Search results for: Staphylococcus species
1163 Descriptive Epidemiology of Mortality in Certain Species of Captive Deer in Pakistan
Authors: Musadiq Idris, Sajjad Ali, Syed A. Khaliq, Umer Farooq
Abstract:
Postmortem record of 217 captive ungulates including Black-buck (n=31), Chinkara (n=20), Hog deer (n=116), Spotted deer (n=35), Red Deer n=(04), and Rusa deer (n=11) submitted to the Veterinary Research Institute, Lahore, Pakistan was analyzed to determine the primary cause of mortality in these animals. The submissions included temporal distribution from Government wildlife captive farms, zoo, and private ownerships, over a three year period (2007-2009). The most common cause of death was found to be trauma (20.27%), followed by parasitic diseases (15.67%), bacterial diseases (11.98%), stillbirths (9.21%), snakebites (2.76%), gut affections (2.30%), neoplasia (1.38%) and starvation (0.92%). The exact cause of death could not be determined in 77 of 217 animals. Pneumonia (8.29%) and tuberculosis (3.69%) were the most common bacterial diseases. Analyses for parasitic infestation revealed tapeworms to be highest (11.05%), followed by roundworms (8.29%) and hemoparasitism (5.07%) (babesiosis and theileriosis). The mortality rate in young ungulates was lower as compared to adults (32.26% and 67.74%). Gender wise data presented higher mortality in females (55.30%) compared to males (44.70%). In conclusion, highest mortality factor in captive ungulates was trauma, followed by parasitic and bacterial infestations/infections of tapeworms and pneumonia, respectively. Furthermore, necropsies provided substantial information on etiology of death and other related epidemiological aspects.Keywords: age, epidemiology, gender, mortality, ungulates
Procedia PDF Downloads 4731162 Physicochemical and Bacteriological Assessment of Water Resources in Ughelli and Its Environs, Delta State Nigeria
Authors: M. O. Eyankware, D. O. Ufomata
Abstract:
Groundwater samples were collected from Otovwodo-Ughelli and Environ with the aim of assessing groundwater quality of the area. Twenty (20) water samples from Boreholes (BH) (six) and Hand Dug Wells (HDW) (fourteen) were randomly sampled and were analysed for different physiochemical and bacteriological parameters. The following 16 parameters have been considered viz: pH, electrical conductivity, temperature, total hardness, total dissolved solids, dissolved oxygen, biological oxygen demand, phosphate, sulphate, chloride, nitrate, calcium, sodium, chloride, magnesium, and total suspended solids. On comparing the results against drinking quality standards laid by World Health Organization and Nigeria industrial standard, it was found that the water quality parameters were not above the (WHO, 2011 and NIS, 2007) permissible limit. Microbial analysis reveals the presence of coliform and E.coli in two hand-dug well (HDW7 and 13) and one borehole well (BH20). These contaminations are perhaps traceable to have originated from human activities (septic tanks, latrines, dumpsites) and have affected the quality of groundwater in Otovwodo-Ughelli. From the piper trilinear diagram, the dominant ionic species is alkali bicarbonate water type, with bicarbonate as the predominant ion (Na+ + K+)-HCO3.Keywords: groundwater, surface water, Ughelli, Nigeria industrial standard, who standard
Procedia PDF Downloads 4481161 Safety Assessment and Prophylactic Efficacy of Moringa stenopetala Leaf Extract Through Mitigation of Oxidative Stress in BV-2 Microglial Cell
Authors: Stephen Adeniyi Adefegha, Vitor Mostardeiro, Vera Maria Morsch, Ademir F. Morel, Ivana Beatrice Manica Da Cruz, Sabrina Somacal Maria Rosa Chitolina Schetinger
Abstract:
Moringa stenopetala is often consumed as food and used in folkloric medicine for the management of several diseases. Purpose: This study was set up in order to assess the effect of aqueous extract of Moringa stenopetala on cell viability and oxidative stress biomarkers in BV-2 microglial cells. Aqueous extracts of M. stenopetala were prepared, lyophilized and reconstituted in 0.5% dimethylsulphoxide (DMSO). Cells were treated with M. stenopetala extracts (0.1 - 100 µg/ml) for cell viability and nitric oxide (NO) production tests. However, M. stenopetala extract (50 µg/ml) was used in the treatment of cells for the determination of protein carbonyl content and reactive oxygen species (ROS) level. Incubation of BV-2 microglia cell with M. stenopetala extract maintained cell viability, diminished NO and ROS levels, and reduced protein carbonyl contents Chlorogenic acid, rutin, kaempferol and quercetin derivatives were the main phenolic compounds identified in M. stenopetala leaf extract. These phenolic compounds present in M. stenopetala may be responsible for the mitigation of oxidative stress in BV-2 microglial cells.Keywords: oxidative stress, BV-2 microglial cell, Moringa stenopetala, cell viability, antioxidant
Procedia PDF Downloads 1131160 Efficient Photocatalytic Degradation of Tetracycline Hydrochloride Using Modified Carbon Nitride CCN/Bi₂WO₆ Heterojunction
Authors: Syed Najeeb-Uz-Zaman Haider, Yang Juan
Abstract:
Antibiotic overuse raises environmental concerns, boosting the demand for efficient removal from pharmaceutical wastewater. Photocatalysis, particularly using semiconductor photocatalysts, offers a promising solution and garners significant scientific interest. In this study, a Z-scheme 0.15BWO/CCN heterojunction was developed, analyzed, and employed for the photocatalytic degradation of tetracycline hydrochloride (TC) under visible light. The study revealed that the dosage of 0.15BWO@CCN and the presence of coexisting ions significantly influenced the degradation efficiency, achieving up to 87% within 20 minutes under optimal conditions (at pH 9-11/strongly basic conditions) while maintaining 84% efficiency under standard conditions (unaltered pH). Photoinduced electrons gathered on the conduction band of BWO while holes accumulated on the valence band of CCN, creating more favorable conditions to produce superoxide and hydroxyl radicals. Additionally, through comprehensive experimental analysis, the degradation pathway and mechanism were thoroughly explored. The superior photocatalytic performance of 0.15BWO@CCN was attributed to its Z-scheme heterojunction structure, which significantly reduced the recombination of photoinduced electrons and holes. The radicals produced were identified using ESR, and their involvement in tetracycline degradation was further analyzed through active species trapping experiments.Keywords: CCN, Bi₂WO₆, TC, photocatalytic degradation, heterojunction
Procedia PDF Downloads 451159 Pathomorphological Features of Lungs from Brown Hares Infected with Parasites
Authors: Mariana Panayotova-Pencheva, Anetka Trifonova, Vassilena Dakova
Abstract:
