Search results for: deep soil
2616 A CORDIC Based Design Technique for Efficient Computation of DCT
Authors: Deboraj Muchahary, Amlan Deep Borah Abir J. Mondal, Alak Majumder
Abstract:
A discrete cosine transform (DCT) is described and a technique to compute it using fast Fourier transform (FFT) is developed. In this work, DCT of a finite length sequence is obtained by incorporating CORDIC methodology in radix-2 FFT algorithm. The proposed methodology is simple to comprehend and maintains a regular structure, thereby reducing computational complexity. DCTs are used extensively in the area of digital processing for the purpose of pattern recognition. So the efficient computation of DCT maintaining a transparent design flow is highly solicited.Keywords: DCT, DFT, CORDIC, FFT
Procedia PDF Downloads 4842615 Geological and Geotechnical Investigation of a Landslide Prone Slope Along Koraput- Rayagada Railway Track Odisha, India: A Case Study
Authors: S. P. Pradhan, Amulya Ratna Roul
Abstract:
A number of landslides are occurring during the rainy season along Rayagada-Koraput Railway track for past three years. The track was constructed about 20 years ago. However, the protection measures are not able to control the recurring slope failures now. It leads to a loss to Indian Railway and its passengers ultimately leading to wastage of time and money. The slopes along Rayagada-Koraput track include both rock and soil slopes. The rock types include mainly Khondalite and Charnockite whereas soil slopes are mainly composed of laterite ranging from less weathered to highly weathered laterite. The field studies were carried out in one of the critical slope. Field study was followed by the kinematic analysis to assess the type of failure. Slake Durability test, Uniaxial Compression test, specific gravity test and triaxial test were done on rock samples to calculate and assess properties such as weathering index, unconfined compressive strength, density, cohesion, and friction angle. Following all the laboratory tests, rock mass rating was calculated. Further, from Kinematic analysis and Rock Mass Ratingbasic, Slope Mass Rating was proposed for each slope. The properties obtained were used to do the slope stability simulations using finite element method based modelling. After all the results, suitable protection measures, to prevent the loss due to slope failure, were suggested using the relation between Slope Mass Rating and protection measures.Keywords: landslides, slope stability, rock mass rating, slope mass rating, numerical simulation
Procedia PDF Downloads 1872614 Production of Organic Solvent Tolerant Hydrolytic Enzymes (Amylase and Protease) by Bacteria Isolated from Soil of a Dairy Farm
Authors: Alok Kumar, Hari Ram, Lebin Thomas, Ved Pal Singh
Abstract:
Organic solvent tolerant amylases and proteases of microbial origin are in great demand for their application in transglycosylation of water-insoluble flavanoids and in peptide synthesizing reaction in organic media. Most of the amylases and proteases are unstable in presence of organic solvent. In the present work two different bacterial strains M-11 and VP-07 were isolated from the soil sample of a dairy farm in Delhi, India, for the efficient production of extracellular amylase and protease through their screening on starch agar (SA) and skimmed milk agar (SMA) plates, respectively. Both the strains (M-11 and VP-07) were identified based on morphological, biochemical and 16S rRNA gene sequencing methods. After analysis through Ez-Taxon software, the strains M-11 and VP-07 were found to have maximum pairwise similarity of 98.63% and 100% with Bacillus subtilis subsp. inaquosorum BGSC 3A28 and Bacillus anthracis ATCC 14578 and were therefore identified as Bacillus sp. UKS1 and Bacillus sp. UKS2, respectively. Time course study of enzyme activity and bacterial growth has shown that both strains exhibited typical sigmoid growth behavior and maximum production of amylase (180 U/ml) and protease (78 U/ml) by these strains (UKS1 and UKS2) was commenced during stationary phase of growth at 24 and 20 h, respectively. Thereafter, both amylase and protease were tested for their tolerance towards organic solvents and were found to be active as well stable in p-xylene (130% and 115%), chloroform (110% and 112%), isooctane (119% and 107%), benzene (121% and 104%), n-hexane (116% and 103%) and toluene (112% and 101%, respectively). Owing to such properties, these enzymes can be exploited for their potential application in industries for organic synthesis.Keywords: amylase, enzyme activity, industrial applications, organic solvent tolerant, protease
Procedia PDF Downloads 3482613 Simulations in Structural Masonry Walls with Chases Horizontal Through Models in State Deformation Plan (2D)
Authors: Raquel Zydeck, Karina Azzolin, Luis Kosteski, Alisson Milani
Abstract:
This work presents numerical models in plane deformations (2D), using the Discrete Element Method formedbybars (LDEM) andtheFiniteElementMethod (FEM), in structuralmasonrywallswith horizontal chasesof 20%, 30%, and 50% deep, located in the central part and 1/3 oftheupperpartofthewall, withcenteredandeccentricloading. Differentcombinationsofboundaryconditionsandinteractionsbetweenthemethodswerestudied.Keywords: chases in structural masonry walls, discrete element method formed by bars, finite element method, numerical models, boundary condition
Procedia PDF Downloads 1722612 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection
Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young
Abstract:
Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving
Procedia PDF Downloads 2572611 Assessment of Reservoir Quality and Heterogeneity in Middle Buntsandstein Sandstones of Southern Netherlands for Deep Geothermal Exploration
Authors: Husnain Yousaf, Rudy Swennen, Hannes Claes, Muhammad Amjad
Abstract:
In recent years, the Lower Triassic Main Buntsandstein sandstones in the southern Netherlands Basins have become a point of interest for their deep geothermal potential. To identify the most suitable reservoir for geothermal exploration, the diagenesis and factors affecting reservoir quality, such as porosity and permeability, are assessed. This is done by combining point-counted petrographic data with conventional core analysis. The depositional environments play a significant role in determining the distribution of lithofacies, cement, clays, and grain sizes. The position in the basin and proximity to the source areas determine the lateral variability of depositional environments. The stratigraphic distribution of depositional environments is linked to both local topography and climate, where high humidity leads to fluvial deposition and high aridity periods lead to aeolian deposition. The Middle Buntsandstein Sandstones in the southern part of the Netherlands shows high porosity and permeability in most sandstone intervals. There are various controls on reservoir quality in the examined sandstone samples. Grain sizes and total quartz content are the primary factors affecting reservoir quality. Conversely, carbonate and anhydrite cement, clay clasts, and intergranular clay represent a local control and cannot be applied on a regional scale. Similarly, enhanced secondary porosity due to feldspar dissolution is locally restricted and minor. The analysis of textural, mineralogical, and petrophysical data indicates that the aeolian and fluvial sandstones represent a heterogeneous reservoir system. The ephemeral fluvial deposits have an average porosity and permeability of <10% and <1mD, respectively, while the aeolian sandstones exhibit values of >18% and >100mD.Keywords: reservoir quality, diagenesis, porosity, permeability, depositional environments, Buntsandstein, Netherlands
Procedia PDF Downloads 672610 Double Row Taper Roller Bearing Wheel-end System in Rigid Rear Drive Axle in Heavy Duty SUV Passenger Vehicle
Authors: Mohd Imtiaz S, Saurabh Jain, Pothiraj K.
