Search results for: Blade Element Momentum Theory
5640 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System
Authors: Man Young Kim
Abstract:
Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.Keywords: catalytic combustion, methane, BOP, MCFC power generation system, inlet temperature, excess air ratio, space velocity
Procedia PDF Downloads 2745639 The Evaluation of Transformational Leadership Characteristics and Behaviors in Air Forces
Authors: Cuma Şimşek
Abstract:
Nowadays our globalized world is in a very rapid and sophisticated change. In the information age, notion of ‘information’ has begun to spread faster than ever also in this age, changes and transformation has gained tremendous momentum with technology boom. This continuous change and transformation, increased the competition between existing organizations and corporations. Besides, the organizations which show resistance to change has been put out of action in this competitive environment. It is not possible to sustain the existence of organizations without adapting to change and transformation by isolating itself from developments. As a consequence of improved communication and dialog possibilities by means of increasing knowledge level, there has been made a change of scene in administrative mentality, style and activation, especially in 21th century. Leaders emerge as the most important factor in this process of perception and success. At the same time it is not enough to adapt the alteration with conventional leadership abilities and behaviors. In parallel with alteration, new types of leadership are coming up. The optimal leadership type for our era and a trending topic "Transformational Leadership" is in great demand now. In this research, current situation of the Air Forces which use high-technology weapons efficiently, operates in an environment full of threats and is analyzed. It is evaluated that in order to be ready for war continuously and adjusting itself to changing terms of warfare atmosphere , Air Forces need ‘transformational leaders’ who are innovative, foreseeing and having a vision so that they can develop new methods and strategies for complex problems. Because it is the Air Force which is responsible for being the deterrent force of its country.Keywords: transformational, change, air force, leadership
Procedia PDF Downloads 4425638 Writing a Parametric Design Algorithm Based on Recreation and Structural Analysis of Patkane Model: The Case Study of Oshtorjan Mosque
Authors: Behnoush Moghiminia, Jesus Anaya Diaz
Abstract:
The current study attempts to present the relationship between the structure development and Patkaneh as one of the Iranian geometric patterns and parametric algorithms by introducing two practical methods. While having a structural function, Patkaneh is also used as an ornamental element. It can be helpful in the scientific and practical review of Patkaneh. The current study aims to use Patkaneh as a parametric form generator based on the algorithm. The current paper attempts to express how can a more complete algorithm of this covering be obtained based on the parametric study and analysis of a sample of a Patkaneh and also investigate the relationship between the development of the geometrical pattern of Patkaneh as a structural-decorative element of Iranian architecture and digital design. In this regard, to achieve the research purposes, researchers investigated the oldest type of Patkaneh in the architecture history of Iran, such as the Northern Entrance Patkaneh of Oshtorjan Jame’ Mosque. An accurate investigation was done on the history of the background to answer the questions. Then, by investigating the structural behavior of Patkaneh, the decorative or structural-decorative role of Patkaneh was investigated to eliminate the ambiguity. Then, the geometrical structure of Patkaneh was analyzed by introducing two practical methods. The first method is based on the constituent units of Patkaneh (Square and diamond) and investigating the interactive relationships between them in 2D and 3D. This method is appropriate for cases where there are rational and regular geometrical relationships. The second method is based on the separation of the floors and the investigation of their interrelation. It is practical when the constituent units are not geometrically regular and have numerous diversity. Finally, the parametric form algorithm of these methods was codified.Keywords: geometric properties, parametric design, Patkaneh, structural analysis
Procedia PDF Downloads 1515637 Managing the Cognitive Load of Medical Students during Anatomy Lecture
Authors: Siti Nurma Hanim Hadie, Asma’ Hassan, Zul Izhar Ismail, Ahmad Fuad Abdul Rahim, Mohd. Zarawi Mat Nor, Hairul Nizam Ismail
Abstract:
Anatomy is a medical subject, which contributes to high cognitive load during learning. Despite its complexity, anatomy remains as the most important basic sciences subject with high clinical relevancy. Although anatomy knowledge is required for safe practice, many medical students graduated without having sufficient knowledge. In fact, anatomy knowledge among the medical graduates was reported to be declining and this had led to various medico-legal problems. Applying cognitive load theory (CLT) in anatomy teaching particularly lecture would be able to address this issue since anatomy information is often perceived as cognitively challenging material. CLT identifies three types of loads which are intrinsic, extraneous and germane loads, which combine to form the total cognitive load. CLT describe that learning can only occur when the total cognitive load does not exceed human working memory capacity. Hence, managing these three types of loads with the aim of optimizing the working memory capacity would be beneficial to the students in learning anatomy and retaining the knowledge for future application.Keywords: cognitive load theory, intrinsic load, extraneous load, germane load
Procedia PDF Downloads 4665636 Study of Ageing in the Marine Environment of Bonded Composite Structures by Ultrasonic Guided Waves. Comparison of the Case of a Conventional Carbon-epoxy Composite and a Recyclable Resin-Based Composite
Authors: Hamza Hafidi Alaoui, Damien Leduc, Mounsif Ech Cherif El Kettani
Abstract:
This study is dedicated to the evaluation of the ageing of turbine blades in sea conditions, based on ultrasonic Non Destructive Testing (NDT) methods. This study is being developed within the framework of the European Interreg TIGER project. The Tidal Stream Industry Energiser Project, known as TIGER, is the biggest ever Interreg project driving collaboration and cost reductionthrough tidal turbine installations in the UK and France. The TIGER project will drive the growth of tidal stream energy to become a greater part of the energy mix, with significant benefits for coastal communities. In the bay of Paimpol-Bréhat (Brittany), different samples of composite material and bonded composite/composite structures have been immersed at the same time near a turbine. The studied samples are either conventional carbon-epoxy composite samples or composite samples based on a recyclable resin (called recyclamine). One of the objectives of the study is to compare the ageing of the two types of structure. A sample of each structure is picked up every 3 to 6 months and analyzed using ultrasonic guided waves and bulk waves and compared to reference samples. In order to classify the damage level as a function of time spent under the sea, the measure have been compared to a rheological model based on the Finite Elements Method (FEM). Ageing of the composite material, as well as that of the adhesive, is identified. The aim is to improve the quality of the turbine blade structure in terms of longevity and reduced maintenance needs.Keywords: non-destructive testing, ultrasound, composites, guides waves