790 lungs from brown hares (Lepus europeus L.) from different regions of Bulgaria were investigated during the period 2009-2017. The parasitological status and pathomorphological features in the lungs were recorded. The following parasite species were established: one nematode - Protostrongylus tauricus (7.59% prevalence), one tapeworm – larva of Taenia pisiformis – Cysticercus pisiformis (3.04% prevalence) and one arthropod – larva of Linguatula serrata – Pentastomum dentatum (0.89% prevalence). Macroscopic lesions in the lungs were different depending on the causative agents. The infections with C. pisiformis and P. dentatum were attended with small, mainly superficial changes in the lungs. Protostrongylid infections were connected with different in appearance and burden macroscopic changes. In 77.7%, they were nodular, and in the rest of cases, they diffuse. The consistency of the lesions was compact. In most of the cases, alterations were grey in colour, rarely were dark-red or marble-like. In 91.7% of these cases, they were spread on the apical parts of large lung lobes. In 36.7% middle parts of the large lung lobes, and, in 26.7% small lung lobes, were also affected. The small lung lobes were never independently infected.Keywords: Cysticercus pisiformis, Lepus europeus, lung lesions, Pentastomum dentatum, Protostrongylus tauricus
Procedia PDF Downloads 2161158 Hydrodynamic Simulation of Co-Current and Counter Current of Column Distillation Using Euler Lagrange Approach
Authors: H. Troudi, M. Ghiss, Z. Tourki, M. Ellejmi
Abstract:
Packed columns of liquefied petroleum gas (LPG) consists of separating the liquid mixture of propane and butane to pure gas components by the distillation phenomenon. The flow of the gas and liquid inside the columns is operated by two ways: The co-current and the counter current operation. Heat, mass and species transfer between phases represent the most important factors that influence the choice between those two operations. In this paper, both processes are discussed using computational CFD simulation through ANSYS-Fluent software. Only 3D half section of the packed column was considered with one packed bed. The packed bed was characterized in our case as a porous media. The simulations were carried out at transient state conditions. A multi-component gas and liquid mixture were used out in the two processes. We utilized the Euler-Lagrange approach in which the gas was treated as a continuum phase and the liquid as a group of dispersed particles. The heat and the mass transfer process was modeled using multi-component droplet evaporation approach. The results show that the counter-current process performs better than the co-current, although such limitations of our approach are noted. This comparison gives accurate results for computations times higher than 2 s, at different gas velocity and at packed bed porosity of 0.9.Keywords: co-current, counter-current, Euler-Lagrange model, heat transfer, mass transfer
Procedia PDF Downloads 2151157 Antibacterial Bioactive Glasses in Orthopedic Surgery and Traumatology
Authors: V. Schmidt, L. Janovák, N. Wiegand, B. Patczai, K. Turzó
Abstract:
Large bone defects are not able to heal spontaneously. Bioactive glasses seem to be appropriate (bio)materials for bone reconstruction. Bioactive glasses are osteoconductive and osteoinductive, therefore, play a useful role in bony regeneration and repair. Because of their not optimal mechanical properties (e.g., brittleness, low bending strength, and fracture toughness), their applications are limited. Bioactive glass can be used as a coating material applied on metal surfaces. In this way -when using them as implants- the excellent mechanical properties of metals and the biocompatibility and bioactivity of glasses will be utilized. Furthermore, ion release effects of bioactive glasses regarding osteogenic and angiogenic responses have been shown. Silicate bioactive glasses (45S5 Bioglass) induce the release and exchange of soluble Si, Ca, P, and Na ions on the material surface. This will lead to special cellular responses inducing bone formation, which is favorable in the biointegration of the orthopedic prosthesis. The incorporation of other additional elements in the silicate network such as fluorine, magnesium, iron, silver, potassium, or zinc has been shown, as the local delivery of these ions is able to enhance specific cell functions. Although hip and knee prostheses present a high success rate, bacterial infections -mainly implant associated- are serious and frequent complications. Infection can also develop after implantation of hip prostheses, the elimination of which means more surgeries for the patient and additional costs for the clinic. Prosthesis-related infection is a severe complication of orthopedic surgery, which often causes prolonged illness, pain, and functional loss. While international efforts are made to reduce the risk of these infections, orthopedic surgical infections (SSIs) continue to occur in high numbers. It is currently estimated that up to 2.5% of primary hip and knee surgeries and up to 20% of revision arthroplasties are complicated by periprosthetic joint infection (PJIs). According to some authors, these numbers are underestimated, and they are also increasing. Staphylococcus aureus is the leading cause of both SSIs and PJIs, and the prevalence of methicillin-resistant S. aureus (MRSA) is on the rise, particularly in the United States. These deep infections lead to implant removal and consequently increase morbidity and mortality. The study targets this clinical problem using our experience so far with the Ag-doped polymer coatings on Titanium implants. Non-modified or modified (e.g., doped with antibacterial agents, like Ag) bioactive glasses could play a role in the prevention of infections or the therapy of infected tissues. Bioactive glasses have excellent biocompatibility, proved by in vitro cell culture studies of human osteoblast-like MG-63 cells. Ag-doped bioactive glass-scaffold has a good antibacterial ability against Escherichia coli and other bacteria. It may be concluded that these scaffolds have great potential in the prevention and therapy of implant-associated bone infection.Keywords: antibacterial agents, bioactive glass, hip and knee prosthesis, medical implants
Procedia PDF Downloads 1931156 Effect of pH-Dependent Surface Charge on the Electroosmotic Flow through Nanochannel
Authors: Partha P. Gopmandal, Somnath Bhattacharyya, Naren Bag
Abstract:
In this article, we have studied the effect of pH-regulated surface charge on the electroosmotic flow (EOF) through nanochannel filled with binary symmetric electrolyte solution. The channel wall possesses either an acidic or a basic functional group. Going beyond the widely employed Debye-Huckel linearization, we develop a mathematical model based on Nernst-Planck equation for the charged species, Poisson equation for the induced potential, Stokes equation for fluid flow. A finite volume based numerical algorithm is adopted to study the effect of key parameters on the EOF. We have computed the coupled governing equations through the finite volume method and our results found to be in good agreement with the analytical solution obtained from the corresponding linear model based on low surface charge condition or strong electrolyte solution. The influence of the surface charge density, reaction constant of the functional groups, bulk pH, and concentration of the electrolyte solution on the overall flow rate is studied extensively. We find the effect of surface charge diminishes with the increase in electrolyte concentration. In addition for strong electrolyte, the surface charge becomes independent of pH due to complete dissociation of the functional groups.Keywords: electroosmosis, finite volume method, functional group, surface charge
Procedia PDF Downloads 4221155 Catalytic Conversion of Methane into Benzene over CZO Promoted Mo/HZSM-5 for Methane Dehydroaromatization
Authors: Deepti Mishra, Arindam Modak, K. K. Pant, Xiu Song Zhao
Abstract:
The promotional effect of mixed ceria-zirconia oxides (CZO) over the Mo/HZSM-5 catalyst for methane dehydroaromatization (MDA) reaction was studied. The surface and structural properties of the synthesized catalyst were characterized using a range of spectroscopic and microscopic techniques, and the correlation between catalytic properties and its performance for MDA reaction is discussed. The impregnation of CZO solid solution on Mo/HZSM-5 was observed to give an excellent catalytic performance and improved benzene formation rate (4.5 μmol/gcat. s) as compared to the conventional Mo/HZSM-5 (3.1 μmol/gcat. s) catalyst. In addition, a significant reduction in coke formation was observed in the CZO-modified Mo/HZSM-5 catalyst. The prevailing comprehension for higher catalytic activity could be because of the redox properties of CZO deposited Mo/HZSM-5, which acts as a selective oxygen supplier and performs hydrogen combustion during the reaction, which is indirectly probed by O₂-TPD and H₂-TPR analysis. The selective hydrogen combustion prevents the over-oxidation of aromatic species formed during the reaction while the generated steam helps in reducing the amount of coke generated in the MDA reaction. Thus, the advantage of CZO incorporated Mo/HZSM-5 is manifested as it promotes the reaction equilibrium to shift towards the formation of benzene which is favourable for MDA reaction.Keywords: Mo/HZSM-5, ceria-zirconia (CZO), in-situ combustion, methane dehydroaromatization
Procedia PDF Downloads 981154 Hollowfiber Poly Lactid Co-Glycolic Acid (PLGA)-Collagen Coated by Chitosan as a Candidate of Small Diameter Vascular Graft
Authors: Dita Mayasari, Zahrina Mardina, Riki Siswanto, Agresta Ifada, Ova Oktavina, Prihartini Widiyanti
Abstract:
Heart failure is a serious major health problem with high number of mortality per year. Bypass is one of the solutions that has often been taken. Natural vascular graft (xenograft) as the substitute in bypass is inconvenient due to ethic problems and the risk of infection transmission caused by the usage of another species transgenic vascular. Nowadays, synthetic materials have been fabricated from polymers. The aim of this research is to make a synthetic vascular graft with great physical strength, high biocompatibility, and good affordability. The method of this research was mixing PLGA and collagen by magnetic stirrer. This composite were shaped by spinneret with water as coagulant. Then it was coated by chitosan with 3 variations of weight (1 gram, 2 grams, and 3 grams) to increase hemo and cytocompatibility, proliferation, and cell attachment in order for the vascular graft candidates to be more biocompatible. Mechanical strength for each variation was 5,306 MPa (chitosan 1 gram), 3,433 MPa (chitosan 2 grams) and 3,745 MPa (chitosan 3 grams). All the tensile values were higher than human vascular tensile strength. Toxicity test showed that the living cells in all variations were more than 60% in number, thus the vascular graft is not toxic.Keywords: chitosan, collagen, PLGA, spinneret
Procedia PDF Downloads 4031153 Low-Cost Aviation Solutions to Strengthen Counter-Poaching Efforts in Kenya
Authors: Kuldeep Rawat, Michael O'Shea, Maureen McGough
Abstract:
The paper will discuss a National Institute of Justice (NIJ) funded project to provide cost-effective aviation technologies and research to support counter-poaching operations related to endangered, protected, and/or regulated wildlife. The goal of this project is to provide cost-effective aviation technology and research support to Kenya Wildlife Service (KWS) in their counter-poaching efforts. In pursuit of this goal, Elizabeth City State University (ECSU) is assisting the National Institute of Justice (NIJ) in enhancing the Kenya Wildlife Service’s aviation technology and related capacity to meet its counter-poaching mission. Poaching, at its core, is systemic as poachers go to the most extreme lengths to kill high target species such as elephant and rhino. These high target wildlife species live in underdeveloped or impoverished nations, where poachers find fewer barriers to their operations. In Kenya, with fifty-nine (59) parks and reserves, spread over an area of 225,830 square miles (584,897 square kilometers) adequate surveillance on the ground is next to impossible. Cost-effective aviation surveillance technologies, based on a comprehensive needs assessment and operational evaluation, are needed to curb poaching and effectively prevent wildlife trafficking. As one of the premier law enforcement Air Wings in East Africa, KWS plays a crucial role in Kenya, not only in counter-poaching and wildlife conservation efforts, but in aerial surveillance, counterterrorism and national security efforts as well. While the Air Wing has done, a remarkable job conducting aerial patrols with limited resources, additional aircraft and upgraded technology should significantly advance the Air Wing’s ability to achieve its wildlife protection mission. The project includes: (i) Needs Assessment of the KWS Air Wing, to include the identification of resources, current and prospective capacity, operational challenges and priority goals for expansion, (ii) Acquisition of Low-Cost Aviation Technology to meet priority needs, and (iii) Operational Evaluation of technology performance, with a focus on implementation and effectiveness. The Needs Assessment reflects the priorities identified through two site visits to the KWS Air Wing in Nairobi, Kenya, as well as field visits to multiple national parks receiving aerial support and interviewing/surveying KWS Air wing pilots and leadership. Needs Assessment identified some immediate technology needs that includes, GPS with upgrades, including weather application, Night flying capabilities, to include runway lights and night vision technology, Cameras and surveillance equipment, Flight tracking system and/or Emergency Position Indicating Radio Beacon, Lightweight ballistic-resistant body armor, and medical equipment, to include a customized stretcher and standard medical evacuation equipment. Results of this assessment, along with significant input from the KWS Air Wing, will guide the second phase of this project: technology acquisition. Acquired technology will then be evaluated in the field, with a focus on implementation and effectiveness. Results will ultimately be translated for any rural or tribal law enforcement agencies with comparable aerial surveillance missions and operational environments, and jurisdictional challenges, seeking to implement low-cost aviation technology. Results from Needs Assessment phase, including survey results and our ongoing technology acquisition and baseline operational evaluation will be discussed in the paper.Keywords: aerial surveillance mission, aviation technology, counter-poaching, wildlife protection
