Search results for: selective removal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2017

Search results for: selective removal

1807 Divalent Iron Oxidative Process for Degradation of Carbon and Nitrogen Based Pollutants from Dye Intermediate Industrial Wastewater

Authors: Nibedita Pani, Vishnu Tejani, T. S. Anantha Singh

Abstract:

Water pollution resulting from discharge of partial/not treated textile wastewater containing high carbon and nitrogen pollutants pose a huge threat to the environment, ecosystem, and human health. It is essential to remove carbon- and nitrogen-based organic pollutants more effectively from industrial wastewater before discharging. The present study focuses on removal of carbon-based pollutant in particular COD (chemical oxygen demand) and nitrogen-based pollutants, in particular, ammoniacal nitrogen by Fenton oxidation process using Fe²⁺ and H₂O₂ as reagents. The study was carried out with high strength wastewater containing initial COD 5632 mg/L and NH⁴⁺-N 1372 mg/L. The major operating condition like pH was varied between 1.0 to 4.0. The maximum degradation was obtained at pH 3.0 taking the molar ratio of Fe²⁺/H₂O₂ as 1:1. At this pH, the removal efficiencies of COD and ammoniacal nitrogen were found to be 77.27% and 74.9%, respectively. The Fenton process can be the best alternative for the simultaneous removal of COD and NH4+-N from industrial wastewater.

Keywords: ammoniacal nitrogen, COD, Fenton oxidation, industrial wastewater

Procedia PDF Downloads 204
1806 Arsenite Remediation by Green Nano Zero Valent Iron

Authors: Ratthiwa Deewan, Visanu Tanboonchuy

Abstract:

The optimal conditions for green synthesis of zero-valent (G-NZVI) synthesis are investigated in this study using a Box Behnken design. The factors that were used in the study consisted of 3 factors as follows: the iron solution to mango peel extract ratio (1:1-1:3), feeding rate of mango peel extracts (1-5 mL/min), and agitation speed (300-30 rpm). The results showed that the optimization of conditions using the regression model was appropriate. The optimal conditions of the synthesis of G-NZVI for arsenate removal are the iron solution to mango peel extract ratio of 1:1, the feeding rate of mango peel extract at 5 mL/min, and the agitation speed rate of 300 rpm, which was able to arsenate removal of 100%.

Keywords: Box Behnken design, arsenate removal, green nano zero valent iron, arsenic

Procedia PDF Downloads 29
1805 Biosorption of Fluoride from Aqueous Solutions by Tinospora Cordifolia Leaves

Authors: Srinivasulu Dasaiah, Kalyan Yakkala, Gangadhar Battala, Pavan Kumar Pindi, Ramakrishna Naidu Gurijala

Abstract:

Tinospora cordifolia leaves biomass used for the removal fluoride from aqueous solutions. Batch biosorption technique was applied, pH, contact time, biosorbent dose and initial fluoride concentration was studied. The Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) techniques used to study the surface characteristics and the presence of chemical functional groups on the biosorbent. Biosorption isotherm models and kinetic models were applied to understand the sorption mechanism. Results revealed that pH, contact time, biosorbent dose and initial fluoride concentration played a significant effect on fluoride removal from aqueous solutions. The developed biosorbent derived from Tinospora cordifolia leaves biomass found to be a low-cost biosorbent and could be used for the effective removal of fluoride in synthetic as well as real water samples.

Keywords: biosorption, contact time, fluoride, isotherms

Procedia PDF Downloads 177
1804 Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds

Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto

Abstract:

Sulfur-oxidizing bacteria were isolated and then grown on snakefruits seeds forming biofilm. Their performance in sulfide removal were experimentally observed. Snakefruit seeds were then used as packing material in a cylindrical tube. Biological treatment of hydrogen sulfide from biogas was investigated using biofilm on packed bed of snakefruits seeds. Biogas containing 27,9512 ppm of hydrogen sulfide was flown through the bed. Then the hydrogen sulfide concentrations in the outlet at various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. The axial sulfide concentration gradient in the flowing liquid are assumed to be steady-state. Mean while the biofilm grows on the surface of the seeds and the oxidation takes place in the biofilm. Since the biofilm is very thin, the sulfide concentration in the biofilm is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The acuracy of the model proposed was tested by comparing the calcultion results using the model with the experimental data obtained. It turned out that the model proposed can be applied to describe the removal of sulfide liquid using bio-filter in packed bed. The values of the parameters were also obtained by curve-fitting. The biofilter could remove 89,83 % of the inlet of hydrogen sulfide from biogas for 2.5 h, and optimum loading of 8.33 ml/h.