Abstract:
In today’s highly competitive passenger vehicle market, comfortable driving experience is one of the key parameters significantly weighed by the customer. Smooth ride and handling of the vehicle with exceptionally reliable wheel end solution is a paramount requirement in passenger Sports Utility Vehicle (SUV) vehicles subjected to challenging terrains and loads with rigid rear drive axle configuration. Traditional wheel-end bearing systems in passenger segment rigid rear drive axle utilizes the semi-floating layout, which imparts vertical bending loads and torsion to the axle shafts. The wheel-end bearing is usually a Single or Double Row Deep-Groove Ball Bearing (DRDGBB) or Double Row Angular Contact Ball Bearing (DRACBB). This solution is cost effective and simple in architecture. However, it lacks effectiveness against the heavy loads subjected to a SUV vehicle, especially the axial trust at high-speed cornering. This paper describes the solution of Double Row Taper Roller Bearing (DRTRB) wheel-end for a SUV vehicle in the rigid rear drive axle and improvement in terms of maximizing its load carrying capacity along with better reliability in terms of axial thrust in high-speed cornering. It describes the advantage of geometry of DRTRB over DRDGBB and DRACBB highlighting contact and load flow. The paper also highlights the vehicle level considerations affecting the B10 life of the bearing system for better selection of the DRTRB wheel-ends systems. This paper also describes real time vehicle level results along with theoretical improvements.Keywords: axial thrust, b10 life, deep-groove ball bearing, taper roller bearing, semi-floating layout.
Procedia PDF Downloads 782609 AI for Efficient Geothermal Exploration and Utilization
Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson
Abstract:
Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal
Procedia PDF Downloads 612608 The Prevalence of Soil Transmitted Helminths among Newly Arrived Expatriate Labors in Jeddah, Saudi Arabia
Authors: Mohammad Al-Refai, Majed Wakid
Abstract:
Introduction: Soil-transmitted diseases (STD) are caused by intestinal worms that are transmitted via various routes into the human body resulting in various clinical manifestations. The intestinal worms causing these infections are known as soil transmitted helminths (STH), including Hook worms, Ascaris lumbricoides (A. lumbricoides), Trichuris trichiura (T. trichiura), and Strongyloides sterocoralis (S. sterocoralis). Objectives: The aim of this study was to investigate the prevalence of STH among newly arrived expatriate labors in Jeddah city, Saudi Arabia, using three different techniques (direct smears, sedimentation concentration, and real-time PCR). Methods: A total of 188 stool specimens were collected and investigated at the parasitology laboratory in the Special Infectious Agents Unit at King Fahd Medical Research Center, King Abdulaziz University in Jeddah, Saudi Arabia. Microscopic examination of wet mount preparations using normal saline and Lugols Iodine was carried out, followed by the formal ether sedimentation method. In addition, real-time PCR was used as a molecular tool to detect several STH and hookworm speciation. Results: Out of 188 stool specimens analyzed, in addition to STH parasite, several other types were detected. 9 samples (4.79%) were positive for Entamoeba coli, 7 samples (3.72%) for T. trichiura, 6 samples (3.19%) for Necator americanus, 4 samples (2.13%) for S. sterocoralis, 4 samples (2.13%) for A. lumbricoides, 4 samples (2.13%) for E. histolytica, 3 samples (1.60%) for Blastocystis hominis, 2 samples (1.06%) for Ancylostoma duodenale, 2 samples (1.06%) for Giardia lamblia, 1 sample (0.53%) for Iodamoeba buetschlii, 1 sample (0.53%) for Hymenolepis nana, 1 sample (0.53%) for Endolimax nana, and 1 sample (0.53%) for Heterophyes heterophyes. Out of the 35 infected cases, 26 revealed single infection, 8 with double infections, and only one triple infection of different STH species and other intestinal parasites. Higher rates of STH infections were detected among housemaids (11 cases) followed by drivers (7 cases) when compared to other occupations. According to educational level, illiterate participants represent the majority of infected workers (12 cases). The majority of workers' positive cases were from the Philippines. In comparison between laboratory techniques, out of the 188 samples screened for STH, real-time PCR was able to detect the DNA in (19/188) samples followed by Ritchie sedimentation technique (18/188), and direct wet smear (7/188). Conclusion: STH infections are a major public health issue to healthcare systems around the world. Communities must be educated on hygiene practices and the severity of such parasites to human health. As far as drivers and housemaids come to close contact with families, including children and elderlies. This may put family members at risk of developing serious side effects related to STH, especially as the majority of workers were illiterate, lacking the basic hygiene knowledge and practices. We recommend the official authority in Jeddah and around the kingdom of Saudi Arabia to revise the standard screening tests for newly arrived workers and enforce regular follow-up inspections to minimize the chances of the spread of STH from expatriate workers to the public.Keywords: expatriate labors, Jeddah, prevalence, soil transmitted helminths
Procedia PDF Downloads 1562607 Effect of Urea Deep Placement Technology Adoption on the Production Frontier: Evidence from Irrigation Rice Farmers in the Northern Region of Ghana
Authors: Shaibu Baanni Azumah, William Adzawla
Abstract:
Rice is an important staple crop, with current demand higher than the domestic supply in Ghana. This has led to a high and unfavourable import bill. Therefore, recent policies and interventions in the agricultural sub-sector aim at promoting various improved agricultural technologies in order to improve domestic production and reduce the importation of rice. In this study, we examined the effect of the adoption of Urea Deep Placement (UDP) technology by rice farmers on the position of the production frontier. This involved 200 farmers selected through a multi stage sampling technique in the Northern region of Ghana. A Cobb-Douglas stochastic frontier model was fitted. The result showed that the adoption of UDP technology shifts the output frontier outward and also move the farmers closer to the frontier. Farmers were also operating under diminishing returns to scale which calls for redress. Other factors that significantly influenced rice production were farm size, labour, use of certified seeds and NPK fertilizer. Although there was an opportunity for improvement, the farmers were highly efficient (92%), compared to previous studies. Farmers’ efficiency was improved through increased education, household size, experience, access to credit, and lack of extension service provision by MoFA. The study recommends the revision of Ghana’s agricultural policy to include the UDP technology. Agricultural Extension officers of the Ministry of Food and Agriculture (MoFA) should be trained on the UDP technology to support IFDC’s drive to improve adoption by rice farmers. Rice farmers are also encouraged to expand their farm lands, improve plant population, and also increase the usage of fertilizer to improve yields. Mechanisms through which credit can be made easily accessible and effectively utilised should be identified and promoted.Keywords: efficiency, rice farmers, stochastic frontier, UDP technology
