Search results for: water consumption prediction
13130 Recovery of Wastewater Treated of Boumerdes Step for Irrigation
Authors: N. Ouslimani, M. T. Abadlia, S. Yakoub, F. Tebbani
Abstract:
Water has always been synonymous with life and growth. Blue gold is first essential to the survival of the human being whose body consists of more than 65% with the development of industrialization and consumption patterns; volumes of wastewater discharges have increased considerably whether industrial or domestic, waste water must be purified before discharge. Treatment, therefore, aims to reduce the pollution load which contain. The resources in Algeria are limited and unevenly distributed. Thus, to meet all the water needs of the country and to preserve the waters of good quality drinking water supply, one solution would be to use them according to their quality and to irrigate crops for the food or be directed to the irrigation of green areas or sports complex. The purification performance of this STEP has been established since the pH analyzed pollution criteria (7.36) and temperature (16°C), MES (10 mg / l), electrical conductivity (1122 / µs / cm), DBO5 (6mg / l), DCO (15mg / l) meet the discharge standards. Arguably the purified water discharged out of the boumerdes STEP comply with Algerian regulations and can be reused in agriculture. COD biodegradability of the coefficient / BOD5 is 2.5 (less than 3) indicates that of the effluent are biodegradable hence their urban origin.Keywords: irrigation, recovery, treated, wastewater
Procedia PDF Downloads 25313129 Virtual Reality Based 3D Video Games and Speech-Lip Synchronization Superseding Algebraic Code Excited Linear Prediction
Authors: P. S. Jagadeesh Kumar, S. Meenakshi Sundaram, Wenli Hu, Yang Yung
Abstract:
In 3D video games, the dominance of production is unceasingly growing with a protruding level of affordability in terms of budget. Afterward, the automation of speech-lip synchronization technique is customarily onerous and has advanced a critical research subject in virtual reality based 3D video games. This paper presents one of these automatic tools, precisely riveted on the synchronization of the speech and the lip movement of the game characters. A robust and precise speech recognition segment that systematized with Algebraic Code Excited Linear Prediction method is developed which unconventionally delivers lip sync results. The Algebraic Code Excited Linear Prediction algorithm is constructed on that used in code-excited linear prediction, but Algebraic Code Excited Linear Prediction codebooks have an explicit algebraic structure levied upon them. This affords a quicker substitute to the software enactments of lip sync algorithms and thus advances the superiority of service factors abridged production cost.Keywords: algebraic code excited linear prediction, speech-lip synchronization, video games, virtual reality
Procedia PDF Downloads 47213128 An Approach towards Smart Future: Ict Infrastructure Integrated into Urban Water Networks
Authors: Ahsan Ali, Mayank Ostwal, Nikhil Agarwal
Abstract:
Abstract—According to a World Bank report, millions of people across the globe still do not have access to improved water services. With uninterrupted growth of cities and urban inhabitants, there is a mounting need to safeguard the sustainable expansion of cities. Efficient functioning of the urban components and high living standards of the residents are needed to be ensured. The water and sanitation network of an urban development is one of its most essential parts of its critical infrastructure. The growth in urban population is leading towards increased water demand, and thus, the local water resources are severely strained. 'Smart water' is referred to water and waste water infrastructure that is able to manage the limited resources and the energy used to transport it. It enables the sustainable consumption of water resources through co-ordinate water management system, by integrating Information Communication Technology (ICT) solutions, intended at maximizing the socioeconomic benefits without compromising the environmental values. This paper presents a case study from a medium sized city in North-western Pakistan. Currently, water is getting contaminated due to the proximity between water and sewer pipelines in the study area, leading to public health issues. Due to unsafe grey water infiltration, the scarce ground water is also getting polluted. This research takes into account the design of smart urban water network by integrating ICT (Information and Communication Technology) with urban water network. The proximity between the existing water supply network and sewage network is analyzed and a design of new water supply system is proposed. Real time mapping of the existing urban utility networks will be projected with the help of GIS applications. The issue of grey water infiltration is addressed by providing sustainable solutions with the help of locally available materials, keeping in mind the economic condition of the area. To deal with the current growth of urban population, it is vital to develop new water resources. Hence, distinctive and cost effective procedures to harness rain water would be suggested as a part of the research study experiment.Keywords: GIS, smart water, sustainability, urban water management
