peter Fedichev
Abstract:
We studied fundamental aspects of aging to develop a mathematical model of gene regulatory network. We show that aging manifests itself as an inherent instability of gene network leading to exponential accumulation of regulatory errors with age. To validate our approach we studied age-dependent omic data such as transcriptomes, metabolomes etc. of different model organisms and humans. We build a computational platform based on our model to identify the targets and biomarkers of aging to design new drugs against aging and age-related diseases. As biomarkers of aging, we choose the rate of aging and the biological age since they completely determine the state of the organism. Since rate of aging rapidly changes in response to an external stress, this kind of biomarker can be useful as a tool for quantitative efficacy assessment of drugs, their combinations, dose optimization, chronic toxicity estimate, personalized therapies selection, clinical endpoints achievement (within clinical research), and death risk assessments. According to our model, we propose a method for targets identification for further interventions against aging and age-related diseases. Being a biotech company, we offer a complete pipeline to develop an anti-aging drug-candidate.Keywords: aging, longevity, biomarkers, senescence
Procedia PDF Downloads 2741810 Vibration and Parametric Instability Analysis of Delaminated Composite Beams
Authors: A. Szekrényes
Abstract:
This paper revisits the free vibration problem of delaminated composite beams. It is shown that during the vibration of composite beams the delaminated parts are subjected to the parametric excitation. This can lead to the dynamic buckling during the motion of the structure. The equation of motion includes time-dependent stiffness and so it leads to a system of Mathieu-Hill differential equations. The free vibration analysis of beams is carried out in the usual way by using beam finite elements. The dynamic buckling problem is investigated locally, and the critical buckling forces are determined by the modified harmonic balance method by using an imposed time function of the motion. The stability diagrams are created, and the numerical predictions are compared to experimental results. The most important findings are the critical amplitudes at which delamination buckling takes place, the stability diagrams representing the instability of the system, and the realistic mode shape prediction in contrast with the unrealistic results of models available in the literature.Keywords: delamination, free vibration, parametric excitation, sweep excitation
Procedia PDF Downloads 3451809 Simulation of Kinetic Friction in L-Bending of Sheet Metals
Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang
Abstract:
This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.Keywords: friction, L-bending, springback, Stribeck curves
Procedia PDF Downloads 4911808 Extraction of Saponins and Cyclopeptides from Cow Cockle (Vaccaria hispanica (Mill.) Rauschert) Seeds Grown in Turkey
Authors: Ihsan Burak Cam, Ferhan Balci-Torun, Ayhan Topuz, Esin Ari, Ismail Gokhan Deniz, Ilker Genc
Abstract:
The seeds of Vaccaria hispanica have been used in food and pharmaceutical industry. It is an important product due to its superior starch granules, triterpenic saponins, and cyclopeptides suitable for drug delivery. V. hispanica naturally grows in different climatic regions and has genotypes that differ in terms of seed content and composition. Sixty-six V. hispanica seed specimens were collected based on the representation of the distribution in all regions of Turkey and the determination of possible genotypic differences between regions. The seeds, collected from each of the 66 locations, were grown in greenhouse conditions in Akdeniz University, Antalya. Saponin and cyclopeptide contents of the V. hispanica seeds were determined after harvest. Accelerated solvent extraction (ASE) was applied for the extraction of saponins and cyclopeptides. Cyclopeptide (segetalin A) and saponin content of V. hispanica seeds were found in the range of 0.165-0.654 g/100 g and 0.15-1.14 g/100 g, respectively. The results were found to be promising for the seeds from Turkey in terms of saponin content and quality. Acknowledgment: This study was supported by the Scientific and Research Council of Turkey (TUBITAK) (project no 112 O 136).Keywords: Vaccaria hispanica, saponin, cyclopeptid, cow cockle seeds
Procedia PDF Downloads 2951807 Integration GIS–SCADA Power Systems to Enclosure Air Dispersion Model
Authors: Ibrahim Shaker, Amr El Hossany, Moustafa Osman, Mohamed El Raey
Abstract:
This paper will explore integration model between GIS–SCADA system and enclosure quantification model to approach the impact of failure-safe event. There are real demands to identify spatial objects and improve control system performance. Nevertheless, the employed methodology is predicting electro-mechanic operations and corresponding time to environmental incident variations. Open processing, as object systems technology, is presented for integration enclosure database with minimal memory size and computation time via connectivity drivers such as ODBC:JDBC during main stages of GIS–SCADA connection. The function of Geographic Information System is manipulating power distribution in contrast to developing issues. In other ward, GIS-SCADA systems integration will require numerical objects of process to enable system model calibration and estimation demands, determine of past events for analysis and prediction of emergency situations for response training.Keywords: air dispersion model, environmental management, SCADA systems, GIS system, integration power system
Procedia PDF Downloads 3691806 Representativity Based Wasserstein Active Regression
Authors: Benjamin Bobbia, Matthias Picard
Abstract:
In recent years active learning methodologies based on the representativity of the data seems more promising to limit overfitting. The presented query methodology for regression using the Wasserstein distance measuring the representativity of our labelled dataset compared to the global distribution. In this work a crucial use of GroupSort Neural Networks is made therewith to draw a double advantage. The Wasserstein distance can be exactly expressed in terms of such neural networks. Moreover, one can provide explicit bounds for their size and depth together with rates of convergence. However, heterogeneity of the dataset is also considered by weighting the Wasserstein distance with the error of approximation at the previous step of active learning. Such an approach leads to a reduction of overfitting and high prediction performance after few steps of query. After having detailed the methodology and algorithm, an empirical study is presented in order to investigate the range of our hyperparameters. The performances of this method are compared, in terms of numbers of query needed, with other classical and recent query methods on several UCI datasets.Keywords: active learning, Lipschitz regularization, neural networks, optimal transport, regression
Procedia PDF Downloads 801805 Temporary Autonomous Areas in Time and Space: Psytrance Rave Parties as an Expression Area of Altered States of Consciousness in Turkey
Authors: Ugur Cihat Sakarya
Abstract:
This research focuses on psychedelic trance music events in Turkey in the context of altered states of consciousness (ASC). The fieldwork that was conducted from 2018 to 2019 is the main source of the research. Participant observation method was followed in 15 selected events. To direct the musical experiences of participants, performances were also presented as a Dj. Ten of these events are open-air festivals. Five of them are indoor parties. The observations made during fieldwork and suitable answers for inference from the interviews with participants, artists, DJs, and volunteers were selected, compiled, and presented. In the result, findings showed that these activities are perceived as temporary autonomous areas by the participants both in time and space and that these activities are suitable areas for expressing themselves as a group (psyfamily) against mainstream culture. It has been observed that the elements that complement the altered states of consciousness in these events are music, visual arts, drug use, and desire to experience spiritual experiences. It is thought that this first academic study -about this topic in Turkey- will open a door for future researches.Keywords: consciousness, psychedelic, psytrance, rave, Turkey
Procedia PDF Downloads 1351804 Extended Strain Energy Density Criterion for Fracture Investigation of Orthotropic Materials
Authors: Mahdi Fakoor, Hannaneh Manafi Farid
Abstract:
In order to predict the fracture behavior of cracked orthotropic materials under mixed-mode loading, well-known minimum strain energy density (SED) criterion is extended. The crack is subjected along the fibers at plane strain conditions. Despite the complicities to solve the nonlinear equations which are requirements of SED criterion, SED criterion for anisotropic materials is derived. In the present research, fracture limit curve of SED criterion is depicted by a numerical solution, hence the direction of crack growth is figured out by derived criterion, MSED. The validated MSED demonstrates the improvement in prediction of fracture behavior of the materials. Also, damaged factor that plays a crucial role in the fracture behavior of quasi-brittle materials is derived from this criterion and proved its dependency on mechanical properties and direction of crack growth.Keywords: mixed-mode fracture, minimum strain energy density criterion, orthotropic materials, fracture limit curve, mode II critical stress intensity factor