Keywords: Sulfur-oxidizing bacteria, snakefruits seeds, biofilm, packing material, biogas

Procedia PDF Downloads 408
1803 Selective Extraction Separation of Vanadium and Chromium in the Leaching/Aqueous Solution with Trioctylamine

Authors: Xiaohua Jing

Abstract:

Efficient extraction for separation of V and Cr in the leaching/aqueous solution is essential to the reuse of V and Cr in the V-Cr slag. Trioctylamine, a common tertiary amine extractant, with some good characters (e.g., weak base, insoluble in water and good stability) different from N1923, was investigated in this paper. The separation factor of Cr and V can be reached to 230.71 when initial pH of the aqueous solution is 0.5, so trioctylamine can be used for extracting Cr from the leaching/aqueous solution contained V and Cr. The highest extraction percentages of Cr and V were 98.73% and 90.22% when the initial pH values were 0.5 and 1.5, respectively. Via FT-IR spectra of loaded organic phase and trioctylamine, the hydrogen bond association mechanism of extracting V and Cr was investigated, which was the same with the way of extracting the two metals with primary amine N1923.

Keywords: selective extraction, trioctylamine, V and Cr, separation factor, hydrogen bond association

Procedia PDF Downloads 366
1802 Kinetic Evaluation of Biodegradability of Paint Shop Wastewater of a Bus Production Factory

Authors: Didem Güven, Oytun Hanhan, Elif Ceren Aksoy, Emine Ubay Çokgör

Abstract:

This paper presents a biological treatability study ofpaintshopwastewaterof a bus factory by an anoxic/aerobic sequencing batch reactor.A lab scale 14L SBR system was implementedto investigate carbon and nitrogen removal performance frompaint shop waste streams combined with domestic and process wastewater of a bus production factory in Istanbul (Turkey).The wastewater collected from decanters of the paint boots and pre-treatmentplant was usedforthefeeding of SBR. The reactor was operated with a total hydraulic retention time of 24 hrs, and a total sludge age of 18.7 days. Initially the efficiency and stability of the reactor were studied when fed with main wastewater stream to simulate the current wastewater treatment plant. Removal efficiency of 57% nitrogen and 90% COD were obtained. Once the paint shop wastewater was introduced to mainstream feeding with a ratio of 1:5, nitrification completely, carbon removal were partially inhibited. SBR system was successful to handle even at very high COD concentrations of paint shop wastewater after feeding of 2 months, with an average effluent COD of 100 mg/L. For the determination of kinetic parameters, respirometric analysis was also conducted with/without paint shop wastewater addition. Model simulation indicated lower maximum specific growth and hydrolysis rates when paint shop wastewater was mixed with the mainstream wastewater of the factory.

Keywords: biological treatability, nitrogen removal, paint shop wastewater, sequencing batch reactor

Procedia PDF Downloads 295
1801 In-Situ Synthesis of Zinc-Containing MCM-41 and Investigation of Its Capacity for Removal of Hydrogen Sulfide from Crude Oil

Authors: Nastaran Hazrati, Ali Akbar Miran Beigi, Majid Abdouss, Amir Vahid

Abstract:

Hydrogen sulfide is the most toxic gas of crude oil. Adsorption is an energy-efficient process used to remove undesirable compounds such as H2S in gas or liquid streams by passing the stream through a media bed composed of an adsorbent. In this study, H2S of Iran crude oil was separated via cold stripping then zinc incorporated MCM-41 was synthesized via an in-situ method. ZnO functionalized mesoporous silica samples were characterized by XRD, N2 adsorption and TEM. The obtained results of adsorption of H2S showed superior ability of all the materials and with an increase in ZnO amount adsorption was increased.

Keywords: MCM-41, ZnO, H2S removal, adsorption

Procedia PDF Downloads 467
1800 The Effect of Bacteria on Mercury's Biological Removal

Authors: Nastaran Soltani

Abstract:

Heavy metals such as Mercury are toxic elements that enter the environment through different ways and endanger the environment, plants, animals, and humans’ health. Microbial activities reduce the amount of heavy metals. Therefore, an effective mechanism to eliminate heavy metals in the nature and factory slops, is using bacteria living in polluted areas. Karun River in Khuzestan Province in Iran has been always polluted by heavy metals as it is located among different industries in the region. This study was performed based on the data from sampling water and sediments of four stations across the river during the four seasons of a year. The isolation of resistant bacteria was performed through enrichment and direct cultivation in a solid medium containing mercury. Various bacteria such as Pseudomonas sp., Serratia Marcescens, and E.coli were identified as mercury-resistant bacteria. The power of these bacteria to remove mercury varied from 28% to 86%, with strongest power belonging to Pseudomonas sp. isolated in spring making a good candidate to be used for mercury biological removal from factory slops.