Procedia PDF Downloads 4162606 Inhalable Lipid-Coated-Chitosan Nano-Embedded Microdroplets of an Antifungal Drug for Deep Lung Delivery
Authors: Ranjot Kaur, Om P. Katare, Anupama Sharma, Sarah R. Dennison, Kamalinder K. Singh, Bhupinder Singh
Abstract:
Respiratory microbial infections being among the top leading cause of death worldwide are difficult to treat as the microbes reside deep inside the airways, where only a small fraction of drug can access after traditional oral or parenteral routes. As a result, high doses of drugs are required to maintain drug levels above minimum inhibitory concentrations (MIC) at the infection site, unfortunately leading to severe systemic side-effects. Therefore, delivering antimicrobials directly to the respiratory tract provides an attractive way out in such situations. In this context, current study embarks on the systematic development of lung lia pid-modified chitosan nanoparticles for inhalation of voriconazole. Following the principles of quality by design, the chitosan nanoparticles were prepared by ionic gelation method and further coated with major lung lipid by precipitation method. The factor screening studies were performed by fractional factorial design, followed by optimization of the nanoparticles by Box-Behnken Design. The optimized formulation has a particle size range of 170-180nm, PDI 0.3-0.4, zeta potential 14-17, entrapment efficiency 45-50% and drug loading of 3-5%. The presence of a lipid coating was confirmed by FESEM, FTIR, and X-RD. Furthermore, the nanoparticles were found to be safe upto 40µg/ml on A549 and Calu-3 cell lines. The quantitative and qualitative uptake studies also revealed the uptake of nanoparticles in lung epithelial cells. Moreover, the data from Spraytec and next-generation impactor studies confirmed the deposition of nanoparticles in lower airways. Also, the interaction of nanoparticles with DPPC monolayers signifies its biocompatibility with lungs. Overall, the study describes the methodology and potential of lipid-coated chitosan nanoparticles in futuristic inhalation nanomedicine for the management of pulmonary aspergillosis.Keywords: dipalmitoylphosphatidylcholine, nebulization, DPPC monolayers, quality-by-design
Procedia PDF Downloads 1492605 Effect of Ecologic Fertilizers on Productivity and Yield Quality of Common and Spelt Wheat
Authors: Danutė Jablonskytė-Raščė, Audronė MankevičIenė, Laura Masilionytė
Abstract:
During the period 2009–2015, in Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry, the effect of ecologic fertilizers Ekoplant, bio-activators Biokal 01 and Terra Sorb Foliar and their combinations on the formation of the productivity elements, grain yield and quality of winter wheat, spelt (Triticum spelta L.), and common wheat (Triticum aestivum L.) was analysed in ecological agro-system. The soil under FAO classification – Endocalcari-Endo-hypogleyic-Cambisol. In a clay loam soil, ecological fertilizer produced from sunflower hull ash and this fertilizer in combination with plant extracts and bio-humus exerted an influence on the grain yield of spelt and common wheat and their mixture (increased the grain yield by 10.0%, compared with the unfertilized crops). Spelt grain yield was by on average 16.9% lower than that of common wheat and by 11.7% lower than that of the mixture, but the role of spelt in organic production systems is important because with no mineral fertilization it produced grains with a higher (by 4%) gluten content and exhibited a greater ability to suppress weeds (by on average 61.9% lower weed weight) compared with the grain yield and weed suppressive ability of common wheat and mixture. Spelt cultivation in a mixture with common wheat significantly improved quality indicators of the mixture (its grain contained by 2.0% higher protein content and by 4.0% higher gluten content than common wheat grain), reduced disease incidence (by 2-8%), and weed infestation level (by 34-81%).Keywords: common and spelt-wheat, ecological fertilizers, bio-activators, productivity elements, yield, quality
Procedia PDF Downloads 3022604 Allelopathic Potential of Canola and Wheat to Control Weeds in Soybean (Glycine max)
Authors: Alireza Dadkhah
Abstract:
A filed experiment was done to develop management practices to reduce the use of synthetic herbicides, in the arid and semi-arid agricultural ecosystems of north east of Iran. Five treatments including I: chopped residues of canola (Brasica vulgaris), II: chopped residues of wheat (Triticum aestivum) both were separately incorporated to 25 cm depth soil, 20 days before sowing, III: shoot aqueous extract of canola, IV: shoot aqueous extract of wheat which were separately sprayed at post emergence stage and V: without any residues and spraying as control. The weed control treatments reduced the total weed cover, weed density and biomass of weed. The reduction in weed density with canola and wheat residues incorporation were up to 67.5 and 62.2% respectively, at 40 days after sowing and 65.3% and 75.6%, respectively, at 90 days after sowing, compared to control. However, post emergence spraying of shoot aqueous extract of canola and wheat, suppressed weed density up to 41.8 and 36.6% at 40 days after sowing and 54.2% and 52.7% at 90 days after sowing respectively, compared to control. Weed control treatments reduced weed cover (%), weed biomass and weeds stem length. Incorporation of canola and wheat residues in soil reduced weed cover (%) by 62.5% and 63% respectively, while spraying of shoot water extract of canola and wheat suppressed weed cover (%) by 39.6% and 40.4% respectively at 90 days after sowing. Application of canola and wheat residues increased soybean yield by 45.4% and 69.5% respectively, compared to control while post emergence application of shoot aqueous extract of canola and wheat increased soybean yield by 22% and 29.8% respectively.Keywords: allelopathy, Bio-herbicide, Brassica oleracea, plant residues, Triticum aestivum
Procedia PDF Downloads 6882603 Comparison Between the Radiation Resistance of n/p and p/n InP Solar Cell
Authors: Mazouz Halima, Belghachi Abdrahmane
Abstract:
Effects of electron irradiation-induced deep level defects have been studied on both n/p and p/n indium phosphide solar cells with very thin emitters. The simulation results show that n/p structure offers a somewhat better short circuit current but the p/n structure offers improved circuit voltage, not only before electron irradiation, but also after 1MeV electron irradiation with 5.1015 fluence. The simulation also shows that n/p solar cell structure is more resistant than that of p/n structure.Keywords: InP solar cell, p/n and n/p structure, electron irradiation, output parameters