Procedia PDF Downloads 1671803 Pre-Administration of Thunbergia Laurifolia Linn. Prevent the Increase of Dopamine in the Nucleus Accumbens in Ethanol Addicted Rats
Authors: Watchareewan Thongsaard, Ratirat Sangpayap, Maneekarn Namsa-Aid
Abstract:
Thunbergia laurifolia Linn. (TL) is a herbal medicine which has been used as an antidote for several poisonous agents including insecticides and as a component of a mixture of crude extracts to treat drug addicted patients. The aim of this study is to examine the level of dopamine in nucleus accumbens after chronic pre-administration of TL in ethanol addicted rats. Male Wistar rats weigh 200-250 g received TL methanol extract (200mg/kg, orally) 60 minutes before 20% ethanol (1 g/kg, i.p.) for 30 days. The nucleus accumbens was removed and tested for dopamine by HPLC-ECD. The level of dopamine was significantly increased by chronic ethanol administration, whereas the chronic TL extract administration did not cause a difference in dopamine level when compared to control. Moreover, the pre-treatment of TL extract before ethanol significantly reduced the dopamine level in nucleus accumbens to normal level when compared with chronic ethanol administration alone. These results suggested that the increase in dopamine level in the nucleus accumbens by chronic ethanol administration is the cause of ethanol addiction, and this effect is prevented by chronic TL pre-administration. Furthermore, chronic TL extract administration alone did not cause the changes in dopamine level in the nucleus accumbens, indicating that TL itself did not cause addiction.Keywords: Thunbergia laurifolia Linn., alcohol addiction, dopamine, nucleus accumbens
Procedia PDF Downloads 1431802 The Role and Importance of Genome Sequencing in Prediction of Cancer Risk
Authors: M. Sadeghi, H. Pezeshk, R. Tusserkani, A. Sharifi Zarchi, A. Malekpour, M. Foroughmand, S. Goliaei, M. Totonchi, N. Ansari–Pour
Abstract:
The role and relative importance of intrinsic and extrinsic factors in the development of complex diseases such as cancer still remains a controversial issue. Determining the amount of variation explained by these factors needs experimental data and statistical models. These models are nevertheless based on the occurrence and accumulation of random mutational events during stem cell division, thus rendering cancer development a stochastic outcome. We demonstrate that not only individual genome sequencing is uninformative in determining cancer risk, but also assigning a unique genome sequence to any given individual (healthy or affected) is not meaningful. Current whole-genome sequencing approaches are therefore unlikely to realize the promise of personalized medicine. In conclusion, since genome sequence differs from cell to cell and changes over time, it seems that determining the risk factor of complex diseases based on genome sequence is somewhat unrealistic, and therefore, the resulting data are likely to be inherently uninformative.Keywords: cancer risk, extrinsic factors, genome sequencing, intrinsic factors
Procedia PDF Downloads 2701801 A Resource Optimization Strategy for CPU (Central Processing Unit) Intensive Applications
Authors: Junjie Peng, Jinbao Chen, Shuai Kong, Danxu Liu
Abstract:
On the basis of traditional resource allocation strategies, the usage of resources on physical servers in cloud data center is great uncertain. It will cause waste of resources if the assignment of tasks is not enough. On the contrary, it will cause overload if the assignment of tasks is too much. This is especially obvious when the applications are the same type because of its resource preferences. Considering CPU intensive application is one of the most common types of application in the cloud, we studied the optimization strategy for CPU intensive applications on the same server. We used resource preferences to analyze the case that multiple CPU intensive applications run simultaneously, and put forward a model which can predict the execution time for CPU intensive applications which run simultaneously. Based on the prediction model, we proposed the method to select the appropriate number of applications for a machine. Experiments show that the model can predict the execution time accurately for CPU intensive applications. To improve the execution efficiency of applications, we propose a scheduling model based on priority for CPU intensive applications. Extensive experiments verify the validity of the scheduling model.Keywords: cloud computing, CPU intensive applications, resource optimization, strategy
Procedia PDF Downloads 2781800 Synthesis, Characterization, Computational Study, Antimicrobial Evaluation, in Vivo Toxicity Study of Manganese (II) and Copper (II) Complexes with Derivative Sulfa-drug