Procedia PDF Downloads 21413127 Government Final Consumption Expenditure and Household Consumption Expenditure NPISHS in Nigeria
Authors: Usman A. Usman
Abstract:
Undeniably, unlike the Classical side, the Keynesian perspective of the aggregate demand side indeed has a significant position in the policy, growth, and welfare of Nigeria due to government involvement and ineffective demand of the population living with poor per capita income. This study seeks to investigate the effect of Government Final Consumption Expenditure, Financial Deepening on Households, and NPISHs Final consumption expenditure using data on Nigeria from 1981 to 2019. This study employed the ADF stationarity test, Johansen Cointegration test, and Vector Error Correction Model. The results of the study revealed that the coefficient of Government final consumption expenditure has a positive effect on household consumption expenditure in the long run. There is a long-run and short-run relationship between gross fixed capital formation and household consumption expenditure. The coefficients cpsgdp (financial deepening and gross fixed capital formation posit a negative impact on household final consumption expenditure. The coefficients money supply lm2gdp, which is another proxy for financial deepening, and the coefficient FDI have a positive effect on household final consumption expenditure in the long run. Therefore, this study recommends that Gross fixed capital formation stimulates household consumption expenditure; a legal framework to support investment is a panacea to increasing hoodmold income and consumption and reducing poverty in Nigeria. Therefore, this should be a key central component of policy.Keywords: government final consumption expenditure, household consumption expenditure, vector error correction model, cointegration
Procedia PDF Downloads 4813126 Cross Project Software Fault Prediction at Design Phase
Authors: Pradeep Singh, Shrish Verma
Abstract:
Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. The earlier we predict the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven data sets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.Keywords: software metrics, fault prediction, cross project, within project.
Procedia PDF Downloads 34113125 Design and Integration of a Renewable Energy Based Polygeneration System with Desalination for an Industrial Plant
Authors: Lucero Luciano, Cesar Celis, Jose Ramos
Abstract:
Polygeneration improves energy efficiency and reduce both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration one, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. The design procedure followed in this work involves integer linear programming modeling (MILP), operational planning and dynamic operating conditions. The technical and economic feasibility of integrating renewable energy technologies (photovoltaic and solar thermal, PV+CPS), thermal energy store, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seek to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.Keywords: desalination, design and integration, polygeneration systems, renewable energy
Procedia PDF Downloads 12313124 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm
Authors: Haozhe Xiang
Abstract:
With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.Keywords: deep learning, graph convolutional network, attention mechanism, LSTM
Procedia PDF Downloads 6913123 Biochemical Evaluation of Air Conditioning West Water in Jeddah City: Concept of Sustainable Water Resources
Authors: D. Alromi, A. Alansari, S. Alghamdi, E. Jambi
Abstract:
As the need for water is increasing globally, and the available water resources are barely meeting the current quality of life and economy. Air conditioning (AC) condensate water could be explored as an alternative water source, which could be considered within the global calculations of the water supply. The objective of this study is to better understand the potential for recovery of condensate water from air conditioning systems. The results generated so far showed that the AC produces a high quantity of water, and data analysis revealed that the amount of water is positively and significantly correlated with the humidity (P <= 0.05). In the meantime, the amount of heavy metals has been measuring using ICP-OES. The results, in terms of quantity, clearly show that the AC can be used as an alternative source of water, especially in the regions characterized by high humidity. The results also showed that the amount of produced water depends on the type of AC.Keywords: air conditioning systems, water quantity, water resources, wastewater