Keywords: bacteria, Karun River, mercury, biological removal, mercury-resistant

Procedia PDF Downloads 286
1799 Carbon-Encapsulated Iron Nanoparticles for Hydrogen Sulfide Removal

Authors: Meriem Abid, Erika Oliveria-Jardim, Andres Fullana, Joaquin Silvestre-Albero

Abstract:

The rapid industrial development associated with the increase of volatile organic compounds (VOCs) has seriously impacted the environment. Among VOCs, hydrogen sulfide (H₂S) is known as a highly toxic, malodorous, flammable, and corrosive gas, which is emitted from diverse chemical processes, including industrial waste-gas streams, natural gas processing, and biogas purification. The high toxicity, corrosively, and very characteristic odor threshold of H2S call for urgent development of efficient desulfurization processes from the viewpoint of environmental protection and resource regeneration. In order to reduce H₂S emissions, effective technologies for have been performed. The general method of H₂S removal included amine aqueous solution, adsorption process, biological methods, and fixed-bed solid catalytic oxidation processes. Ecologically and economically, low-temperature direct oxidation of H₂S to elemental sulfur using catalytic oxidation is the preferred approach for removing H₂S-containing gas streams. A large number of catalysts made from carbon, metal oxides, clay, and others, have been studied extensively for this application. In this sense, activated carbon (AC) is an attractive catalyst for H₂S removal because it features a high specific surface area, diverse functional groups, low cost, durability, and high efficiency. It is interesting to stand out that AC is modified using metal oxides to promote the efficiency of H₂S removal and to enhance the catalytic performance. Based on these premises, the main goal of the present study is the evaluation of the H₂S adsorption performance in carbon-encapsulated iron nanoparticles obtained from an olive mill, thermally treated at 600, 800 and 1000 ºC temperatures under anaerobic conditions. These results anticipate that carbon-encapsulated iron nanoparticles exhibit a promising performance for the H₂S removal up to 360 mg/g.

Keywords: H₂S removal, catalytic oxidation, carbon encapsulated iron, olive mill wastewater

Procedia PDF Downloads 87
1798 Biosorption of Methylene Blue and Acid Red-88 from Wastewater by Using Cypress Cones

Authors: Onur Yel

Abstract:

This study represents the removal of harmful dye substances from wastewaters by using waste and cheap adsorbents. Rapid population growth and industrialization occasion anthropogenic pollution which gives irreversible damage to the environment. One of the ways in which water pollution occurs is caused by the release of the dyestuffs in the textile industry. The release of dyestuffs to the environment directly damages the living creatures that have acquired water habitat. Especially, wastewater cannot be used for nutritional purposes. In addition, some adsorbents have mutagenic and/or carcinogenic effects. By blocking photosynthesis, it hinders the inhibition of photosynthetic bacteria in the water, which damages the ecological balance and also causes the formation of malodorous compounds. Moreover, the lack of oxygen can pose a serious danger to the lives of other living organisms that need oxygen. In recent years, some physical and chemical methods are preferred for the removal of dyestuffs. However, the utilization of these methods is expensive. For this reason, the availability of new and cheap adsorbents becomes the more significant issue. In this study, an investigation of various variables on the removal of Methylene Blue and Acid Red-88 dyestuffs from wastewaters by the usage of pulverized cypress cones has been carried out. Thus, various masses of absorbent (0.1-0.25-0.5-1-2-4-5 grams) are used in 50, 100, 150, 200, 300 ppm concentrations of Methylene Blue and Acid Red-88 dyestuffs’ solutions, and with a variety of the interaction time (0.25-0.5-1-2-4-5 hours). The mixtures were centrifuged and the absorbance of the filtrates was measured on a UV spectrophotometer to determine their remaining concentrations. In the study, the highest removal ratio of Acid Red-88 dyestuff was found to be 81% at 200 ppm of dyestuff with 2 grams of adsorbent at 300 minutes. For Methylene Blue experiments, the removal percentage was found as 98% where 2 grams of adsorbent is used in 200 ppm dyestuff solution at 120 minutes of interaction.