Authors: Afaf Bouchoucha, Karima Si Larbi, Mohamed Amine Bourouaia, Salah.Boulanouar, Safia.Djabbar
Abstract:
The synthesis, characterization and comparative biological study of manganese (II) and copper (II) complexes with an heterocyclic ligand used in pharmaceutical field (Scheme 1), were reported. Two kinds of complexes were obtained with derivative sulfonamide, [M (L)₂ (H₂O)₂].H₂O and [M (L)₂ (Cl)₂]3H₂O. These complexes have been prepared and characterized by elemental analysis, FAB mass, ESR magnetic measurements, FTIR, UV-Visible spectra and conductivity. Their stability constants have been determined by potentiometric methods in a water-ethanol (90:10 v/v) mixture at a 0.2 mol l-1 ionic strength (NaCl) and at 25.0 ± 0.1 ºC using Sirko program. DFT calculations were done using B3LYP/6-31G(d) and B3LYP/LanL2DZ. The antimicrobial activity of ligand and complexes against the species Escherichia coli, P. aeruginosa, Klebsiella pneumoniae, S. aureus, Bacillus subtilisan, Candida albicans, Candida tropicalis, Saccharomyces, Aspergillus fumigatus and Aspergillus terreus has been carried out and compared using agar-diffusion method. Also, the toxicity study was evaluated on synchesis complexes using Mice of NMRI strain.Keywords: hetterocyclic ligand, complex, stability constant, antimicrobial activity, DFT, acute and genotoxicity study
Procedia PDF Downloads 1201799 Prediction of Maximum Inter-Story Drifts of Steel Frames Using Intensity Measures
Authors: Edén Bojórquez, Victor Baca, Alfredo Reyes-Salazar, Jorge González
Abstract:
In this paper, simplified equations to predict maximum inter-story drift demands of steel framed buildings are proposed in terms of two ground motion intensity measures based on the acceleration spectral shape. For this aim, the maximum inter-story drifts of steel frames with 4, 6, 8 and 10 stories subjected to narrow-band ground motion records are estimated and compared with the spectral acceleration at first mode of vibration Sa(T1) which is commonly used in earthquake engineering and seismology, and with a new parameter related with the structural response known as INp. It is observed that INp is the parameter best related with the structural response of steel frames under narrow-band motions. Finally, equations to compute maximum inter-story drift demands of steel frames as a function of spectral acceleration and INp are proposed.Keywords: intensity measures, spectral shape, steel frames, peak demands
Procedia PDF Downloads 3921798 Evaluating the Diagnostic Accuracy of the ctDNA Methylation for Liver Cancer
Authors: Maomao Cao
Abstract:
Objective: To test the performance of ctDNA methylation for the detection of liver cancer. Methods: A total of 1233 individuals have been recruited in 2017. 15 male and 15 female samples (including 10 cases of liver cancer) were randomly selected in the present study. CfDNA was extracted by MagPure Circulating DNA Maxi Kit. The concentration of cfDNA was obtained by Qubit™ dsDNA HS Assay Kit. A pre-constructed predictive model was used to analyze methylation data and to give a predictive score for each cfDNA sample. Individuals with a predictive score greater than or equal to 80 were classified as having liver cancer. CT tests were considered the gold standard. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the diagnosis of liver cancer were calculated. Results: 9 patients were diagnosed with liver cancer according to the prediction model (with high sensitivity and threshold of 80 points), with scores of 99.2, 91.9, 96.6, 92.4, 91.3, 92.5, 96.8, 91.1, and 92.2, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of ctDNA methylation for the diagnosis of liver cancer were 0.70, 0.90, 0.78, and 0.86, respectively. Conclusions: ctDNA methylation could be an acceptable diagnostic modality for the detection of liver cancer.Keywords: liver cancer, ctDNA methylation, detection, diagnostic performance
Procedia PDF Downloads 1511797 Small Molecule Inhibitors of PD1-PDL1 Interaction
Authors: K. Żak, S. Przetocka, R. Kitel, K. Guzik, B. Musielak, S. Malicki, G. Dubin, T. A. Holak
Abstract:
Studies on tumor genesis revealed a number of factors that may potentially serve as molecular targets for immunotherapies. One of such promising targets are PD1 and PDL1 proteins. PD1 (Programmed cell death protein 1) is expressed by activated T cells and plays a critical role in modulation of the host's immune response. One of the PD1 ligands -PDL1- is expressed by macrophages, monocytes and cancer cells which exploit it to avoid immune attack. The notion of the mechanisms used by cancer cells to block the immune system response was utilized in the development of therapies blocking PD1-PDL1 interaction. Up to date, human PD1-PDL1 complex has not been crystallized and structure of the mouse-human complex does not provide a complete view of the molecular basis of PD1-PDL1 interactions. The purpose of this study is to obtain crystal structure of the human PD1-PDL1 complex which shall allow rational design of small molecule inhibitors of the interaction. In addition, the study presents results of binding small-molecules to PD1 and fragment docking towards PD1 protein which will facilitate the design and development of small–molecule inhibitors of PD1-PDL1 interaction.Keywords: PD1, PDL1, cancer, small molecule, drug discovery