Procedia PDF Downloads 2761152 Characterization of Surface Microstructures on Bio-Based PLA Fabricated with Nano-Imprint Lithography
Authors: D. Bikiaris, M. Nerantzaki, I. Koliakou, A. Francone, N. Kehagias
Abstract:
In the present study, the formation of structures in poly(lactic acid) (PLA) has been investigated with respect to producing areas of regular, superficial features with dimensions comparable to those of cells or biological macromolecules. Nanoimprint lithography, a method of pattern replication in polymers, has been used for the production of features ranging from tens of micrometers, covering areas up to 1 cm², down to hundreds of nanometers. Both micro- and nano-structures were faithfully replicated. Potentially, PLA has wide uses within biomedical fields, from implantable medical devices, including screws and pins, to membrane applications, such as wound covers, and even as an injectable polymer for, for example, lipoatrophy. The possibility of fabricating structured PLA surfaces, with structures of the dimensions associated with cells or biological macro- molecules, is of interest in fields such as cellular engineering. Imprint-based technologies have demonstrated the ability to selectively imprint polymer films over large areas resulting in 3D imprints over flat, curved or pre-patterned surfaces. Here, we compare nano-patterned with nano-patterned by nanoimprint lithography (NIL) PLA film. A silicon nanostructured stamp (provided by Nanotypos company) having positive and negative protrusions was used to pattern PLA films by means of thermal NIL. The polymer film was heated from 40°C to 60°C above its Tg and embossed with a pressure of 60 bars for 3 min. The stamp and substrate were demolded at room temperature. Scanning electron microscope (SEM) images showed good replication fidelity of the replicated Si stamp. Contact-angle measurements suggested that positive microstructuring of the polymer (where features protrude from the polymer surface) produced a more hydrophilic surface than negative micro-structuring. The ability to structure the surface of the poly(lactic acid), allied to the polymer’s post-processing transparency and proven biocompatibility. Films produced in this were also shown to enhance the aligned attachment behavior and proliferation of Wharton’s Jelly Mesenchymal Stem cells, leading to the observed growth contact guidance. The bacterial attachment patterns of some bacteria, highlighted that the nano-patterned PLA structure can reduce the propensity for the bacteria to attach to the surface, with a greater bactericidal being demonstrated activity against the Staphylococcus aureus cells. These biocompatible, micro- and nanopatterned PLA surfaces could be useful for polymer– cell interaction experiments at dimensions at, or below, that of individual cells. Indeed, post-fabrication modification of the microstructured PLA surface, with materials such as collagen (which can further reduce the hydrophobicity of the surface), will extend the range of applications, possibly through the use of PLA’s inherent biodegradability. Further study is being undertaken to examine whether these structures promote cell growth on the polymer surface.Keywords: poly(lactic acid), nano-imprint lithography, anti-bacterial properties, PLA
Procedia PDF Downloads 3331151 First Surveillance Results Bring No Evidence of SARS-CoV-2 Spillback in Bats of Central-Southern Italy
Authors: Hiba Dakroub, Danilo Russo, Luca Cistrone, Francesco Serra, Giovanna Fusco, Esterina De Carlo, Maria Grazia Amoroso
Abstract:
The question of the origin of SARS-CoV-2 and the cycle of transmission between humans and animals is still unanswered. One serious concern associated with the SARS-CoV-2 pandemic is that the virus might spill back from humans to wildlife, which would render some animal species reservoirs of the human virus. The aim of the present study is to monitor the potential risk of SARS-CoV-2 reverse infection from humans to bats, by performing bat surveillance from different sites in Central-Southern Italy. We collected 240 droppings or saliva from 129 bats and tested them using specific and general primers of SARS-COV-2 and coronaviruses respectively. All samples, including 127 nasal swabs and 113 fecal droppings resulted negative for SARS-COV-2, and these results were confirmed by testing the samples with the Droplet Digital PCR. Also, an end-point RT-PCR was performed and no sample showed specific bands. The absence of SARS-CoV-2 in the bats we surveyed is a first step towards a better understanding of reverse transmission to bats of this virus. We hope our first contribution will encourage the establishment of systematic surveillance of wildlife, and specifically bats, to help prevent reverse zoonotic episodes that would jeopardize human health as well as biodiversity conservation and management.Keywords: coronaviruses, bats, zoonotic viruses, spillback, SARS-CoV-2
Procedia PDF Downloads 1201150 An Overview of the Current Status of Lake Jipe and Its Biodiversity Dilemma
Authors: Mercy Chepkirui, Paul Orina, Robin Abell, Leonard Akwany, Tonny Orina, Mercy Matuma, Rasowo Joseph
Abstract:
Lake jipe, a shared water resource between Kenya and Tanzania located at the East African Coast, is under multiple pressures. The lake has receded from 30Km2 to 27.32Km2 due to prolonged dry spells and intensified water abstraction for irrigation and re-route to Mungu ya Nyumba Dam in Tanzania. Agricultural activities have significantly (90%) contributed to the lake levels decline and further affected the lakes’ aquatic biodiversity. Among the most affected are the commercially important endemic fish species of the lake, of which Oreochromis jipe has experienced the greatest decline. Overfishing, use of illegal unreported and unregulated fishing gears, intensified fishing along protected fish breeding areas as well as poor management and uncoordinated conservation efforts have significantly contributed to the decline of fish catches from 348 kg of O. jipe in 2016 to 90 kg daily catches in 2022. Therefore, the lake is on the verge of extinction if no action is taken. This calls for awareness of the significance of the L. Jipe ecosystems and its immediate and long-term benefits. Further, there is a need to revive alternative economic activities, including aquaculture and sustainable agriculture, to offer alternative livelihood to local communities.Keywords: biodiversity, ecosystem, conservation, fisheries