Procedia PDF Downloads 21013122 The Fall of Cultural Consumption in Spain during the Economic Crisis of 2008: Lessons for the Upcoming Crisis
Authors: Pau Rausell-Koster, Jordi Sanjuan-Belda
Abstract:
The economic crisis of 2008 had a special impact on cultural consumption in Spain. It fell by almost 30% in a few years, and its share of total family spending decreased from 3.19% in 2007 to 2.38% in 2015. In 2017, unlike other indicators, cultural consumption levels were still far from recovering their pre-crisis values. In times of economic difficulties, the satisfaction of primary subsistence needs takes priority over that of social, cultural and experiential needs, among which cultural consumption would mostly be framed. However, its evolution cannot be attributed exclusively to macroeconomic trends. In parallel to these, technological advances mainly related to the Internet have been disseminated in recent years, which have a very marked impact on the consumption patterns of some cultural sectors. Thus, the aim of this study is to define the causes of the decline in cultural consumption in Spain in recent years, and analyse what type of products, territories and population profiles suffered it especially. From the data analysis of the Family Budget Survey, the study seeks to improve the understanding of the determinants of cultural consumption and their behaviour in the face of macroeconomic trends, as well as identify and extract some policy implications regarding to the upcoming crisis caused by COVID-19.Keywords: consume patterns, cultural consumption, economic crisis, economic trends
Procedia PDF Downloads 12913121 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice
Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha
Abstract:
Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability
Procedia PDF Downloads 11613120 Hydrological Analysis for Urban Water Management
Authors: Ranjit Kumar Sahu, Ramakar Jha
Abstract:
Urban Water Management is the practice of managing freshwater, waste water, and storm water as components of a basin-wide management plan. It builds on existing water supply and sanitation considerations within an urban settlement by incorporating urban water management within the scope of the entire river basin. The pervasive problems generated by urban development have prompted, in the present work, to study the spatial extent of urbanization in Golden Triangle of Odisha connecting the cities Bhubaneswar (20.2700° N, 85.8400° E), Puri (19.8106° N, 85.8314° E) and Konark (19.9000° N, 86.1200° E)., and patterns of periodic changes in urban development (systematic/random) in order to develop future plans for (i) urbanization promotion areas, and (ii) urbanization control areas. Remote Sensing, using USGS (U.S. Geological Survey) Landsat8 maps, supervised classification of the Urban Sprawl has been done for during 1980 - 2014, specifically after 2000. This Work presents the following: (i) Time series analysis of Hydrological data (ground water and rainfall), (ii) Application of SWMM (Storm Water Management Model) and other soft computing techniques for Urban Water Management, and (iii) Uncertainty analysis of model parameters (Urban Sprawl and correlation analysis). The outcome of the study shows drastic growth results in urbanization and depletion of ground water levels in the area that has been discussed briefly. Other relative outcomes like declining trend of rainfall and rise of sand mining in local vicinity has been also discussed. Research on this kind of work will (i) improve water supply and consumption efficiency (ii) Upgrade drinking water quality and waste water treatment (iii) Increase economic efficiency of services to sustain operations and investments for water, waste water, and storm water management, and (iv) engage communities to reflect their needs and knowledge for water management.Keywords: Storm Water Management Model (SWMM), uncertainty analysis, urban sprawl, land use change
Procedia PDF Downloads 42413119 Reconfigurable Ubiquitous Computing Infrastructure for Load Balancing
Authors: Khaled Sellami, Lynda Sellami, Pierre F. Tiako
Abstract:
Ubiquitous computing helps make data and services available to users anytime and anywhere. This makes the cooperation of devices a crucial need. In return, such cooperation causes an overload of the devices and/or networks, resulting in network malfunction and suspension of its activities. Our goal in this paper is to propose an approach of devices reconfiguration in order to help to reduce the energy consumption in ubiquitous environments. The idea is that when high-energy consumption is detected, we proceed to a change in component distribution on the devices to reduce and/or balance the energy consumption. We also investigate the possibility to detect high-energy consumption of devices/network based on devices abilities. As a result, our idea realizes a reconfiguration of devices aimed at reducing the consumption of energy and/or load balancing in ubiquitous environments.Keywords: ubiquitous computing, load balancing, device energy consumption, reconfiguration