Procedia PDF Downloads 3941796 Digital Platform of Crops for Smart Agriculture
Authors: Pascal François Faye, Baye Mor Sall, Bineta Dembele, Jeanne Ana Awa Faye
Abstract:
In agriculture, estimating crop yields is key to improving productivity and decision-making processes such as financial market forecasting and addressing food security issues. The main objective of this paper is to have tools to predict and improve the accuracy of crop yield forecasts using machine learning (ML) algorithms such as CART , KNN and SVM . We developed a mobile app and a web app that uses these algorithms for practical use by farmers. The tests show that our system (collection and deployment architecture, web application and mobile application) is operational and validates empirical knowledge on agro-climatic parameters in addition to proactive decision-making support. The experimental results obtained on the agricultural data, the performance of the ML algorithms are compared using cross-validation in order to identify the most effective ones following the agricultural data. The proposed applications demonstrate that the proposed approach is effective in predicting crop yields and provides timely and accurate responses to farmers for decision support.Keywords: prediction, machine learning, artificial intelligence, digital agriculture
Procedia PDF Downloads 801795 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection
Authors: Ashkan Zakaryazad, Ekrem Duman
Abstract:
A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent
Procedia PDF Downloads 4751794 Transfer Learning for Protein Structure Classification at Low Resolution
Authors: Alexander Hudson, Shaogang Gong
Abstract:
Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.Keywords: transfer learning, protein distance maps, protein structure classification, neural networks
Procedia PDF Downloads 1361793 Estimation of Coefficient of Discharge of Side Trapezoidal Labyrinth Weir Using Group Method of Data Handling Technique
Authors: M. A. Ansari, A. Hussain, A. Uddin
Abstract:
A side weir is a flow diversion structure provided in the side wall of a channel to divert water from the main channel to a branch channel. The trapezoidal labyrinth weir is a special type of weir in which crest length of the weir is increased to pass higher discharge. Experimental and numerical studies related to the coefficient of discharge of trapezoidal labyrinth weir in an open channel have been presented in the present study. Group Method of Data Handling (GMDH) with the transfer function of quadratic polynomial has been used to predict the coefficient of discharge for the side trapezoidal labyrinth weir. A new model is developed for coefficient of discharge of labyrinth weir by regression method. Generalized models for predicting the coefficient of discharge for labyrinth weir using Group Method of Data Handling (GMDH) network have also been developed. The prediction based on GMDH model is more satisfactory than those given by traditional regression equations.Keywords: discharge coefficient, group method of data handling, open channel, side labyrinth weir
Procedia PDF Downloads 1601792 Capability of Available Seismic Soil Liquefaction Potential Assessment Models Based on Shear-Wave Velocity Using Banchu Case History
Authors: Nima Pirhadi, Yong Bo Shao, Xusheng Wa, Jianguo Lu
Abstract:
Several models based on the simplified method introduced by Seed and Idriss (1971) have been developed to assess the liquefaction potential of saturated sandy soils. The procedure includes determining the cyclic resistance of the soil as the cyclic resistance ratio (CRR) and comparing it with earthquake loads as cyclic stress ratio (CSR). Of all methods to determine CRR, the methods using shear-wave velocity (Vs) are common because of their low sensitivity to the penetration resistance reduction caused by fine content (FC). To evaluate the capability of the models, based on the Vs., the new data from Bachu-Jianshi earthquake case history collected, then the prediction results of the models are compared to the measured results; consequently, the accuracy of the models are discussed via three criteria and graphs. The evaluation demonstrates reasonable accuracy of the models in the Banchu region.Keywords: seismic liquefaction, banchu-jiashi earthquake, shear-wave velocity, liquefaction potential evaluation
Procedia PDF Downloads 239