Procedia PDF Downloads 5542602 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model
Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis
Abstract:
Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry
Procedia PDF Downloads 2272601 Hydrocarbons and Diamondiferous Structures Formation in Different Depths of the Earth Crust
Authors: A. V. Harutyunyan
Abstract:
The investigation results of rocks at high pressures and temperatures have revealed the intervals of changes of seismic waves and density, as well as some processes taking place in rocks. In the serpentinized rocks, as a consequence of dehydration, abrupt changes in seismic waves and density have been recorded. Hydrogen-bearing components are released which combine with carbon-bearing components. As a result, hydrocarbons formed. The investigated samples are smelted. Then, geofluids and hydrocarbons migrate into the upper horizons of the Earth crust by the deep faults. Then their differentiation and accumulation in the jointed rocks of the faults and in the layers with collecting properties takes place. Under the majority of the hydrocarbon deposits, at a certain depth, magmatic centers and deep faults are recorded. The investigation results of the serpentinized rocks with numerous geological-geophysical factual data allow understanding that hydrocarbons are mainly formed in both the offshore part of the ocean and at different depths of the continental crust. Experiments have also shown that the dehydration of the serpentinized rocks is accompanied by an explosion with the instantaneous increase in pressure and temperature and smelting the studied rocks. According to numerous publications, hydrocarbons and diamonds are formed in the upper part of the mantle, at the depths of 200-400km, and as a consequence of geodynamic processes, they rise to the upper horizons of the Earth crust through narrow channels. However, the genesis of metamorphogenic diamonds and the diamonds found in the lava streams formed within the Earth crust, remains unclear. As at dehydration, super high pressures and temperatures arise. It is assumed that diamond crystals are formed from carbon containing components present in the dehydration zone. It can be assumed that besides the explosion at dehydration, secondary explosions of the released hydrogen take place. The process is naturally accompanied by seismic phenomena, causing earthquakes of different magnitudes on the surface. As for the diamondiferous kimberlites, it is well-known that the majority of them are located within the ancient shield and platforms not obligatorily connected with the deep faults. The kimberlites are formed at the shallow location of dehydrated masses in the Earth crust. Kimberlites are younger in respect of containing ancient rocks containing serpentinized bazites and ultrbazites of relicts of the paleooceanic crust. Sometimes, diamonds containing water and hydrocarbons showing their simultaneous genesis are found. So, the geofluids, hydrocarbons and diamonds, according to the new concept put forward, are formed simultaneously from serpentinized rocks as a consequence of their dehydration at different depths of the Earth crust. Based on the concept proposed by us, we suggest discussing the following: -Genesis of gigantic hydrocarbon deposits located in the offshore area of oceans (North American, Mexican Gulf, Cuanza-Kamerunian, East Brazilian etc.) as well as in the continental parts of different mainlands (Kanadian-Arctic Caspian, East Siberian etc.) - Genesis of metamorphogenic diamonds and diamonds in the lava streams (Guinea-Liberian, Kokchetav, Kanadian, Kamchatka-Tolbachinian, etc.).Keywords: dehydration, diamonds, hydrocarbons, serpentinites
Procedia PDF Downloads 3442600 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 1402599 The Response of the Accumulated Biomass and the Efficiency of Water Use in Five Varieties of Durum Wheat Lines under Water Stress
Authors: Fellah Sihem
Abstract:
The optimal use of soil moisture by culture, is related to the leaf area index, which stood in the cycle and its modulation according to the prevailing stress intensity. For a given stock of water in the soil, cultivar adapted and saving water is one that is no luxury consumption during the preanthesis. It modulates the leaf area index to regulate sweating in the degree of its water supply. In plants water saving, avoidance of dehydration is related to the reduction of water loss by cuticular and stomatal pathways. Muchow and Sinclair reported that the test of relative water content (TRE) is considered the best indicator of leaf water status. The search for indicators of the ability of the plant to make good use of the water, under water stress is a prerequisite for progress in improving performance under water stress. This experiment aims to characterize a set of durum wheat varieties, tested jars and vegetation under different levels of water stress to the surface of the leaf, relative water content, cell integrity, the accumulated biomass and efficiency of water use. The experiment was conducted during the 2005/2006 academic year, at the Agricultural Research Station of the Field Crop Institute of Setif, under semi-controlled conditions. Five genotypes of durum wheat (Triticum durum Desf) were evaluated for their ability to tolerate moderate and severe water stress. The results showed that geno types respond differently to water stress. Dry matter accumulation and growth rate varied among geno types and were significantly reduced. At severe water stress biomass accumulated by Boussalam was the least affected.Keywords: water stress, triticum durum, biomass, cell membrane integrity, relative water content
Procedia PDF Downloads 4722598 Denitrification Diesel Hydrocarbons Using Triethanolamine-Glycerol Deep Eutectic Solvent
Authors: Hocine Sifaoui
Abstract:
The manufacture and marketing of the gasoline and diesel without aromatic compounds, particularly nitrogen heteroaromatics and sulfur heteroaromatics, is the main objective of researchers and the petrochemical industry to reply to the requirements of the environmental protection. This work is part of this line of research and for this a triethanolamine/glycerol (TEoA:Gly) deep eutectic solvent (DES), was used to remove two model nitrogen compounds, pyridine and quinoline from n-decane. Experimentally two liquid-liquid equilibrium systems {n-decane + pyridine/quinoline + DES} were measured at 298.15 K and 1.01 bar using the equilibrium cell method. This study aims to evaluate the potential of this DES as sustainable alternative to organic solvents for the denitrogenation of petroleum feedstocks by liquid-liquid extraction. Experimentally, the DES were prepared by the heating method. Accurately weighed triethanolamine as hydrogen bond acceptor (HBA) and glycerol as hydrogen bond donor (HBD), were placed in a round-bottomed flask. An Ohaus Adventurer balance with a precision of ±0.0001 g was used for weighing the HBA and HBD. The mixtures were then stirred and heated at 343.15 K under atmospheric pressure using a rotary evaporator. The preparation was completed when a clear and homogeneous liquid was obtained. To evaluate the equilibrium behaviour of pseudo-ternary systems {n-decane + pyridine or quinoline + DES}, mixtures were prepared with the nitrogenous compound (pyridine or quinoline) at varying mass percentages in the n-decane, along with a fixed (2:1) ratio between the n-decane and DES phases. Defined amounts of these three components were precisely weighed to achieve mixtures within the biphasic region before vigorous stirring at 400 rpm using an Avantor VWR KS 4000 agitator shaker for 4 hours at 298.15 K, followed by overnight settling to attain thermodynamic equilibrium evidenced by phase separation. Aliquot from the upper phase rich in n-decane and the lower phase rich in DES were carefully weighed. The mass of each sample was precisely recorded for quantification by gas chromatography. The DES content was calculated by mass balance after analysing the composition of the other species such as n-decane, pyridine or quinoline. All samples were diluted with pure ethanol before their analysis by GC. Distribution ratios and selectivities toward pyridine and quinoline compounds were also measured at the same phase molar ratios. The consistency and reliability of the experimental data, were verified and validated by the Othmer-Tobias and Batchman correlations. The experimental results show that the highest value of the partition coefficient =7.08 was obtained with pyridine extraction and the highest selectivity S=801.4 was obtained with quinoline extraction. The experimental liquid-liquid equilibrium data of these ternary systems were correlated by using the Non Random Two-Liquids (NRTL) and COnductor-like Screening MOdel for Real Solvents (COSMO-RS) models. A good agreement with the experimental data was observed with NRTL and COSMO-RS models for the two systems. The performance of this DES was compared to those of ionic liquids and organic solvents reported in the literature.Keywords: piridyne, quinoline, n-decane, deep eutectic solvent
Procedia PDF Downloads 112597 Identifying the Faces of colonialism: An Analysis of Gender Inequalities in Economic Participation in Pakistan through Postcolonial Feminist Lens
Authors: Umbreen Salim, Anila Noor
Abstract:
This paper analyses the influences and faces of colonialism in women’s participation in economic activity in postcolonial Pakistan, through postcolonial feminist economic lens. It is an attempt to probe the shifts in gender inequalities that have existed in three stages; pre-colonial, colonial, and postcolonial times in the Indo-Pak subcontinent. It delves into an inquiry of pre-colonial as it is imperative to understand the situation and context before colonisation in order to assess the deviations associated with its onset. Hence, in order to trace gender inequalities this paper analyses from Mughal Era (1526-1757) that existed before British colonisation, then, the gender inequalities that existed during British colonisation (1857- 1947) and the associated dynamics and changes in women’s vulnerabilities to participate in the economy are examined. Followed by, the postcolonial (1947 onwards) scenario of discriminations and oppressions faced by women. As part of the research methodology, primary and secondary data analysis was done. Analysis of secondary data including literary works and photographs was carried out, followed by primary data collection using ethnographic approaches and participatory tools to understand the presence of coloniality and gender inequalities embedded in the social structure through participant’s real-life stories. The data is analysed using feminist postcolonial analysis. Intersectionality has been a key tool of analysis as the paper delved into the gender inequalities through the class and caste lens briefly touching at religion. It is imperative to mention the significance of the study and very importantly the practical challenges as historical analysis of 18th and 19th century is involved. Most of the available work on history is produced by a) men and b) foreigners and mostly white authors. Since the historical analysis is mostly by men the gender analysis presented misses on many aspects of women’s issues and since the authors have been mostly white European gives it as Mohanty says, ‘under western eyes’ perspective. Whereas the edge of this paper is the authors’ deep attachment, belongingness as lived reality and work with women in Pakistan as postcolonial subjects, a better position to relate with the social reality and understand the phenomenon. The study brought some key results as gender inequalities existed before colonisation when women were hidden wheel of stable economy which was completely invisible. During the British colonisation, the vulnerabilities of women only increased and as compared to men their inferiority status further strengthened. Today, the postcolonial woman lives in deep-rooted effects of coloniality where she is divided in class and position within the class, and she has to face gender inequalities within household and in the market for economic participation. Gender inequalities have existed in pre-colonial, during colonisation and postcolonial times in Pakistan with varying dynamics, degrees and intensities for women whereby social class, caste and religion have been key factors defining the extent of discrimination and oppression. Colonialism may have physically ended but the coloniality remains and has its deep, broad and wide effects in increasing gender inequalities in women’s participation in the economy in Pakistan.Keywords: colonialism, economic participation, gender inequalities, women
Procedia PDF Downloads 2132596 Potential Growth of Tomato Plants in Induced Saline Soil with Rhizobacteria (PGPR)
Authors: Arfan Ali, Idrees Ahmad Nasir
Abstract:
The critical evaluation of tolerance in tomato plants against the induced saline soil were assessed by transcript analysis of genes coding for products potentially involved in stress tolerance. A reverse transcriptase PCR experiment was performed with Hsp90-1, MT2, and GR1like protein genes using RNA isolated from different tissues of tomato plants. Four strains of Bacillus magisterium were inoculated with 100 Mm & 200 Mm concentrations of salt. Eleven treatments each ten replica pots were installed in green house experiment and the parameters taken into account were morphological (length, weight, number of leaves, leaf surface area), chemical (anthocyanin, chlorophyll-a, chlorophyll-b, carotenoids) and biological (gene expression). Results bare a response i.e. highest response of MT2 like gene was at 24 hpi and the highest levels of GR1 like protein transcript accumulation were detected at 36 hpi. The chemical and morphological parameters at diverse salt concentrations bequeath superlative response amongst strains which candidly flank on Zm7 and Zm4. Therefore, Bacillus magisterium Zm7 strains and somehow Zm4 strain can be used in saline condition to make plants tolerant. The overall performance of strains Zm7, Zm6, and Zm4 was found better for all studied traits under salt stress conditions. Significant correlations among traits root length, shoot length, number of leaves, leaf surface area, carotenoids, anthocyanin, chlorophyll-a and chlorophyll-b were found and suggested that the salt tolerance in tomato may be improved through the use of PGPR strains.Keywords: Bacillus magisterium, gene expression glutathione reductase, metallothionein, PGPR, Rhizobacteria, saline