Procedia PDF Downloads 27413118 Construction Sustainability Improvement through Using Recycled Aggregates in Concrete Production
Authors: Zhiqiang Zhu, Khalegh Barati, Xuesong Shen
Abstract:
Due to the energy consumption caused by the construction industry, the public is paying more and more attention to the sustainability of the buildings. With the advancement of research on recycled aggregates, it has become possible to replace natural aggregates with recycled aggregates and to achieve a reduction in energy consumption of materials during construction. The purpose of this paper is to quantitatively compare the emergy consumption of natural aggregate concrete (NAC) and recycled aggregate concrete (RAC). To do so, the emergy analysis method is adopted. Using this technique, it can effectively analyze different forms of energy and substance. The main analysis object is the direct and indirect emergy consumption of the stages in concrete production. Therefore, for indirect energy, consumption of production machinery and transportation vehicle also need to be considered. Finally, the emergy values required to produce the two concrete types are compared to analyze whether the RAC can reduce emergy consumption.Keywords: sustainable construction, NAC, RAC, emergy, concrete
Procedia PDF Downloads 14813117 Prediction of CO2 Concentration in the Korea Train Express (KTX) Cabins
Authors: Yong-Il Lee, Do-Yeon Hwang, Won-Seog Jeong, Duckshin Park
Abstract:
Recently, because of the high-speed trains forced ventilation, it is important to control the ventilation. The ventilation is for controlling various contaminants, temperature, and humidity. The high-speed train route is straight to a destination having a high speed. And there are many mountainous areas in Korea. So, tunnel rate is higher then other country. KTX HVAC block off the outdoor air, when entering tunnel. So the high tunnel rate is an effect of ventilation in the KTX cabin. It is important to reduction rate in CO2 concentration prediction. To meet the air quality of the public transport vehicles recommend standards, the KTX cabin of CO2 concentration should be managed. In this study, the concentration change was predicted by CO2 prediction simulation in route to be opened.Keywords: CO2 prediction, KTX, ventilation, infrastructure and transportation engineering
Procedia PDF Downloads 54313116 In-Cylinder Exhaust Heat Recovery of an I. C. Engine Using Water Injection
Authors: Jayakrishnan U.
Abstract:
A concept of adding two strokes to a four stroke Otto or Diesel engine cycle presented here for the waste heat recovery in a four stroke internal combustion engine. Four stroke Diesel cycle and Otto cycle engines have very low thermal efficiency due to high amount of energy loss in exhaust and also on the cooling of the engine. It is estimated about 35 percent of fuel energy is lost in exhaust of engine and 30 percent in cooling of engine. So by modifying a four-stroke Otto or Diesel engine by adding two-stroke heat recovery steam cycle is presented here. Water injection is used to get an additional power stroke by partial compression of the exhaust gases at the end of third stroke in a four stroke I.C.Engine. It is the conversion of a four-stroke cycle to a six-stroke cycle. By taking a four stroke petrol engine of known dimensions, an ideal thermodynamic model is used to analyse and calculate the events of exhaust gas compression and following two strokes of water injection. By changing the exhaust valve closing timing during exhaust stroke and analysing it on various points, an optimum amount of exhaust gas re-compression and amount of water injection can be found for maximizing efficiency and fuel economy. It is achieved by changing the exhaust valve timing and finding an optimum amount of exhaust re-compression, maximizing the net mean effective pressure of the steam expansion stroke (MEPsteam). Specific fuel consumption of the engine also decreases increasing the fuel economy. The valve closing timings for maximum MEPsteam is limited by either 1 bar or dew point temperature of expansion gas or moisture mixture to avoid moisture formation. By modifying the four-stroke Otto or Diesel cycle by adding two water injection stroke has the potential to significantly increase the engine efficiency and fuel economy.Keywords: internal combustion engine, engine efficiency, six-stroke cycle, water injection, specific fuel consumption
Procedia PDF Downloads 30113115 Mathematical Modeling of Eggplant Slices Drying Using Microwave-Oven
Authors: M.H. Keshek, M.N. Omar, A.H. Amer
Abstract:
Eggplant (Solanum melongena L.) is considered one of the most important crops in summer season, and it is grown in most cultivated area in Egypt. Eggplant has a very limited shelf life for freshness and physiological changes occur after harvest. Nowadays, microwave drying offers an alternative way to drying agricultural products. microwave drying is not only faster but also requiring less energy consumption than conventional drying. The main objective of this research was to evaluate using the microwave oven in Eggplant drying, to determine the optimum drying time of higher drying efficiency and lower energy consumption. The eggplants slices, having a thickness of about 5, 10, 15, and 20 mm, with diameter 50±2 mm was dried using microwave oven (KOR-9G2B) using three different levels were 450, 630, and 810 Watt (50%, 70%, and 90% of 900 Watt). The results show that, the initial moisture content of the eggplant slices was around 93 % wet basis (13.28 g water/g dry matter). The results indicated that, the moisture transfer within the sample was more rapidly during higher microwave power heating (810 watt) and lower thickness (5 mm) of the eggplant slices. In addition, the results show that, the drying efficiency increases by increasing slices thickness at power levels 450, 630 and 810 Watt. The higher drying efficiency was 83.13% occurred when drying the eggplant slices 20 mm thickness in microwave oven at power 630 Watt. the higher total energy consumption per dry kilogram was 1.275 (kWh/ dry kg) occurred at used microwave 810 Watt for drying eggplant slices 5 mm thickness, and the lower total energy consumption per dry kilogram was 0.55 (kWh/ dry kg) occurred at used microwave 810 Watt for drying eggplant slices 20 mm thickness.Keywords: microwave drying, eggplant, drying rate, drying efficiency, energy consumption
Procedia PDF Downloads 15413114 Statistical Analysis with Prediction Models of User Satisfaction in Software Project Factors
Authors: Katawut Kaewbanjong
Abstract:
We analyzed a volume of data and found significant user satisfaction in software project factors. A statistical significance analysis (logistic regression) and collinearity analysis determined the significance factors from a group of 71 pre-defined factors from 191 software projects in ISBSG Release 12. The eight prediction models used for testing the prediction potential of these factors were Neural network, k-NN, Naïve Bayes, Random forest, Decision tree, Gradient boosted tree, linear regression and logistic regression prediction model. Fifteen pre-defined factors were truly significant in predicting user satisfaction, and they provided 82.71% prediction accuracy when used with a neural network prediction model. These factors were client-server, personnel changes, total defects delivered, project inactive time, industry sector, application type, development type, how methodology was acquired, development techniques, decision making process, intended market, size estimate approach, size estimate method, cost recording method, and effort estimate method. These findings may benefit software development managers considerably.Keywords: prediction model, statistical analysis, software project, user satisfaction factor
Procedia PDF Downloads 12213113 Water-Sensitive Landscaping in Desert-Located Egyptian Cities through Sheer Reductions of Turfgrass and Efficient Water Use
Authors: Sarah M. Asar, Nabeel M. Elhady
Abstract:
Egypt’s current per capita water share indicates that the country suffers and has been suffering from water poverty. The abundant utilization of turfgrass in Egypt’s new urban settlements, the reliance on freshwater for irrigation, and the inadequate plant selection increase the water demand in such settlements. Decreasing the surface area of turfgrass by using alternative landscape features such as mulching, using ornamental low-maintenance plants, increasing pathways, etc., could significantly decrease the water demand of urban landscapes. The use of Ammochloa palaestina, Cenchrus crientalis (Oriental Fountain Grass), and Cistus parviflorus (with water demands of approximately 0.005m³/m²/day) as alternatives for Cynodon dactylon (0.01m³/m²/day), which is the most commonly used grass species in Egypt’s landscape, could decrease an area’s water demand by approximately 40-50%. Moreover, creating hydro-zones of similar water demanding plants would enable irrigation facilitation rather than the commonly used uniformed irrigation. Such a practice could further reduce water consumption by 15-20%. These results are based on a case-study analysis of one of Egypt’s relatively new urban settlements, Al-Rehab. Such results emphasize the importance of utilizing native, drought-tolerant vegetation in the urban landscapes of Egypt to reduce irrigation demands. Furthermore, proper implementation, monitoring, and maintenance of automated irrigation systems could be an important factor in a space’s efficient water use. As most new urban settlements in Egypt adopt sprinkler and drip irrigation systems, the lack of maintenance leads to the manual operation of such systems, and, thereby, excessive irrigation occurs.Keywords: alternative landscape, native plants, efficient irrigation, low water demand