Procedia PDF Downloads 1831149 Practices of Entomophagy and Entomotherapy in Baranggay Alambijud, Argao and Baranggay Lusaran, Cebu City, Philippines
Authors: Jake Joshua C. Garces, Zandra O. Jarito, Leslie Ann T. Barriga, Froilen C. Domicelo, Nimfa R. Pansit
Abstract:
The study was conducted in order to discover the medicinal and edible potentialities of different insect species in Baranggay Alambijud, Argao and Baranggay Lusaran, Cebu City, Cebu. In order to identify these entomological practices, a survey was carried out by the researchers in these key sites. Fourteen key informants were obtained and these were identified with the aide of two sampling methods- snowball technique and purposive sampling. Open-ended questionnaires were employed in order to obtain authentic and significant information from the key informants. Results portrayed that in the practice of entomotherapy, two insects were used as medicine namely: migratory locust (Locusta migratoria manillensis) and honey bee (Apis dorsata); and two insect by-products were utilized namely: feces of cockroach (Periplaneta Americana) and honey. White grub (Cotinis nitida) and bee eggs were also documented to manifest edible capability and were thus utilized in the entomophagic practices. After applying thematic analysis, it was determined that the causative factors of their entomological practices include their limited educational attainment, their inability to access urban societies and the influence brought about by their family and community.Keywords: entomophagy, entomotherapy, entomology, key informants
Procedia PDF Downloads 3371148 Signaling of Leucine-Rich-Repeat Receptor-Like Kinases in Higher Plants
Authors: Man-Ho Oh
Abstract:
Membrane localized Leucine-Rich-Repeat Receptor-Like Kinases (LRR-RLKs) play crucial roles in plant growth and abiotic/biotic stress responses in higher plants including Arabidopsis and Brassica species. Among several Receptor-Like Kinases (RLKs), Leucine-Rich-Repeat Receptor-Like-Kinases (LRR-RLKs) are the major group of genes that play crucial roles related to growth, development and stress conditions in plant system. Since it is involved in several functional roles, it seems to be very important to investigate their roles in higher plants. We are particularly interested in brassinosteroid (BR) signaling, which is mediated by the BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase and its co-receptor, BRI1-ASSOCIATED KINASE 1 (BAK1). Autophosphorylation of receptor kinases is recognized to be an important process in activation of signaling in higher plants. Although the plant receptors are generally classified as Ser/Thr protein kinases, many other receptor kinases including BRI1 and BAK1 are shown to autophosphorylate on Tyr residues in addition to Ser/Thr. As an interesting result, we determined that several 14-3-3 regulatory proteins bind to BRI1-CD and are phosphorylated by several receptor kinases in vitro, suggesting that BRI1 is critical for diverse signaling.Keywords: autophosphorylation, brassinosteroid, BRASSINOSTEROID INSENSITIVE 1, BRI1-ASSOCIATED KINASE 1, Leucine-Rich-Repeat Receptor-Like Kinases (LRR-RLKs)
Procedia PDF Downloads 2271147 GC-MS Analysis of Essential Oil From Satureja Hispidula: A Medicinal Plant from Algeria
Authors: Habiba Rechek, Ammar Haouat, Ratiba Mekkiou, Diana C. G. A. Pinto, Artur M. S. Silva
Abstract:
Satureja hispidula is an aromatic and medicinal plant belonging to the family of Lamiaceae native to Algeria, just like mint or thyme. Although she is less known to the general public than her more famous cousins, this species has many therapeutic properties that have been used for centuries in traditional medicine of some regions. For generations, Satureja hispidula has been used in traditional medicine to treat various ailments, including respiratory diseases and diabetes. Its aroma, often described as close to that of mint, gives it a special interest in aromatherapy. Due to the growing interest in the beneficial properties of plant-derived essential oils, the aim of this study is to analyze the chemical composition of S. hispidula essential oil by gas chromatography coupled with mass spectrometry (GC-MS). Identifying the main constituents of essential oil will allow better understanding its chemical nature and exploring its potential for culinary and therapeutic application. The study of the essential oil of S. hispidula reveals a composition rich in 83 compounds, including menthone, pulegone and piperitone as main constituents. This gas chromatography analysis coupled with mass spectrometry provides valuable information about the chemical nature of this oil. However, more in-depth studies are needed to explore the potentially health-enhancing properties of this essential oil.Keywords: satureja hispidula, GC-MS, essential oil, menthone, pulegone
Procedia PDF Downloads 311146 Modelling and Management of Vegetal Pest Based On Case of Xylella Fastidiosa in Alicante
Authors: Maria Teresa Signes Pont, Jose Juan Cortes Plana
Abstract:
Our proposal provides suitable modelling to the spread of plant pest and particularly to the propagation of Xylella fastidiosa in the almond trees. We compared the impact of temperature and humidity on the propagation of Xylella fastidiosa in various subspecies. Comparison between Balearic Islands and Alicante (Spain). Most sharpshooter and spittlebug species showed peaks in population density during the month of higher mean temperature and relative humidity (April-October), except for the splittlebug Clastoptera sp.1, whose adult population peaked from September-October (late summer and early autumn). The critical season is from when they hatch from the eggs until they are in the pre-reproductive season (January -April) to expand. We focused on winters in the egg state, which normally hatches in early March. The nymphs secrete a foam (mucilage) in which they live and that protects them from natural enemies of temperature changes and prevents dry as long as the humidity is above 75%. The interaction between the life cycles of vectors and vegetation influences the food preferences of vectors and is responsible for the general seasonal shift of the population from vegetation to trees and vice versa, In addition to the temperature maps, we have observed humidity as it affects the spread of the pest Xylella fastidiosa (Xf).Keywords: xylella fastidiosa, almod tree, temperature, humidity, environmental model