Procedia PDF Downloads 4422595 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models
Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan
Abstract:
Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network
Procedia PDF Downloads 352594 A Comprehensive Study of Spread Models of Wildland Fires
Authors: Manavjit Singh Dhindsa, Ursula Das, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran
Abstract:
These days, wildland fires, also known as forest fires, are more prevalent than ever. Wildfires have major repercussions that affect ecosystems, communities, and the environment in several ways. Wildfires lead to habitat destruction and biodiversity loss, affecting ecosystems and causing soil erosion. They also contribute to poor air quality by releasing smoke and pollutants that pose health risks, especially for individuals with respiratory conditions. Wildfires can damage infrastructure, disrupt communities, and cause economic losses. The economic impact of firefighting efforts, combined with their direct effects on forestry and agriculture, causes significant financial difficulties for the areas impacted. This research explores different forest fire spread models and presents a comprehensive review of various techniques and methodologies used in the field. A forest fire spread model is a computational or mathematical representation that is used to simulate and predict the behavior of a forest fire. By applying scientific concepts and data from empirical studies, these models attempt to capture the intricate dynamics of how a fire spreads, taking into consideration a variety of factors like weather patterns, topography, fuel types, and environmental conditions. These models assist authorities in understanding and forecasting the potential trajectory and intensity of a wildfire. Emphasizing the need for a comprehensive understanding of wildfire dynamics, this research explores the approaches, assumptions, and findings derived from various models. By using a comparison approach, a critical analysis is provided by identifying patterns, strengths, and weaknesses among these models. The purpose of the survey is to further wildfire research and management techniques. Decision-makers, researchers, and practitioners can benefit from the useful insights that are provided by synthesizing established information. Fire spread models provide insights into potential fire behavior, facilitating authorities to make informed decisions about evacuation activities, allocating resources for fire-fighting efforts, and planning for preventive actions. Wildfire spread models are also useful in post-wildfire mitigation strategies as they help in assessing the fire's severity, determining high-risk regions for post-fire dangers, and forecasting soil erosion trends. The analysis highlights the importance of customized modeling approaches for various circumstances and promotes our understanding of the way forest fires spread. Some of the known models in this field are Rothermel’s wildland fuel model, FARSITE, WRF-SFIRE, FIRETEC, FlamMap, FSPro, cellular automata model, and others. The key characteristics that these models consider include weather (includes factors such as wind speed and direction), topography (includes factors like landscape elevation), and fuel availability (includes factors like types of vegetation) among other factors. The models discussed are physics-based, data-driven, or hybrid models, also utilizing ML techniques like attention-based neural networks to enhance the performance of the model. In order to lessen the destructive effects of forest fires, this initiative aims to promote the development of more precise prediction tools and effective management techniques. The survey expands its scope to address the practical needs of numerous stakeholders. Access to enhanced early warning systems enables decision-makers to take prompt action. Emergency responders benefit from improved resource allocation strategies, strengthening the efficacy of firefighting efforts.Keywords: artificial intelligence, deep learning, forest fire management, fire risk assessment, fire simulation, machine learning, remote sensing, wildfire modeling
Procedia PDF Downloads 862593 The Role of Cornulaca aucheri in Stabilization of Degraded Sandy Soil in Kuwait
Authors: Modi M. Ahmed, Noor Al-Dousari, Ali M. Al-Dousari
Abstract:
Cornulaca aucheri is an annual herb consider as disturbance indicator currently visible and widely distributed in disturbed lands in Liyah area. Such area is suffered from severe land degradation due to multiple interacting factors such as, overgrazing, gravel and sand quarrying, military activities and natural process. The restoration program is applied after refilled quarries sites and levelled the surface irregularities in order to rehabilitate the natural vegetation and wildlife to its original shape. During the past 10 years of rehabilitation, noticeable greenery healthy cover of Cornulaca sp. are shown specially around artificial lake and playas. The existence of such species in high density it means that restoration program has succeeded and transit from bare ground state to Cornulaca and annual forb state. This state is lower state of Range State Transition Succession model, but it is better than bare soil. Cornulaca spp is native desert plant grows in arid conditions on sandy, stony ground, near oasis, on sand dunes and in sandy depressions. The sheep and goats are repulsive of it. Despite its spiny leaves, it provides good grazing for camels and is said to increase the milk supply produced by lactating females. It is about 80 cm tall and has stems that branched from the base with new faster greenery growth in the summer. It shows good environmental potential to be managed as natural types used for the restoration of degraded lands in desert areas.Keywords: land degradation, range state transition succession model, rehabilitation, restoration program
Procedia PDF Downloads 3782592 Modeling of a Pilot Installation for the Recovery of Residual Sludge from Olive Oil Extraction
Authors: Riad Benelmir, Muhammad Shoaib Ahmed Khan
Abstract:
The socio-economic importance of the olive oil production is significant in the Mediterranean region, both in terms of wealth and tradition. However, the extraction of olive oil generates huge quantities of wastes that may have a great impact on land and water environment because of their high phytotoxicity. Especially olive mill wastewater (OMWW) is one of the major environmental pollutants in olive oil industry. This work projects to design a smart and sustainable integrated thermochemical catalytic processes of residues from olive mills by hydrothermal carbonization (HTC) of olive mill wastewater (OMWW) and fast pyrolysis of olive mill wastewater sludge (OMWS). The byproducts resulting from OMWW-HTC treatment are a solid phase enriched in carbon, called biochar and a liquid phase (residual water with less dissolved organic and phenolic compounds). HTC biochar can be tested as a fuel in combustion systems and will also be utilized in high-value applications, such as soil bio-fertilizer and as catalyst or/and catalyst support. The HTC residual water is characterized, treated and used in soil irrigation since the organic and the toxic compounds will be reduced under the permitted limits. This project’s concept includes also the conversion of OMWS to a green diesel through a catalytic pyrolysis process. The green diesel is then used as biofuel in an internal combustion engine (IC-Engine) for automotive application to be used for clean transportation. In this work, a theoretical study is considered for the use of heat from the pyrolysis non-condensable gases in a sorption-refrigeration machine for pyrolysis gases cooling and condensation of bio-oil vapors.Keywords: biomass, olive oil extraction, adsorption cooling, pyrolisis
Procedia PDF Downloads 962591 Biodegradation Ability of Polycyclic Aromatic Hydrocarbon (PAHs) Degrading Bacillus cereus Strain JMG-01 Isolated from PAHs Contaminated Soil
Authors: Momita Das, Sofia Banu, Jibon Kotoky
Abstract:
Environmental contamination of natural resources with persistent organic pollutants is of great world-wide apprehension. Polycyclic aromatic hydrocarbons (PAHs) are among the organic pollutants, released due to various anthropogenic activities. Due to their toxic, carcinogenic and mutagenic properties, PAHs are of environmental and human concern. Presently, bioremediation has evolved as the most promising biotechnology for cleanup of such contaminants because of its economical and less cost effectiveness. In the present study, distribution of 16 USEPA priority PAHs was determined in the soil samples collected from fifteen different sites of Guwahati City, the Gateway of the North East Region of India. The total concentrations of 16 PAHs (Σ16 PAHs) ranged from 42.7-742.3 µg/g. Higher concentration of total PAHs was found more in the Industrial areas compared to all the sites (742.3 µg/g and 628 µg/g). It is noted that among all the PAHs, Naphthalene, Acenaphthylene, Anthracene, Fluoranthene, Chrysene and Benzo(a)Pyrene were the most available and contain the higher concentration of all the PAHs. Since microbial activity has been deemed the most influential and significant cause of PAH removal; further, twenty-three bacteria were isolated from the most contaminated sites using the enrichment process. These strains were acclimatized to utilize naphthalene and anthracene, each at 100 µg/g concentration as sole carbon source. Among them, one Gram-positive strain (JMG-01) was selected, and biodegradation ability and initial catabolic genes of PAHs degradation were investigated. Based on 16S rDNA analysis, the isolate was identified as Bacillus cereus strain JMG-01. Topographic images obtained using Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) at scheduled time intervals of 7, 14 and 21 days, determined the variation in cell morphology during the period of degradation. AFM and SEM micrograph of biomass showed high filamentous growth leading to aggregation of cells in the form of biofilm with reference to the incubation period. The percentage degradation analysis using gas chromatography and mass analyses (GC-MS) suggested that more than 95% of the PAHs degraded when the concentration was at 500 µg/g. Naphthalene, naphthalene-2-methy, benzaldehyde-4-propyl, 1, 2, benzene di-carboxylic acid and benzene acetic acid were the major metabolites produced after degradation. Moreover, PCR experiments with specific primers for catabolic genes, ndo B and Cat A suggested that JMG-01 possess genes for PAHs degradation. Thus, the study concludes that Bacillus cereus strain JMG-01 has efficient biodegrading ability and can trigger the clean-up of PAHs contaminated soil.Keywords: AFM, Bacillus cereus strain JMG-01, degradation, polycyclic aromatic hydrocarbon, SEM
Procedia PDF Downloads 2812590 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage
Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng
Abstract:
Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning
Procedia PDF Downloads 772589 Searching for the ‘Why’ of Gendered News: Journalism Practices and Societal Contexts
Authors: R. Simões, M. Silveirinha
Abstract:
Driven by the need to understand the results of previous research that clearly shows deep unbalances of the media discourses about women and men in spite of the growing numbers of female journalists, our paper aims to progress from the 'what' to the 'why' of these unbalanced representations. Furthermore, it does so at a time when journalism is undergoing a dramatic change in terms of professional practices and in how media organizations are organized and run, affecting women in particular. While some feminist research points to the fact that female and male journalists evaluate the role of the news and production methods in similar ways feminist theorizing also suggests that thought and knowledge are highly influenced by social identity, which is also inherently affected by the experiences of gender. This is particularly important at a time of deep societal and professional changes. While there are persuasive discussions of gender identities at work in newsrooms in various countries studies on the issue will benefit from cases that focus on the particularities of local contexts. In our paper, we present one such case: the case of Portugal, a country hit hard by austerity measures that have affected all cultural industries including journalism organizations, already feeling the broader impacts of the larger societal changes of the media landscape. Can we gender these changes? How are they felt and understood by female and male journalists? And how are these discourses framed by androcentric, feminist and post-feminist sensibilities? Foregrounding questions of gender, our paper seeks to explore some of the interactions of societal and professional forces, identifying their gendered character and outlining how they shape journalism work in general and the production of unbalanced gender representations in particular. We do so grounded in feminist studies of journalism as well as feminist organizational and work studies, looking at a corpus of 20 in-depth interviews of female and male Portuguese journalists. The research findings illustrate how gender in journalism practices interacts with broader experiences of the cultural and economic contexts and show the ambivalences of these interactions in news organizations.Keywords: gender, journalism, newsroom culture, Portuguese journalists