Procedia PDF Downloads 7613112 Water Crisis Management in a Tourism Dependent Community
Authors: Aishath Shakeela
Abstract:
At a global level, water stewardship, water stress and water security are crucial factors in tourism planning and development considerations. Challenges associated with water is of particular concern to the Maldives as there is limited availability of freshwater, high dependency on desalinated water, and high unit cost associated with desalinating water. While the Maldives is promoted as an example of sustainable tourism, a key sustainability challenge facing tourism dependent communities is the efficient use and management of available water resources. A water crisis event in the capital island of Maldives highlighted how precarious water related issues are in this tourism dependent destination. Applying netnography, the focus of this working paper is to present community perceptions of how government policies addressed Malé Water and Sewerage Company (MWSC) water crisis event.Keywords: crisis management, government policies, Maldives, tourism, water
Procedia PDF Downloads 52813111 Factors Affecting Green Consumption Behaviors of the Urban Residents in Hanoi, Vietnam
Authors: Phan Thi Song Thuong
Abstract:
This paper uses data from a survey on the green consumption behavior of Hanoi residents in October 2022. Data was gathered from a survey conducted in ten districts in the center of Hanoi, with 393 respondents. The hypothesis focuses on understanding the factors that may affect green consumption behavior, such as demographic characteristics, concerns about the environment and health, people living around, self-efficiency, and mass media. A number of methods, such as the T-test, exploratory factor analysis, and a linear regression model, are used to prove the hypotheses. Accordingly, the results show that gender, age, and education level have separate effects on the green consumption behavior of respondents.Keywords: green consumption, urban residents, environment, sustainable, linear regression
Procedia PDF Downloads 13013110 A Predictive MOC Solver for Water Hammer Waves Distribution in Network
Authors: A. Bayle, F. Plouraboué
Abstract:
Water Distribution Network (WDN) still suffers from a lack of knowledge about fast pressure transient events prediction, although the latter may considerably impact their durability. Accidental or planned operating activities indeed give rise to complex pressure interactions and may drastically modified the local pressure value generating leaks and, in rare cases, pipe’s break. In this context, a numerical predictive analysis is conducted to prevent such event and optimize network management. A couple of Python/FORTRAN 90, home-made software, has been developed using Method Of Characteristic (MOC) solving for water-hammer equations. The solver is validated by direct comparison with theoretical and experimental measurement in simple configurations whilst afterward extended to network analysis. The algorithm's most costly steps are designed for parallel computation. A various set of boundary conditions and energetic losses models are considered for the network simulations. The results are analyzed in both real and frequencies domain and provide crucial information on the pressure distribution behavior within the network.Keywords: energetic losses models, method of characteristic, numerical predictive analysis, water distribution network, water hammer
Procedia PDF Downloads 22913109 Simulation Research of City Bus Fuel Consumption during the CUEDC Australian Driving Cycle
Authors: P. Kacejko, M. Wendeker
Abstract:
The fuel consumption of city buses depends on a number of factors that characterize the technical properties of the bus and driver, as well as traffic conditions. This parameter related to greenhouse gas emissions is regulated by law in many countries. This applies to both fuel consumption and exhaust emissions. Simulation studies are a way to reduce the costs of optimization studies. The paper describes simulation research of fuel consumption city bus driving. Parameters of the developed model are based on experimental results obtained on chassis dynamometer test stand and road tests. The object of the study was a city bus equipped with a compression-ignition engine. The verified model was applied to simulate the behavior of a bus during the CUEDC Australian Driving Cycle. The results of the calculations showed a direct influence of driving dynamics on fuel consumption.Keywords: Australian Driving Cycle, city bus, diesel engine, fuel consumption
Procedia PDF Downloads 11813108 Solar Aided Vacuum Desalination of Sea-Water
Authors: Miraz Hafiz Rossy
Abstract:
As part of planning to address shortfalls in fresh water supply for the world, Sea water can be a huge source of fresh water. But Desalinating sea water to get fresh water could require a lots of fossil fuels. To save the fossil fuel in terms of save the green world but meet the up growing need for fresh water, a very useful but energy efficient method needs to be introduced. Vacuum desalination of sea water using only the Renewable energy can be an effective solution to this issue. Taking advantage of sensitivity of water's boiling point to air pressure a vacuum desalination water treatment plant can be designed which would only use sea water as feed water and solar energy as fuel to produce fresh drinking water. The study indicates that reducing the air pressure to a certain value water can be boiled at very low temperature. Using solar energy to provide the condensation and the vacuum creation would be very useful and efficient. Compared to existing resources, desalination is considered to be expensive, but using only renewable energy the cost can be reduced significantly. Despite its very few drawbacks, it can be considered a possible solution to the world's fresh water shortages.Keywords: desalination, scarcity of fresh water, water purification, water treatment
Procedia PDF Downloads 38813107 Calibration Model of %Titratable Acidity (Citric Acid) for Intact Tomato by Transmittance SW-NIR Spectroscopy
Authors: K. Petcharaporn, S. Kumchoo
Abstract:
The acidity (citric acid) is one of the chemical contents that can refer to the internal quality and the maturity index of tomato. The titratable acidity (%TA) can be predicted by a non-destructive method prediction by using the transmittance short wavelength (SW-NIR). Spectroscopy in the wavelength range between 665-955 nm. The set of 167 tomato samples divided into groups of 117 tomatoes sample for training set and 50 tomatoes sample for test set were used to establish the calibration model to predict and measure %TA by partial least squares regression (PLSR) technique. The spectra were pretreated with MSC pretreatment and it gave the optimal result for calibration model as (R = 0.92, RMSEC = 0.03%) and this model obtained high accuracy result to use for %TA prediction in test set as (R = 0.81, RMSEP = 0.05%). From the result of prediction in test set shown that the transmittance SW-NIR spectroscopy technique can be used for a non-destructive method for %TA prediction of tomatoes.Keywords: tomato, quality, prediction, transmittance, titratable acidity, citric acid
Procedia PDF Downloads 27113106 Diversity and Quality of Food Consumption Compared to Nutritional Status in Ages 15–17 Years Old in Jakarta
Authors: Andra Vidyarini
Abstract:
Adolescence is a transition period in which various changes occur, both biologically, intellectually and psychosocially. Changes in adolescents, one of which is a change in food consumption patterns that make adolescents vulnerable to nutritional problems that can affect their growth and health in the future. Nutritional problems in adolescents have increased from year to year and one of the causes is the low diversity and quality of consumption. The diversity and quality of consumption can be seen through the Individual Dietary Diversity Score and the Healthy Eating Index. Currently, in Indonesia, data on the diversity and quality of food consumption, especially among adolescents, are still scarce. In general, the purpose of this study is to describe the diversity and quality of adolescent food consumption and the relationship between the diversity and quality of food consumption with nutritional status. This study is a cross-sectional study by looking at the diversity and quality of consumption of adolescents aged 15-17 years. The total number of subjects in this study amounted to 70 teenagers. This research was conducted online via a google form. Data analysis in this study was univariate and bivariate. The results showed that the diversity of the subject's food consumption was in the diverse and very diverse category with an average of 6. However, the quality was still not good, whereas it was still in the bad and moderate categories with an average of 12.93. The nutritional status of the majority of the subjects was in the normal category and overweight to obese. The implementation of blended learning where there are still limited face-to-face meetings at school can be the reason why teenagers' food consumption is more diverse than when they are face-to-face schools. In addition, changes in people's diet during the pandemic also influenced the results of the study. The change in pattern is a change in eating habits to three times a day with menu choices ranging from rice, meat, fish, bean and vegetables. Analysis of the relationship between the diversity and quality of food consumption shows that the diversity of consumption has a significant relationship with the quality of food consumption with a p-value of 0.002 (p<0.05). Meanwhile, the diversity and quality of food consumption have no significant relationship with nutritional status, with p values 0.777 and 0.251 (>0.05), respectively. This shows that the diversity of food consumption is directly proportional to the quality of consumption, where if you have a variety of food consumption, the quality or in terms of portions and weight are also sufficient in accordance with the recommendations of PGRS.Keywords: healthy eating index (HEI), food diversity, quality of consumption, adolescent