Procedia PDF Downloads 1771145 Microbial Diversity Assessment in Household Point-of-Use Water Sources Using Spectroscopic Approach
Authors: Syahidah N. Zulkifli, Herlina A. Rahim, Nurul A. M. Subha
Abstract:
Sustaining water quality is critical in order to avoid any harmful health consequences for end-user consumers. The detection of microbial impurities at the household level is the foundation of water security. Water quality is now monitored only at water utilities or infrastructure, such as water treatment facilities or reservoirs. This research provides a first-hand scientific understanding of microbial composition presence in Malaysia’s household point-of-use (POUs) water supply influenced by seasonal fluctuations, standstill periods, and flow dynamics by using the NIR-Raman spectroscopic technique. According to the findings, 20% of water samples were contaminated by pathogenic bacteria, which are Legionella and Salmonella cells. A comparison of the spectra reveals significant signature peaks (420 cm⁻¹ to 1800 cm⁻¹), including species-specific bands. This demonstrates the importance of regularly monitoring POUs water quality to provide a safe and clean water supply to homeowners. Conventional Raman spectroscopy, up-to-date, is no longer suited for real-time monitoring. Therefore, this study introduced an alternative micro-spectrometer to give a rapid and sustainable way of monitoring POUs water quality. Assessing microbiological threats in water supply becomes more reliable and efficient by leveraging IoT protocol.Keywords: microbial contaminants, water quality, water monitoring, Raman spectroscopy
Procedia PDF Downloads 1111144 The Combined Influences of Salinity, Light and Nitrogen Limitation on the Growth and Biochemical Composition of Nannochloropsis sp. and Tetraselmis sp., Isolated from Penang National Park Coastal Waters, Malaysia
Authors: Mohamed M. Alsull
Abstract:
In the present study, two microalgae species “Nannochloropsis sp. and Tetraselmis sp.” isolated from Penang National Park coastal waters, Malaysia; were cultivated under combined various laboratory conditions “salinity, light, nitrogen limitation and starvation”. Growth rate, dry weight, chlorophyll a content, total lipid and protein contents, were estimated at mid exponential growth phase. Both Nannochloropsis sp. and Tetraselmis sp. showed remarkable decrease in growth rate, chlorophyll a content and protein content companied with increase in lipid content under nitrogen limitation and starvation conditions. Maintaining Nannochloropsis sp. under salinity 15‰ caused only significant decrease in total protein content; while Tetraselmis sp. grown at the same salinity caused decrease in the growth rate, chlorophyll a, dry weight and total protein content only when nitrogen was available.Keywords: biochemical composition, light, microalgae, nitrogen limitation, salinity
Procedia PDF Downloads 4281143 Relationship between Chlorophyl Content and Calculated Index Values of Citrus Trees
Authors: Namik Kemal Sonmez
Abstract:
Based passive remote sensing technologies have been widely used in many plant species. However, use of these techniques in orange trees is limited. In this study, the relationships between chlorophyll content (Chl) and calculated red edge (RE) and vegetation index values of the citrus leave at different growth stages were formed the basis for the analysis. Canopy reflectance by hand-held spectroradiometer and total Chl analysis at the lab were measured simultaneously, from the random samples taken from four different parts of an orange orchard. Plant materials consisted of four different age groups of 15, 20, 25, and 30 years old orange trees. Reflectance measurements were conducted between 450 and 900 nanometer (nm) wavelength at four different bands (3 visible bands and 1 near-infrared band) at the four basic physiological periods (flowering, fruit setting, fruit maturity, and dormancy) of orange trees. According to the statistical analysis conducted, there was a strong relationship between the chlorophyll content and calculated indexes (p ≤ 0.01; R²= 0.925 at red edge and R²= 0.986 at vegetation index) at the fruit setting stage of 20 years old trees. Again at this stage, fruit setting, total Chl content values among all orange trees were significantly correlated at the RE and VI with the R² values of 0.672 and 0.635 at the 0.001 level, respectively. This indicated that the relationships between Chl content and index values were very strong at this stage, in comparison to the other stages.Keywords: spectroradiometer, citrus, chlorophyll, reflectance, index
Procedia PDF Downloads 3741142 The Effects of Cow Manure Treated by Fruit Beetle Larvae, Waxworms and Tiger Worms on Plant Growth in Relation to Its Use as Potting Compost
Authors: Waleed S. Alwaneen
Abstract:
Dairy industry is flourishing in world to provide milk and milk products to local population. Besides milk products, dairy industries also generate a substantial amount of cow manure that significantly affects the environment. Moreover, heat produced during the decomposition of the cow manure adversely affects the crop germination. Different companies are producing vermicompost using different species of worms/larvae to overcome the harmful effects using fresh manure. Tiger worm treatment enhanced plant growth, especially in the compost-manure ratio (75% compost, 25% cow manure), followed by a ratio of 50% compost, 50% cow manure. Results also indicated that plant growth in Waxworm treated manure was weak as compared to plant growth in compost treated with Fruit Beetle (FB), Waxworms (WW), and Control (C) especially in the compost (25% compost, 75% cow manure) and 100% cow manure where there was no growth at all. Freshplant weight, fresh leaf weight and fresh root weight were significantly higher in the compost treated with Tiger worms in (75% compost, 25% cow manure); no evidence was seen for any significant differences in the dry root weight measurement between FB, Tiger worms (TW), WW, Control (C) in all composts. TW produced the best product, especially at the compost ratio of 75% compost, 25% cow manure followed by 50% compost, 50% cow manure.Keywords: fruit beetle, tiger worms, waxworms, control
Procedia PDF Downloads 1351141 Effect of Hydrogen Peroxide Concentration Produced by Cold Atmospheric Plasma on Inactivation of Escherichia Coli in Water
Authors: Zohreh Rashmei
Abstract:
Introduction: Plasma inactivation is one of the emerging technologies in biomedical field and has been applied to the inactivation of microorganisms in water. The inactivation effect has been attributed to the presence of active plasma species, i.e. OH, O, O3, H2O2, UV and electric fields, generated by the discharge of plasma. Material and Method: To evaluate germicidal effects of plasma, the electric spark discharge device was used. After the effect of the plasma samples were collected for culture medium agar plate count. In addition to biological experiments, the concentration of hydrogen peroxide was also measured. Results: The results showed that Plasma is able to inactivate a high concentration of E. coli. After a short period of plasma radiation on the surface of water, the amount log8 reduced the microbial load. Starting plasma radiation on the surface of the water, the measurements show of production and increasing the amount of hydrogen peroxide in water. So that at the end of the experiment, the concentration of hydrogen peroxide to about 100 mg / l increased. Conclusion: Increasing the concentration of hydrogen peroxide is directly related to the reduction of microbial load. The results of E. coli culture in media containing certain concentrations of H2O2 showed that E. coli can not to grow in a medium containing more than 2/5 mg/l of H2O2. Surely we can say that the main cause of killing bacteria is a molecule of H2O2.Keywords: plasma, hydrogen peroxide, disinfection, E. coli
Procedia PDF Downloads 1451140 Creative Art Practice in Response to Climate Change: How Art Transforms and Frames New Approaches to Speculative Ecological and Sustainable Futures
Authors: Wenwen Liu, Robert Burton, Simon McKeown
Abstract:
Climate change is seriously threatening human security and development, leading to global warming and economic, political, and social chaos. Many artists have created visual responses that challenge perceptions on climate change, actively guiding people to think about the climate issues and potential crises after urban industrialization and explore positive solutions. This project is an interdisciplinary and intertextual study where art practice is informed by culture, philosophy, psychology, ecology, and science. By correlating theory and artistic practice, it studies how art practice creates a new way of understanding climate issues and uses art as a way of exploring speculative futures. In the context of practical-based research, arts-based practice as research and creative practice as interdisciplinary research are applied alternately to seek the original solution and new knowledge. Through creative art practice, this project has established new visual ways of looking at climate change and has developed it into a new model to generate more possibilities, an alternative social imagination. It not only encourages people to think and find a sustainable speculative future conducive to all species but also proves that people have the ability to realize positive futures.Keywords: climate change, creative practice as interdisciplinary research, arts-based practice as research, creative art practice, speculative future
Procedia PDF Downloads 2821139 Green Spaces in Sustaining Cognitive Behaviour for Treating Anxiety and Depression in Children: A Prospective Study
Authors: Minakshi Jain, I. P. Singh
Abstract:
Due to the era of outstanding technology and modern lifestyle, human beings are debasing their physical, psychological, and mental well-being. The effect of this leads to a trail of chronic diseases like anxiety, loneliness, and depression, especially in children and young adults. This is visible in individuals who suffer from clinical depression, which leads to impaired mood and distortion of cognition, particularly in children. The Members of the WHO European Region made a declaration to provisioning each child with access to healthy and safe environments by 2020, and the decision was taken at the Conference on Environment and Health in 2010 as an initiative to improve access to green spaces in cities which provides universal access for quality spaces for both social interaction and human well-being. In line with this, the paper aims to establish a prospective study on linking green spaces and CBT (Cognitive behavior therapy) in order to treat disorders with reference to children and young adults. A questionnaire was adopted to explore the possibility of green spaces as additive measures for the existing modes of therapy. The results adapted from the questionnaire show that certain species of vegetation have a significant effect in enhancing effective mental well-being.Keywords: CBT, therapeutic gardens UCLA loneliness scale, anxiety, depression, green spaces, biophilia, environmental psychology
Procedia PDF Downloads 481138 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment
Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara
Abstract:
One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙−) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.Keywords: heterogeneous catalysis, photodegradation, reactive oxygen species, TiO₂ nanowires
Procedia PDF Downloads 1461137 Bioremediation as a Treatment of Aromatic Hydrocarbons in Wastewater
Authors: Hen Friman, Alex Schechter, Yeshayahu Nitzan, Rivka Cahan
Abstract:
The treatment of aromatic hydrocarbons in wastewater resulting from oil spills and chemical manufactories is becoming a key concern in many modern countries. Benzene, ethylbenzene, toluene and xylene (BETX) contaminate groundwater as well as soil. These compounds have an acute effect on human health and are known to be carcinogenic. Conventional removal of these toxic materials involves separation and burning of the wastes, however, the cost of chemical treatment is very high and energy consuming. Bioremediation methods for removal of toxic organic compounds constitute an attractive alternative to the conventional chemical or physical techniques. Bioremediation methods use microorganisms to reduce the concentration and toxicity of various chemical pollutants Toluene is biodegradable both aerobically and anaerobically, it can be growth inhibitory to microorganisms at elevated concentrations, even to those species that can use it as a substrate. In this research culture of Pseudomonas putida was grown in bath bio-reactor (BBR) with toluene 100 mg/l as a single carbon source under constant voltage of 125 mV, 250 mV and 500 mV. The culture grown in BBR reached to 0.8 OD660nm while the control culture that grown without external voltage reached only to 0.6 OD660nm. The residual toluene concentration after 147 h, in the BBR operated under external voltage (125 mV) was 22 % on average, while in the control BBR it was 81 % on average.Keywords: bioremediation, aromatic hydrocarbons, BETX, toluene, pseudomonas putida
Procedia PDF Downloads 3171136 Aptitude of a Lactococcus Strain to Grow on Whey Medium
Authors: Souid Wafa, Boudjenah-Haroun Saliha, Khacef Linda
Abstract:
In this work, we focused on the valuation of discharges from the dairy industry. Whey is by-product of dairy industry, which is a formidable pollution factor and contains components (lactose, minerals and proteins) with high nutritional value. Whey is an excellent culture medium for microorganisms. The objective of our work is to investigate the ability of a lactic strain (of the genus Lactococcus) to grow in culture media based on whey of cattle and camels and comparing it with that recorded on M17 as indicator medium. In this study we isolated from a local sample of camel milk a lactic strain (S1).the strain had positive Gram shaped, cocci form and catalase (-). The strain has been purified by the method of streaks on M17 medium. Phenotypic identification allows us to classify this strain in the species: Lactococcus lactis subsp. Cremoris. We subsequently tested the ability of this strain to grow in cattle whey medium and camel whey, both media were deproteinized and unsupplemented. The obtained results revealed that: The cattle and camel whey are appropriate media for the growth of the strain Lactococcus lactis subsp cremoris but is more adapted to grow on a medium rich in lactose as the camel whey. In fact, after 48h and at initial pH 6.8 this strain acidified more camel whey (pH 3.99) than cattle whey (pH 4.8). And biomass produced in the camel whey is 1.50g /1 by contributing to the cattle whey which is 1g / l.Keywords: cremoris, dairy industry, Lactococcus lactis subsp, medium, whey
Procedia PDF Downloads 3651135 Parallel Opportunity for Water Conservation and Habitat Formation on Regulated Streams through Formation of Thermal Stratification in River Pools
Authors: Todd H. Buxton, Yong G. Lai
Abstract:
Temperature management in regulated rivers can involve significant expenditures of water to meet the cold-water requirements of species in summer. For this purpose, flows released from Lewiston Dam on the Trinity River in Northern California are 12.7 cms with temperatures around 11oC in July through September to provide adult spring Chinook cold water to hold in deep pools and mature until spawning in fall. The releases are more than double the flow and 10oC colder temperatures than the natural conditions before the dam was built. The high, cold releases provide springers the habitat they require but may suppress the stream food base and limit future populations of salmon by reducing the juvenile fish size and survival to adults via the positive relationship between the two. Field and modeling research was undertaken to explore whether lowering summer releases from Lewiston Dam may promote thermal stratification in river pools so that both the cold-water needs of adult salmon and warmer water requirements of other organisms in the stream biome may be met. For this investigation, a three-dimensional (3D) computational fluid dynamics (CFD) model was developed and validated with field measurements in two deep pools on the Trinity River. Modeling and field observations were then used to identify the flows and temperatures that may form and maintain thermal stratification under different meteorologic conditions. Under low flows, a pool was found to be well mixed and thermally homogenous until temperatures began to stratify shortly after sunrise. Stratification then strengthened through the day until shading from trees and mountains cooled the inlet flow and decayed the thermal gradient, which collapsed shortly before sunset and returned the pool to a well-mixed state. This diurnal process of stratification formation and destruction was closely predicted by the 3D CFD model. Both the model and field observations indicate that thermal stratification maintained the coldest temperatures of the day at ≥2m depth in a pool and provided water that was around 8oC warmer in the upper 2m of the pool. Results further indicate that the stratified pool under low flows provided almost the same daily average temperatures as when flows were an order of magnitude higher and stratification was prevented, indicating significant water savings may be realized in regulated streams while also providing a diversity in water temperatures the ecosystem requires. With confidence in the 3D CFD model, the model is now being applied to a dozen pools in the Trinity River to understand how pool bathymetry influences thermal stratification under variable flows and diurnal temperature variations. This knowledge will be used to expand the results to 52 pools in a 64 km reach below Lewiston Dam that meet the depth criteria (≥2 m) for spring Chinook holding. From this, rating curves will be developed to relate discharge to the volume of pool habitat that provides springers the temperature (<15.6oC daily average), velocity (0.15 to 0.4 m/s) and depths that accommodate the escapement target for spring Chinook (6,000 adults) under maximum fish densities measured in other streams (3.1 m3/fish) during the holding time of year (May through August). Flow releases that meet these goals will be evaluated for water savings relative to the current flow regime and their influence on indicator species, including the Foothill Yellow-Legged Frog, and aspects of the stream biome that support salmon populations, including macroinvertebrate production and juvenile Chinook growth rates.Keywords: 3D CFD modeling, flow regulation, thermal stratification, chinook salmon, foothill yellow-legged frogs, water managment
Procedia PDF Downloads 651134 Trichoderma spp Consortium and Its Efficacy as Biological Control Agent of Ganoderma Disease of Oil Palm (Elaies guineensis Jacquin)
Authors: Habu Musa, Nusaibah Binti Syd Ali
Abstract:
Oil palm industries particularly in Malaysia and Indonesia are being devastated by Ganoderma disease caused by Ganoderma spp. To date, this disease has been causing serious oil palm yield losses and collapse of oil palm trees, thus affecting its contribution to the producer’s economy. Research on sustainable and eco-friendly remedy to counter Ganoderma disease is on the upsurge to avoid the current control measures via synthetic fungicides. Trichoderma species have been the most studied and valued microbes as biological control agents in an effort to combat a wide range of plant diseases sustainably. Therefore, in this current study, the potential of Trichoderma spp. (Trichoderma asperellum, Trichoderma harzianum, and Trichoderma virens) as a consortium approach was evaluated as biological control agents against Ganoderma disease on oil palm. The consortium of Trichoderma spp. applied found to be the most effective treatment in suppressing Ganoderma disease with 83.03% and 89.16% from the foliar and bole symptoms respectively. Besides, it exhibited tremendous enhancement in the oil palm seedling vegetative growth parameters. Also, it had highly induced significant activity of peroxidase, polyphenol oxidase and total phenolic content was recorded in the consortium treatment compared to the control treatment. Disease development was slower in the seedlings treated with consortium of Trichoderma spp. compared to the positive control, which exhibited with the highest percentage of disease severity.Keywords: biological control, ganoderma disease, trichoderma, disease severity
Procedia PDF Downloads 278