Procedia PDF Downloads 2205635 A Principal-Agent Model for Sharing Mechanism in Integrated Project Delivery Context
Abstract:
Integrated project delivery (IPD) is a project delivery method distinguished by a shared risk/rewards mechanism and multiparty agreement. IPD has drawn increasingly attention from construction industry because of its efficiency of solving adversarial problems and reliability to deliver high-performing buildings. However, some evidence showed that some project participants obtained less profit from IPD projects than the typical projects. They attributed it to the unfair IPD sharing mechanism, which resulted in additional time and cost of negotiation on the sharing fractions among project participants. The study is aimed to investigate the reward distribution by constructing a principal-agent model. Based on cooperative game theory, it is examined how to distribute the shared project rewards between client and non-client parties, and identify the sharing fractions among non-client parties. It is found that at least half of the project savings should be allocated to the non-client parties to motivate them to create more project value. Second, the client should raise his sharing fractions when the integration among project participants is efficient. In addition, the client should allocate higher sharing fractions to the non-client party who is more able. This study can help the IPD project participants make fair and motivated sharing mechanisms.Keywords: cooperative game theory, IPD, principal agent model, sharing mechanism
Procedia PDF Downloads 2925634 An Assessment of Finite Element Computations in the Structural Analysis of Diverse Coronary Stent Types: Identifying Prerequisites for Advancement
Authors: Amir Reza Heydari, Yaser Jenab
Abstract:
Coronary artery disease, a common cardiovascular disease, is attributed to the accumulation of cholesterol-based plaques in the coronary arteries, leading to atherosclerosis. This disease is associated with risk factors such as smoking, hypertension, diabetes, and elevated cholesterol levels, contributing to severe clinical consequences, including acute coronary syndromes and myocardial infarction. Treatment approaches such as from lifestyle interventions to surgical procedures like percutaneous coronary intervention and coronary artery bypass surgery. These interventions often employ stents, including bare-metal stents (BMS), drug-eluting stents (DES), and bioresorbable vascular scaffolds (BVS), each with its advantages and limitations. Computational tools have emerged as critical in optimizing stent designs and assessing their performance. The aim of this study is to provide an overview of the computational methods of studies based on the finite element (FE) method in the field of coronary stenting and discuss the potential for development and clinical application of stent devices. Additionally, the importance of assessing the ability of computational models is emphasized to represent real-world phenomena, supported by recent guidelines from the American Society of Mechanical Engineers (ASME). Validation processes proposed include comparing model performance with in vivo, ex-vivo, or in vitro data, alongside uncertainty quantification and sensitivity analysis. These methods can enhance the credibility and reliability of in silico simulations, ultimately aiding in the assessment of coronary stent designs in various clinical contexts.Keywords: atherosclerosis, materials, restenosis, review, validation
Procedia PDF Downloads 915633 Multi-Particle Finite Element Modelling Simulation Based on Cohesive Zone Method of Cold Compaction Behavior of Laminar Al and NaCl Composite Powders
Authors: Yanbing Feng, Deqing Mei, Yancheng Wang, Zichen Chen
Abstract:
With the advantage of low volume density, high specific surface area, light weight and good permeability, porous aluminum material has the potential to be used in automotive, railway, chemistry and construction industries, etc. A layered powder sintering and dissolution method were developed to fabricate the porous surface Al structure with high efficiency. However, the densification mechanism during the cold compaction of laminar composite powders is still unclear. In this study, multi particle finite element modelling (MPFEM) based on the cohesive zone method (CZM) is used to simulate the cold compaction behavior of laminar Al and NaCl composite powders. To obtain its densification mechanism, the macro and micro properties of final compacts are characterized and analyzed. The robustness and accuracy of the numerical model is firstly verified by experimental results and data fitting. The results indicate that the CZM-based multi particle FEM is an effective way to simulate the compaction of the laminar powders and the fracture process of the NaCl powders. In the compaction of the laminar powders, the void is mainly filled by the particle rearrangement, plastic deformation of Al powders and brittle fracture of NaCl powders. Large stress is mainly concentrated within the NaCl powers and the contact force network is formed. The Al powder near the NaCl powder or the mold has larger stress distribution on its contact surface. Therefore, the densification process of cold compaction of laminar Al and NaCl composite powders is successfully analyzed by the CZM-based multi particle FEM.Keywords: cold compaction, cohesive zone, multi-particle FEM, numerical modeling, powder forming
Procedia PDF Downloads 1525632 Heat Transfer and Entropy Generation in a Partial Porous Channel Using LTNE and Exothermicity/Endothermicity Features
Authors: Mohsen Torabi, Nader Karimi, Kaili Zhang
Abstract:
This work aims to provide a comprehensive study on the heat transfer and entropy generation rates of a horizontal channel partially filled with a porous medium which experiences internal heat generation or consumption due to exothermic or endothermic chemical reaction. The focus has been given to the local thermal non-equilibrium (LTNE) model. The LTNE approach helps us to deliver more accurate data regarding temperature distribution within the system and accordingly to provide more accurate Nusselt number and entropy generation rates. Darcy-Brinkman model is used for the momentum equations, and constant heat flux is assumed for boundary conditions for both upper and lower surfaces. Analytical solutions have been provided for both velocity and temperature fields. By incorporating the investigated velocity and temperature formulas into the provided fundamental equations for the entropy generation, both local and total entropy generation rates are plotted for a number of cases. Bifurcation phenomena regarding temperature distribution and interface heat flux ratio are observed. It has been found that the exothermicity or endothermicity characteristic of the channel does have a considerable impact on the temperature fields and entropy generation rates.Keywords: entropy generation, exothermicity or endothermicity, forced convection, local thermal non-equilibrium, analytical modelling