Procedia PDF Downloads 17313105 Optimization of Energy Consumption with Various Design Parameters on Office Buildings in Chinese Severe Cold Zone
Authors: Yuang Guo, Dewancker Bart
Abstract:
The primary energy consumption of buildings throughout China was approximately 814 million tons of coal equivalents in 2014, which accounts for 19.12% of China's total primary energy consumption. Also, the energy consumption of public buildings takes a bigger share than urban residential buildings and rural residential buildings among the total energy consumption. To improve the level of energy demand, various design parameters were chosen. Meanwhile, a series of simulations by Energy Plus (EP-Launch) is performed using a base case model established in Open Studio. Through the results, 16%-23% of total energy demand reductions can be found in the severe cold zone of China, and it can also provide a reference for the architectural design of other similar climate zones.Keywords: energy consumption, design parameters, indoor thermal comfort, simulation study, severe cold climate zone
Procedia PDF Downloads 15513104 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture
Authors: Venkat S. Somayajula
Abstract:
Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical featuresKeywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle
Procedia PDF Downloads 12813103 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning
Authors: Madhawa Basnayaka, Jouni Paltakari
Abstract:
Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.Keywords: artificial intelligence, chipless RFID, deep learning, machine learning
Procedia PDF Downloads 4913102 Assessment of Drinking Water Contamination from the Water Source to the Consumer in Palapye Region, Botswana
Authors: Tshegofatso Galekgathege
Abstract:
Poor water quality is of great concern to human health as it can cause disease outbreaks. A standard practice today, in developed countries, is that people should be provided with safe-reliable drinking water, as safe drinking water is recognized as a basic human right and a cost effective measure of reducing diseases. Over 1.1 billion people worldwide lack access to a safe water supply and as a result, the majority are forced to use polluted surface or groundwater. It is widely accepted that our water supply systems are susceptible to the intentional or accidental contamination .Water quality degradation may occur anywhere in the path that water takes from the water source to the consumer. Chlorine is believed to be an effective tool in disinfecting water, but its concentration may decrease with time due to consumption by chemical reactions. This shows that we are at the risk of being infected by waterborne diseases if chlorine in water falls below the required level of 0.2-1mg/liter which should be maintained in water and some contaminants enter into the water distribution system. It is believed that the lack of adequate sanitation also contributes to the contamination of water globally. This study therefore, assesses drinking water contamination from the source to the consumer by identifying the point vulnerable to contamination from the source to the consumer in the study area .To identify the point vulnerable to contamination, water was sampled monthly from boreholes, water treatment plant, water distribution system (WDS), service reservoirs and consumer taps from all the twenty (20) villages of Palapye region. Sampled water was then taken to the laboratory for testing and analysis of microbiological and chemical parameters. Water quality analysis were then compared with Botswana drinking water quality standards (BOS32:2009) to see if they comply. Major sources of water contamination identified during site visits were the livestock which were found drinking stagnant water from leaking pipes in 90 percent of the villages. Soils structure around the area was negatively affected because of livestock movement even vegetation in the area. In conclusion microbiological parameters of water in the study area do not comply with drinking water standards, some microbiological parameters in water indicated that livestock do not only affect land degradation but also the quality of water. Chlorine has been applied to water over some years but it is not effective enough thus preventative measures have to be developed, to prevent contaminants from reaching water. Remember: Prevention is better than cure.Keywords: land degradation, leaking systems, livestock, water contamination
Procedia PDF Downloads 35013101 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients
Authors: Soha A. Bahanshal, Byung G. Kim
Abstract:
Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission
Procedia PDF Downloads 184