Procedia PDF Downloads 4002588 Investigation of Natural Resource Sufficiency for Development of a Sustainable Agriculture Strategy Based on Permaculture in Malta
Authors: Byron Baron
Abstract:
Typical of the Mediterranean region, the Maltese islands exhibit calcareous soils containing low organic carbon content and high salinity, in addition to being relatively shallow. This has lead to the common practice of applying copious amounts of artificial fertilisers as well as other chemical inputs, together with the use of ground water having high salinity. Such intensive agricultural activities, over a prolonged time period, on such land has lead further to the loss of any soil fertility, together with direct negative impacts on the quality of fresh water reserves and the local ecosystem. The aim of this study was to investigate whether the natural resources on the island would be sufficient to apply ecological intensification i.e. the use of natural processes to replace anthropological inputs without any significant loss in food production. This was implementing through a sustainable agricultural system based on permaculture practices. Ecological intensification following permaculture principles was implemented for two years in order to capture the seasonal changes in duplicate. The areas dedicated to wild plants were only trimmed back to avoid excessive seeding but never mowing. A number of local staple crops were grown throughout this period, also in duplicate. Concomitantly, a number of practices were implemented following permaculture principles such as reducing land tilling, applying only natural fertiliser, mulching, monitoring of soil parameters using sensors, no use of herbicides or pesticides, and precision irrigation linked to a desalination system. Numerous environmental parameters were measured at regular intervals so as to quantify any improvements in ecological conditions. Crop output was also measured as kilos of produce per area. The results clearly show that over the two year period, the variety of wild plant species increased, the number of visiting pollinators increased, there were no pest infestations (although an increase in the number of pests was observed), and a slight improvement in overall soil health was also observed. This was obviously limited by the short duration of the testing implementation. Dedicating slightly less than 15% of total land area to wild plants in the form of borders around plots of crops assisted pollination and provided a foraging area for gleaning bats (measured as an increased number of feeding buzzes) whilst not giving rise to any pest infestations and no apparent yield losses or ill effects to the crops. Observed increases in crop yields were not significant. The study concluded that with the right support for the initial establishment of a healthy ecosystem and controlled intervention, the available natural resources on the island can substantially improve the condition of the local agricultural land area, resulting is a more prolonged economical output with greater ecological sustainability. That being said, more comprehensive and long-term monitoring is required in order to fully validate these results and design a sustainable agriculture system that truly achieves the best outcome for the Maltese context.Keywords: ecological intensification, soil health, sustainable agriculture, permaculture
Procedia PDF Downloads 652587 Influence of Dryer Autumn Conditions on Weed Control Based on Soil Active Herbicides
Authors: Juergen Junk, Franz Ronellenfitsch, Michael Eickermann
Abstract:
An appropriate weed management in autumn is a prerequisite for an economically successful harvest in the following year. In Luxembourg oilseed rape, wheat and barley is sown from August until October, accompanied by a chemical weed control with soil active herbicides, depending on the state of the weeds and the meteorological conditions. Based on regular ground and surface water-analysis, high levels of contamination by transformation products of respective herbicide compounds have been found in Luxembourg. The most ideal conditions for incorporating soil active herbicides are single rain events. Weed control may be reduced if application is made when weeds are under drought stress or if repeated light rain events followed by dry spells, because the herbicides tend to bind tightly to the soil particles. These effects have been frequently reported for Luxembourg throughout the last years. In the framework of a multisite long-term field experiment (EFFO) weed monitoring, plants observations and corresponding meteorological measurements were conducted. Long-term time series (1947-2016) from the SYNOP station Findel-Airport (WMO ID = 06590) showed a decrease in the number of days with precipitation. As the total precipitation amount has not significantly changed, this indicates a trend towards rain events with higher intensity. All analyses are based on decades (10-day periods) for September and October of each individual year. To assess the future meteorological conditions for Luxembourg, two different approaches were applied. First, multi-model ensembles from the CORDEX experiments (spatial resolution ~12.5 km; transient projections until 2100) were analysed for two different Representative Concentration Pathways (RCP8.5 and RCP4.5), covering the time span from 2005 until 2100. The multi-model ensemble approach allows for the quantification of the uncertainties and also to assess the differences between the two emission scenarios. Second, to assess smaller scale differences within the country a high resolution model projection using the COSMO-LM model was used (spatial resolution 1.3 km). To account for the higher computational demands, caused by the increased spatial resolution, only 10-year time slices have been simulated (reference period 1991-2000; near future 2041-2050 and far future 2091-2100). Statistically significant trends towards higher air temperatures, +1.6 K for September (+5.3 K far future) and +1.3 K for October (+4.3 K), were predicted for the near future compared to the reference period. Precipitation simultaneously decreased by 9.4 mm (September) and 5.0 mm (October) for the near future and -49 mm (September) and -10 mm (October) in the far future. Beside the monthly values also decades were analyzed for the two future time periods of the CLM model. For all decades of September and October the number of days with precipitation decreased for the projected near and far future. Changes in meteorological variables such as air temperature and precipitation did already induce transformations in weed societies (composition, late-emerging etc.) of arable ecosystems in Europe. Therefore, adaptations of agronomic practices as well as effective weed control strategies must be developed to maintain crop yield.Keywords: CORDEX projections, dry spells, ensembles, weed management
Procedia PDF Downloads 238