Procedia PDF Downloads 4155631 Continuous Plug Flow and Discrete Particle Phase Coupling Using Triangular Parcels
Authors: Anders Schou Simonsen, Thomas Condra, Kim Sørensen
Abstract:
Various processes are modelled using a discrete phase, where particles are seeded from a source. Such particles can represent liquid water droplets, which are affecting the continuous phase by exchanging thermal energy, momentum, species etc. Discrete phases are typically modelled using parcel, which represents a collection of particles, which share properties such as temperature, velocity etc. When coupling the phases, the exchange rates are integrated over the cell, in which the parcel is located. This can cause spikes and fluctuating exchange rates. This paper presents an alternative method of coupling a discrete and a continuous plug flow phase. This is done using triangular parcels, which span between nodes following the dynamics of single droplets. Thus, the triangular parcels are propagated using the corner nodes. At each time step, the exchange rates are spatially integrated over the surface of the triangular parcels, which yields a smooth continuous exchange rate to the continuous phase. The results shows that the method is more stable, converges slightly faster and yields smooth exchange rates compared with the steam tube approach. However, the computational requirements are about five times greater, so the applicability of the alternative method should be limited to processes, where the exchange rates are important. The overall balances of the exchanged properties did not change significantly using the new approach.Keywords: CFD, coupling, discrete phase, parcel
Procedia PDF Downloads 2675630 Innovative Grafting of Polyvinylpyrrolidone onto Polybenzimidazole Proton Exchange Membranes for Enhanced High-Temperature Fuel Cell Performance
Authors: Zeyu Zhou, Ziyu Zhao, Xiaochen Yang, Ling AI, Heng Zhai, Stuart Holmes
Abstract:
As a promising sustainable alternative to traditional fossil fuels, fuel cell technology is highly favoured due to its enhanced working efficiency and reduced emissions. In the context of high-temperature fuel cells (operating above 100 °C), the most commonly used proton exchange membrane (PEM) is the Polybenzimidazole (PBI) doped phosphoric acid (PA) membrane. Grafting is a promising strategy to advance PA-doped PBI PEM technology. The existing grafting modification on PBI PEMs mainly focuses on grafting phosphate-containing or alkaline groups onto the PBI molecular chains. However, quaternary ammonium-based grafting approaches face a common challenge. To initiate the N-alkylation reaction, deacidifying agents such as NaH, NaOH, KOH, K2CO3, etc., can lead to ionic crosslinking between the quaternary ammonium group and PBI. Polyvinylpyrrolidone (PVP) is another widely used polymer, the N-heterocycle groups within PVP endow it with a significant ability to absorb PA. Recently, PVP has attracted substantial attention in the field of fuel cells due to its reduced environmental impact and impressive fuel cell performance. However, due to the the poor compatibility of PVP in PBI, few research apply PVP in PA-doped PBI PEMs. This work introduces an innovative strategy to graft PVP onto PBI to form a network-like polymer. Due to the absence of quaternary ammonium groups, PVP does not pose issues related to crosslinking with PBI. Moreover, the nitrogen-containing functional groups on PVP provide PBI with a robust phosphoric acid retention ability. The nuclear magnetic resonance (NMR) hydrogen spectrum analysis results indicate the successful completion of the grafting reaction where N-alkylation reactions happen on both sides of the grafting agent 1,4-bis(chloromethyl)benzene. On one side, the reaction takes place with the hydrogen atoms on the imidazole groups of PBI, while on the other side, it reacts with the terminal amino group of PVP. The XPS results provide additional evidence from the perspective of the element. On synthesized PBI-g-PVP surfaces, there is an absence of chlorine (chlorine in grafting agent 1,4-bis(chloromethyl)benzene is substituted) element but a presence of sulfur element (sulfur element in terminal amino PVP appears in PBI), which demonstrates the occurrence of the grafting reaction and PVP is successfully grafted onto PBI. Prepare these modified membranes into MEA. It was found that during the fuel cell operation, all the grafted membranes showed substantial improvement in maximum current density and peak power density compared to unmodified one. For PBI-g-PVP 30, with a grafting degree of 22.4%, the peak power density reaches 1312 mW cm⁻², marking a 59.6% enhancement compared to the pristine PBI membrane. The improvement is caused by the improved PA binding ability of the membrane after grafting. The AST test result shows that the grafting membranes have better long-term durability and performance than unmodified membranes attributed to the presence of added PA binding sites, which can effectively prevent the PA leaching caused by proton migration. In conclusion, the test results indicate that grafting PVP onto PBI is a promising strategy which can effectively improve the fuel cell performance.Keywords: fuel cell, grafting modification, PA doping ability, PVP
Procedia PDF Downloads 795629 Social and Cognitive Stress Impact on Neuroscience and PTSD
Authors: Sadra Abbasi
Abstract:
The complex connection between psychological stress and the onset of different diseases has been an ongoing issue in the mental health field for a long time. Multiple studies have demonstrated that long-term stress can greatly heighten the likelihood of developing health issues like heart disease, cancer, arthritis, and severe depression. Recent research in cognitive science has provided insight into the intricate processes involved in posttraumatic stress disorder (PTSD), suggesting that distinct memory systems are accountable for both vivid reliving and normal autobiographical memories of traumatic incidents, as proposed by dual representation theory. This theory has important consequences for our comprehension of the neural mechanisms involved in fear and behavior related to threats, highlighting the amygdala-hippocampus-medial prefrontal cortex circuit as a crucial component in this process. This particular circuit, extensively researched in behavioral neuroscience, is essential for regulating the body's reactions to stress and trauma. This review will examine how incorporating a modern neuroscience viewpoint into an integrative case formulation offers a current way to comprehend the intricate connections among psychological stress, trauma, and disease.Keywords: social, cognitive, stress, neuroscience, behavior, PTSD
Procedia PDF Downloads 365628 Communicating Corporate Social Responsibility in Kuwait: Assessment of Environmental Responsibility Efforts and Targeted Stakeholders
Authors: Manaf Bashir
Abstract:
Corporate social responsibility (CSR) has become a tool for corporations to meet the expectations of different stakeholders about economic, social and environmental issues. It has become indispensable for an organization’s success, positive image and reputation. Equally important is how corporations communicate and report their CSR. Employing the stakeholder theory, the purpose of this research is to analyse CSR content of leading Kuwaiti corporations. No research analysis of CSR reporting has been conducted in Kuwait and this study is an attempt to redress in part this empirical deficit in the country and the region. It attempts to identify the issues and stakeholders of the CSR and if corporations are following CSR reporting standards. By analysing websites, annual and CSR reports of the top 100 Kuwaiti corporations, this study found low mentions of the CSR issues and even lower mentions of CSR stakeholders. Environmental issues were among the least mentioned despite an increasing global concern toward the environment. ‘Society’ was mentioned the most as a stakeholder and ‘The Environment’ was among the least mentioned. Cross-tabulations found few significant relationships between type of industry and the CSR issues and stakeholders. Independent sample t-tests found no significant difference between the issues and stakeholders that are mentioned on the websites and the reports. Only two companies from the sample followed reporting standards and both followed the Global Reporting Initiative. Successful corporations would be keen to identify the issues that meet the expectations of different stakeholders and address them through their corporate communication. Kuwaiti corporations did not show this keenness. As the stakeholder theory suggests, extending the spectrum of stakeholders beyond investors can open mutual dialogue and understanding between corporations and various stakeholders. However, Kuwaiti corporations focus on few CSR issues and even fewer CSR stakeholders. Kuwaiti corporations need to pay more attention to CSR and particularly toward environmental issues. They should adopt a strategic approach and allocate specialized personnel such as marketers and public relations practitioners to manage it. The government and non-profit organizations should encourage the private sector in Kuwait to do more CSR and meet the needs and expectations of different stakeholders and not only shareholders. This is in addition to reporting the CSR information professionally because of its benefits to corporate image, reputation, and transparency.Keywords: corporate social responsibility, environmental responsibility, Kuwait, stakeholder theory
Procedia PDF Downloads 1505627 Investigating University Language Teacher’s Perception of Their Identities in the Algerian Multilingual Context
Authors: Yousra Drissi
Abstract:
This research explores language teacher identity in a multilingual context where both teachers and students come from different linguistic backgrounds. It seeks to understand how teachers perceive themselves as language teachers in this context in relation to different influencing factors, both internal and external. This study is being conducted due to the importance of language teacher identity (LTI) in the university context, which is being neglected in the present literature (in an attempt to address the gap in the present literature). The broader aim of this study is to bring attention to language teacher identity along with the different influencing elements which can either promote or hinder its development. In this research, we are using the sociocultural theory and post-structural theory. This research uses the mixed methods approach to collect and analyse relevant data. A structured survey was distributed to language teachers from different universities around Algeria, followed by in-depth interviews. Results are supposed to show the different points in self-perception that these teachers share or differ in. they will also help us identify the different internal and external factors that can be of influence. However, the results of this research can be used by institutions as well as decision-makers to better understand university teachers and help them improve their teaching practices by empowering their language teacher identity, starting from teacher education programs to continuous teacher development programs.Keywords: identity, language teacher identity, multilingualism, university teacher
Procedia PDF Downloads 775626 Proton Irradiation Testing on Commercial Enhancement Mode GaN Power Transistor
Authors: L. Boyaci
Abstract:
Two basic equipment of electrical power subsystem of space satellites are Power Conditioning Unit (PCU) and Power Distribution Unit (PDU). Today, the main switching element used in power equipment in satellites is silicon (Si) based radiation-hardened MOSFET. GaNFETs have superior performances over MOSFETs in terms of their conduction and switching characteristics. GaNFET has started to take MOSFET’s place in many applications in industry especially by virtue of its switching performances. If GaNFET can also be used in equipment for space applications, this would be great revolution for future space power subsystem designs. In this study, the effect of proton irradiation on Gallium Nitride based power transistors was investigated. Four commercial enhancement mode GaN power transistors from Efficient Power Conversion Corporation (EPC) are irradiated with 30MeV protons while devices are switching. Flux of 8.2x10⁹ protons/cm²/s is applied for 12.5 seconds to reach ultimate fluence of 10¹¹ protons/cm². Vgs-Ids characteristics are measured and recorded for each device before, during and after irradiation. It was observed that if there would be destructive events. Proton induced permanent damage on devices is not observed. All the devices remained healthy and continued to operate. For two of these devices, further irradiation is applied with same flux for 30 minutes up to a total fluence level of 1.476x10¹³ protons/cm². We observed that GaNFETs are fully functional under this high level of radiation and no destructive events and irreversible failures took place for transistors. Results reveal that irradiated GaNFET in this experiment has radiation tolerance under proton testing and very important candidate for being one of the future power switching element in space.Keywords: enhancement mode GaN power transistors, proton irradiation effects, radiation tolerance
Procedia PDF Downloads 1525625 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling
Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé
Abstract:
Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation
Procedia PDF Downloads 805624 National Agency for Control of HIV/AIDS and International Response to its Scourge in Nigeria, 2000-2010
Authors: Ugwu Blessing Nkiruka
Abstract:
This paper seeks to examine Nigerian National Agency for the control of AIDS (NACA) and international response to the control of HIV/AIDS in Nigeria. The paper adopted the Functionalist theory alongside Liberalism and Idealism, but anchored extensively on functionalism. On the response of HIV/AIDS, Functionalist theory advocated for international corporation of both intergovernmental and non-governmental organisations as the basis for the reduction of the virus. the study adopted secondary source of data i.e journals, articles, newspapers and policy briefs to discuss the reduction of the pandemic (HIV/AIDS).This paper discovered that although HIV/AIDS is a global threat, especially to developing countries where the prevalence rate is still very high, yet international governmental and non-governmental organisation have been able to collaborate with National agencies like NACA in Nigeria and respond speedily through diverse initiatives and action plans to curb the spread of the virus. The study therefore recommends greater awareness on testing and early introduction of antiretroviral therapy, proper screening of blood before transfusion, absolute faithfulness among partners. Similarly, sharing of sharp objects like needles, knives and syringes should be avoided at all cost.Keywords: HIV/AIDS, developing countries, Nigeria, international organizations, NACA
Procedia PDF Downloads 1885623 Analysis of Intra-Varietal Diversity for Some Lebanese Grapevine Cultivars
Authors: Stephanie Khater, Ali Chehade, Lamis Chalak
Abstract:
The progressive replacement of the Lebanese autochthonous grapevine cultivars during the last decade by the imported foreign varieties almost resulted in the genetic erosion of the local germplasm and the confusion with cultivars' names. Hence there is a need to characterize these local cultivars and to assess the possible existing variability at the cultivar level. This work was conducted in an attempt to evaluate the intra-varietal diversity within Lebanese traditional cultivars 'Aswad', 'Maghdoushe', 'Maryame', 'Merweh', 'Meksese' and 'Obeide'. A total of 50 accessions distributed over five main geographical areas in Lebanon were collected and submitted to both ampelographic description and ISSR DNA analysis. A set of 35 ampelographic descriptors previously established by the International Office of Vine and Wine and related to leaf, bunch, berry, and phenological stages, were examined. Variability was observed between accessions within cultivars for blade shape, density of prostrate and erect hairs, teeth shape, berry shape, size and color, cluster shape and size, and flesh juiciness. At the molecular level, nine ISSR (inter-simple sequence repeat) primers, previously developed for grapevine, were used in this study. These primers generated a total of 35 bands, of which 30 (85.7%) were polymorphic. Totally, 29 genetic profiles were differentiated, of which 9 revealed within 'Obeide', 6 for 'Maghdoushe', 5 for 'Merweh', 4 within 'Maryame', 3 for 'Aswad' and 2 within 'Meksese'. Findings of this study indicate the existence of several genotypes that form the basis of the main indigenous cultivars grown in Lebanon and which should be further considered in the establishment of new vineyards and selection programs.Keywords: ampelography, autochthonous cultivars, ISSR markers, Lebanon, Vitis vinifera L.
Procedia PDF Downloads 1415622 Slope Stability and Landslides Hazard Analysis, Limitations of Existing Approaches, and a New Direction
Authors: Alisawi Alaa T., Collins P. E. F.
Abstract:
The analysis and evaluation of slope stability and landslide hazards are landslide hazards are critically important in civil engineering projects and broader considerations of safety. The level of slope stability risk should be identified due to its significant and direct financial and safety effects. Slope stability hazard analysis is performed considering static and/or dynamic loading circumstances. To reduce and/or prevent the failure hazard caused by landslides, a sophisticated and practical hazard analysis method using advanced constitutive modeling should be developed and linked to an effective solution that corresponds to the specific type of slope stability and landslides failure risk. Previous studies on slope stability analysis methods identify the failure mechanism and its corresponding solution. The commonly used approaches include used approaches include limit equilibrium methods, empirical approaches for rock slopes (e.g., slope mass rating and Q-slope), finite element or finite difference methods, and district element codes. This study presents an overview and evaluation of these analysis techniques. Contemporary source materials are used to examine these various methods on the basis of hypotheses, the factor of safety estimation, soil types, load conditions, and analysis conditions and limitations. Limit equilibrium methods play a key role in assessing the level of slope stability hazard. The slope stability safety level can be defined by identifying the equilibrium of the shear stress and shear strength. The slope is considered stable when the movement resistance forces are greater than those that drive the movement with a factor of safety (ratio of the resistance of the resistance of the driving forces) that is greater than 1.00. However, popular and practical methods, including limit equilibrium approaches, are not effective when the slope experiences complex failure mechanisms, such as progressive failure, liquefaction, internal deformation, or creep. The present study represents the first episode of an ongoing project that involves the identification of the types of landslides hazards, assessment of the level of slope stability hazard, development of a sophisticated and practical hazard analysis method, linkage of the failure type of specific landslides conditions to the appropriate solution and application of an advanced computational method for mapping the slope stability properties in the United Kingdom, and elsewhere through geographical information system (GIS) and inverse distance weighted spatial interpolation(IDW) technique. This study investigates and assesses the different assesses the different analysis and solution techniques to enhance the knowledge on the mechanism of slope stability and landslides hazard analysis and determine the available solutions for each potential landslide failure risk.Keywords: slope stability, finite element analysis, hazard analysis, landslides hazard
Procedia PDF Downloads 1005621 Additive Weibull Model Using Warranty Claim and Finite Element Analysis Fatigue Analysis
Authors: Kanchan Mondal, Dasharath Koulage, Dattatray Manerikar, Asmita Ghate
Abstract:
This paper presents an additive reliability model using warranty data and Finite Element Analysis (FEA) data. Warranty data for any product gives insight to its underlying issues. This is often used by Reliability Engineers to build prediction model to forecast failure rate of parts. But there is one major limitation in using warranty data for prediction. Warranty periods constitute only a small fraction of total lifetime of a product, most of the time it covers only the infant mortality and useful life zone of a bathtub curve. Predicting with warranty data alone in these cases is not generally provide results with desired accuracy. Failure rate of a mechanical part is driven by random issues initially and wear-out or usage related issues at later stages of the lifetime. For better predictability of failure rate, one need to explore the failure rate behavior at wear out zone of a bathtub curve. Due to cost and time constraints, it is not always possible to test samples till failure, but FEA-Fatigue analysis can provide the failure rate behavior of a part much beyond warranty period in a quicker time and at lesser cost. In this work, the authors proposed an Additive Weibull Model, which make use of both warranty and FEA fatigue analysis data for predicting failure rates. It involves modeling of two data sets of a part, one with existing warranty claims and other with fatigue life data. Hazard rate base Weibull estimation has been used for the modeling the warranty data whereas S-N curved based Weibull parameter estimation is used for FEA data. Two separate Weibull models’ parameters are estimated and combined to form the proposed Additive Weibull Model for prediction.Keywords: bathtub curve, fatigue, FEA, reliability, warranty, Weibull
Procedia PDF Downloads 735620 Optimizing the Passenger Throughput at an Airport Security Checkpoint
Authors: Kun Li, Yuzheng Liu, Xiuqi Fan
Abstract:
High-security standard and high efficiency of screening seem to be contradictory to each other in the airport security check process. Improving the efficiency as far as possible while maintaining the same security standard is significantly meaningful. This paper utilizes the knowledge of Operation Research and Stochastic Process to establish mathematical models to explore this problem. We analyze the current process of airport security check and use the M/G/1 and M/G/k models in queuing theory to describe the process. Then we find the least efficient part is the pre-check lane, the bottleneck of the queuing system. To improve passenger throughput and reduce the variance of passengers’ waiting time, we adjust our models and use Monte Carlo method, then put forward three modifications: adjust the ratio of Pre-Check lane to regular lane flexibly, determine the optimal number of security check screening lines based on cost analysis and adjust the distribution of arrival and service time based on Monte Carlo simulation results. We also analyze the impact of cultural differences as the sensitivity analysis. Finally, we give the recommendations for the current process of airport security check process.Keywords: queue theory, security check, stochatic process, Monte Carlo simulation
Procedia PDF Downloads 2005619 Distance Learning in Vocational Mass Communication Courses during COVID-19 in Kuwait: A Media Richness Perspective of Students’ Perceptions
Authors: Husain A. Murad, Ali A. Dashti, Ali Al-Kandari
Abstract:
The outbreak of Coronavirus during the Spring semester of 2020 brought new challenges for the teaching of vocational mass communication courses at universities in Kuwait. Using the Media Richness Theory (MRT), this study examines the response of 252 university students on mass communication programs. A questionnaire regarding their perceptions and preferences concerning modes of instruction on vocational courses online, focusing on the four factors of MRT: immediacy of feedback, capacity to include personal focus, conveyance of multiple cues, and variety of language. The outcomes show that immediacy of feedback predicted all criterion variables: suitability of distance learning (DL) for teaching vocational courses, sentiments of students toward DL, perceptions of easiness of evaluation of DL coursework, and the possibility of retaking DL courses. Capacity to include personal focus was another positive predictor of the criterion variables. It predicted students’ sentiments toward DL and the possibility of retaking DL courses. The outcomes are discussed in relation to implications for using DL, as well as constructing an agenda for DL research.Keywords: distance learning, media richness theory, traditional learning, vocational media courses
Procedia PDF Downloads 755618 Slosh Investigations on a Spacecraft Propellant Tank for Control Stability Studies
Authors: Sarath Chandran Nair S, Srinivas Kodati, Vasudevan R, Asraff A. K
Abstract:
Spacecrafts generally employ liquid propulsion for their attitude and orbital maneuvers or raising it from geo-transfer orbit to geosynchronous orbit. Liquid propulsion systems use either mono-propellant or bi-propellants for generating thrust. These propellants are generally stored in either spherical tanks or cylindrical tanks with spherical end domes. The propellant tanks are provided with a propellant acquisition system/propellant management device along with vanes and their conical mounting structure to ensure propellant availability in the outlet for thrust generation even under a low/zero-gravity environment. Slosh is the free surface oscillations in partially filled containers under external disturbances. In a spacecraft, these can be due to control forces and due to varying acceleration. Knowledge of slosh and its effect due to internals is essential for understanding its stability through control stability studies. It is mathematically represented by a pendulum-mass model. It requires parameters such as slosh frequency, damping, sloshes mass and its location, etc. This paper enumerates various numerical and experimental methods used for evaluating the slosh parameters required for representing slosh. Numerical methods like finite element methods based on linear velocity potential theory and computational fluid dynamics based on Reynolds Averaged Navier Stokes equations are used for the detailed evaluation of slosh behavior in one of the spacecraft propellant tanks used in an Indian space mission. Experimental studies carried out on a scaled-down model are also discussed. Slosh parameters evaluated by different methods matched very well and finalized their dispersion bands based on experimental studies. It is observed that the presence of internals such as propellant management devices, including conical support structure, alters slosh parameters. These internals also offers one order higher damping compared to viscous/ smooth wall damping. It is an advantage factor for the stability of slosh. These slosh parameters are given for establishing slosh margins through control stability studies and finalize the spacecraft control system design.Keywords: control stability, propellant tanks, slosh, spacecraft, slosh spacecraft
Procedia PDF Downloads 2455617 Inclusive Business and Its Contribution to Farmers Wellbeing in Arsi Ethiopia: Empirical Evidence
Authors: Senait G. Worku, Ellen Mangnus
Abstract:
Inclusive business models which integrates low-income people with companies value chain in a commercially viable way has gained momentum for the perceived potential to contribute to poverty alleviation and food security in developing countries. This article investigates the impact of Community Revenue Enhancement through Technology Extension (CREATE) project of Heineken brewery on smallholder farmers’ wellbeing in Arsi zone Oromia regional state of Ethiopia. CREATE is a Public-Private Partnership (PPP) between Ministry of Foreign Affairs of the Netherlands and Heineken N.V. which source malt barely from smallholder farmers in three zones of Oromia. The study assessed the impact of CREATE on malt barley productivity, food security and new asset purchase in Arsi zone by comparing households that participate in the project with non-participating households using propensity score matching method. The finding indicated that households that participated in the CREATE project had higher malt barley productivity and purchased more new assets than non-participating households. However, there is no significant difference on food security status of participating and non-participating households indicating that the project has a profound impact on asset accumulation than on food security improvement.Keywords: inclusive business, malt barley, propensity score matching, wellbeing
Procedia PDF Downloads 1565616 The Effect of Adhesion on the Frictional Hysteresis Loops at a Rough Interface
Authors: M. Bazrafshan, M. B. de Rooij, D. J. Schipper
Abstract:
Frictional hysteresis is the phenomenon in which mechanical contacts are subject to small (compared to contact area) oscillating tangential displacements. In the presence of adhesion at the interface, the contact repulsive force increases leading to a higher static friction force and pre-sliding displacement. This paper proposes a boundary element model (BEM) for the adhesive frictional hysteresis contact at the interface of two contacting bodies of arbitrary geometries. In this model, adhesion is represented by means of a Dugdale approximation of the total work of adhesion at local areas with a very small gap between the two bodies. The frictional contact is divided into sticking and slipping regions in order to take into account the transition from stick to slip (pre-sliding regime). In the pre-sliding regime, the stick and slip regions are defined based on the local values of shear stress and normal pressure. In the studied cases, a fixed normal force is applied to the interface and the friction force varies in such a way to start gross sliding in one direction reciprocally. For the first case, the problem is solved at the smooth interface between a ball and a flat for different values of work of adhesion. It is shown that as the work of adhesion increases, both static friction and pre-sliding distance increase due to the increase in the contact repulsive force. For the second case, the rough interface between a glass ball against a silicon wafer and a DLC (Diamond-Like Carbon) coating is considered. The work of adhesion is assumed to be identical for both interfaces. As adhesion depends on the interface roughness, the corresponding contact repulsive force is different for these interfaces. For the smoother interface, a larger contact repulsive force and consequently, a larger static friction force and pre-sliding distance are observed.Keywords: boundary element model, frictional hysteresis, adhesion, roughness, pre-sliding
Procedia PDF Downloads 1685615 A Multivariate 4/2 Stochastic Covariance Model: Properties and Applications to Portfolio Decisions
Authors: Yuyang Cheng, Marcos Escobar-Anel
Abstract:
This paper introduces a multivariate 4/2 stochastic covariance process generalizing the one-dimensional counterparts presented in Grasselli (2017). Our construction permits stochastic correlation not only among stocks but also among volatilities, also known as co-volatility movements, both driven by more convenient 4/2 stochastic structures. The parametrization is flexible enough to separate these types of correlation, permitting their individual study. Conditions for proper changes of measure and closed-form characteristic functions under risk-neutral and historical measures are provided, allowing for applications of the model to risk management and derivative pricing. We apply the model to an expected utility theory problem in incomplete markets. Our analysis leads to closed-form solutions for the optimal allocation and value function. Conditions are provided for well-defined solutions together with a verification theorem. Our numerical analysis highlights and separates the impact of key statistics on equity portfolio decisions, in particular, volatility, correlation, and co-volatility movements, with the latter being the least important in an incomplete market.Keywords: stochastic covariance process, 4/2 stochastic volatility model, stochastic co-volatility movements, characteristic function, expected utility theory, verication theorem
Procedia PDF Downloads 1525614 Analysis of Compressive and Tensile Response of Pumpkin Flesh, Peel and Unpeeled Tissues Using Experimental and FEA
Authors: Maryam Shirmohammadi, Prasad K. D. V. Yarlagadda, YuanTong Gu
Abstract:
The mechanical damage on the agricultural crop during and after harvesting can create high volume of damage on tissue. Uniaxial compression and tensile loading were performed on flesh and peel samples of pumpkin. To investigate the structural changes on the tissue, Scanning Electron Microscopy (SEM) was used to capture the cellular structure change before and after loading on tissue for tensile, compression and indentation tests. To obtain required mechanical properties of tissue for the finite element analysis (FEA) model, laser measurement sensors were used to record the lateral displacement of tissue under the compression loading. Uniaxial force versus deformation data were recorded using Universal Testing Machine for both tensile and compression tests. The experimental Results were employed to develop a material model with failure criteria. The results obtained by the simulation were compared with those obtained by experiments. Note that although modelling food materials’ behaviour is not a new concept however, majority of previous studies focused on elastic behaviour and damages under linear limit, this study, however, has developed FEA models for tensile and compressive loading of pumpkin flesh and peel samples using, as the first study, both elastic and elasto-plastic material types. In addition, pumpkin peel and flesh tissues were considered as two different materials with different properties under mechanical loadings. The tensile and compression loadings were used to develop the material model for a composite structure for FEA model of mechanical peeling of pumpkin as a tough skinned vegetable.Keywords: compressive and tensile response, finite element analysis, poisson’s ratio, elastic modulus, elastic and plastic response, rupture and bio-yielding
Procedia PDF Downloads 3315613 The Influence of Steel Connection on Fire Resistance of Composite Steel-Framed Buildings
Authors: Mohammed Kadhim, Zhaohui Huang
Abstract:
Steel connections can play an important role in enhancing the robustness of structures under fire conditions. Therefore, it is significant to examine the influence of steel connections on the fire resistance of composite steel-framed buildings. In this paper, both the behavior of steel connections and their influence on composite steel frame are analyzed using the non-linear finite element computer software VULCAN at ambient and elevated temperatures. The chosen frame is subjected to ISO834 fire. The comparison between end plate connections, pinned connection, and rigid connection has been carried out. By applying different compartment fires, some cases are studied to show the behavior of steel connection when the fire is applied at certain beams. In addition, different plate thickness and deferent applied loads have been analyzed to examine the behavior of chosen steel connection under ISO834 fire. It was found from the analytical results that the beam with extended end plate is stronger and has better performance in terms of axial forces than those beams with flush end plate connection. It was also found that extended end plate connection has highest limiting temperatures compared to the flush end plate connection. In addition, it was found that the performance of end-plate connections is very close to rigid connection and very far from pinned connections. Furthermore, plate thickness has less effect on the influence of steel connection on fire resistance. In conclusion, the behavior of composite steel framed buildings is largely dependent on the steel connection due to their high impact under fire condition. It is recommended to consider the extended end-plate in the design proposes because of its higher properties compared to the flush end plate connection. Finally, this paper shows a steel connection has an important effect on the fire resistance of composite steel framed buildings.Keywords: composite steel-framed buildings, connection behavior, end-plate connections, finite element modeling, fire resistance
Procedia PDF Downloads 1605612 Border Security: Implementing the “Memory Effect” Theory in Irregular Migration
Authors: Iliuta Cumpanasu, Veronica Oana Cumpanasu
Abstract:
This paper focuses on studying the conjunction between the new emerged theory of “Memory Effect” in Irregular Migration and Related Criminality and the notion of securitization, and its impact on border management, bringing about a scientific advancement in the field by identifying the patterns corresponding to the linkage of the two concepts, for the first time, and developing a theoretical explanation, with respect to the effects of the non-military threats on border security. Over recent years, irregular migration has experienced a significant increase worldwide. The U.N.'s refugee agency reports that the number of displaced people is at its highest ever - surpassing even post-World War II numbers when the world was struggling to come to terms with the most devastating event in history. This is also the fresh reality within the core studied coordinate, the Balkan Route of Irregular Migration, which starts from Asia and Africa and continues to Turkey, Greece, North Macedonia or Bulgaria, Serbia, and ends in Romania, where thousands of migrants find themselves in an irregular situation concerning their entry to the European Union, with its important consequences concerning the related criminality. The data from the past six years was collected by making use of semi-structured interviews with experts in the field of migration and desk research within some organisations involved in border security, pursuing the gathering of genuine insights from the aforementioned field, which was constantly addressed the existing literature and subsequently subjected to the mixed methods of analysis, including the use of the Vector Auto-Regression estimates model. Thereafter, the analysis of the data followed the processes and outcomes in Grounded Theory, and a new Substantive Theory emerged, explaining how the phenomena of irregular migration and cross-border criminality are the decisive impetus for implementing the concept of securitization in border management by using the proposed pattern. The findings of the study are therefore able to capture an area that has not yet benefitted from a comprehensive approach in the scientific community, such as the seasonality, stationarity, dynamics, predictions, or the pull and push factors in Irregular Migration, also highlighting how the recent ‘Pandemic’ interfered with border security. Therefore, the research uses an inductive revelatory theoretical approach which aims at offering a new theory in order to explain a phenomenon, triggering a practically handy contribution for the scientific community, research institutes or Academia and also usefulness to organizational practitioners in the field, among which UN, IOM, UNHCR, Frontex, Interpol, Europol, or national agencies specialized in border security. The scientific outcomes of this study were validated on June 30, 2021, when the author defended his dissertation for the European Joint Master’s in Strategic Border Management, a two years prestigious program supported by the European Commission and Frontex Agency and a Consortium of six European Universities and is currently one of the research objectives of his pending PhD research at the West University Timisoara.Keywords: migration, border, security, memory effect
Procedia PDF Downloads 925611 Explanation of the Electron Transfer Mechanism from β-Carotene to N-Pentyl Peroxyl Radical by Density Functional Theory Method
Authors: E. Esra Kasapbaşı, Büşra Yıldırım
Abstract:
Weak oxidizing radicals, such as alkyl peroxyl derivatives, react with carotenoids through hydrogen atom transfer to form neutral carotenoid radicals. Using the DFT method, it has been observed that s-cis-β-carotene is more stable than all-transforms. In the context of this study, an attempt is made to explain the reaction mechanism of the isomers of β-carotene, which exhibits antioxidant properties, with n-pentyl peroxide, one of the alkyl peroxyl molecules, using the Density Functional Theory (DFT) method. The cis and transforms of β-carotene are used in the study to determine which form is more reactive. For this purpose, Natural Bond Orbital (NBO) charges of all optimized structures are calculated, and electron transfer is determined by examining electron transitions between Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO). Additionally, the radical character and reaction mechanism of β-carotene in a radical environment are attempted to be explained based on the calculations. The theoretical inclination of whether β-carotene in cis or transforms is more active in reaction is also discussed. All these calculations are performed in the gas phase using the Integral Equation Formalism Polarizable Continuum Model IEFPCM method with dichloromethane as the solvent.Keywords: β-carotene, n-pentyl peroxyl radical, DFT, TD-DFT
Procedia PDF Downloads 78