Keywords: acid red-88, biosorption, methylene blue, cypress cones, water pollution

Procedia PDF Downloads 141
1797 Adsorption of Basic Dyes Using Activated Carbon Prepared from Date Palm Fibre

Authors: Riham Hazzaa , Mohamed Hussien Abd El Megid

Abstract:

Dyes are toxic and cause severe problems to aquatic environment. The use of agricultural solid wastes is considered as low-cost and eco-friendly adsorbents for removing dyes from waste water. Date palm fibre, an abundant agricultural by-product in Egypt was used to prepare activated carbon by physical activation method. This study investigates the use of date palm fiber (DPF) and activated carbon (DPFAC) for the removal of a basic dye, methylene blue (MB) from simulated waste water. The effects of temperature, pH of solution, initial dye (concentration, adsorbent dosage and contact time were studied. The experimental equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin, Radushkevich and Harkins–Jura isotherms. Adsorption kinetics data were modeled using the pseudo-first and pseudo-second order and Elvoich equations. The mechanism of the adsorption process was determined from the intraparticle diffusion model. The results revealed that as the initial dye concentration , amount of adsorbent and temperature increased, the percentage of dye removal increased. The optimum pH required for maximum removal was found to be 6. The adsorption of methylene blue dye was better described by the pseudo-second-order equation. Results indicated that DPFAC and DPF could be an alternative for more costly adsorbents used for dye removal.

Keywords: adsorption, basic dye, palm fiber, activated carbon

Procedia PDF Downloads 331
1796 Computational Fluid Dynamics and Experimental Evaluation of Two Batch Type Electrocoagulation Stirred Tank Reactors Used in the Removal of Cr (VI) from Waste Water

Authors: Phanindra Prasad Thummala, Umran Tezcan Un

Abstract:

In this study, hydrodynamics analysis of two batch type electrocoagulation stirred tank reactors, used for the electrocoagulation treatment of Cr(VI) wastewater, was carried using computational fluid dynamics (CFD). The aim of the study was to evaluate the impact of mixing characteristics on overall performance of electrocoagulation reactor. The CFD simulations were performed using ANSYS FLUENT 14.4 software. The mixing performance of each reactor was evaluated by numerically modelling tracer dispersion in each reactor configuration. The uniformity in tracer dispersion was assumed when 90% of the ratio of the maximum to minimum concentration of the tracer was realized. In parallel, experimental evaluation of both the electrocoagulation reactors for removal of Cr(VI) from wastewater was also carried out. The results of CFD and experimental analysis clearly show that the reactor which can give higher uniformity in lesser time, will perform better as an electrocoagulation reactor for removal of Cr(VI) from wastewater.

Keywords: CFD, stirred tank reactors, electrocoagulation, Cr(VI) wastewater

Procedia PDF Downloads 462
1795 Protein and Mineral Removal from Dairy Waste-Water Using Precipitation Process

Authors: Zahra Akbari, Farzin Zokaee, Talat Ghomashchi

Abstract:

Whey is a by-product of the dairy industry whose major components are lactose (44–52 g/L), proteins (6–8 g/L) and mineral salts (4–9 g/L). Approximately 50% of 121 million tons of whey produced in the world in 1993 were disposed into rivers, lakes or other water bodies, treated in wastewater treatment plants or loaded onto land. This represents a significant loss of resources and causes serious pollution problems since whey is a heavy organic pollutant with high COD and BOD values, 40–60 g/L and 50–80 g/L, respectively. The removal of cheese whey proteins and minerals represent an important task both in environmental and in food sciences. The most important treatments which are considered in this study, have been done by using lime, Al2O3, FeCl3 and AlCl3 along with heating and also acidic-alkaline method. Results show that the best way for removal of protein is accomplished with adding HCl to decrease pH from 6 to 4, boiling for 20 min, and filtering protein aggregates. Also partial demineralization in whey solution for reducing ash is accomplished by adding NaOH to increase pH to 7.2 and heating solution for 20 min.

Keywords: whey treatment, dairy industry, precipitation, protein, mineral

Procedia PDF Downloads 415
1794 Application of Nanofibers in Heavy Metal (HM) Filtration

Authors: Abhijeet Kumar, Palaniswamy N. K.

Abstract:

Heavy metal contamination in water sources endangers both the environment and human health. Various water filtration techniques have been employed till now for purification and removal of hazardous metals from water. Among all the existing methods, nanofibres have emerged as a viable alternative for effective heavy metal removal in recent years because of their unique qualities, such as large surface area, interconnected porous structure, and customizable surface chemistry. Among the numerous manufacturing techniques, solution blow spinning has gained popularity as a versatile process for producing nanofibers with customized properties. This paper seeks to offer a complete overview of the use of nanofibers for heavy metal filtration, particularly those produced using solution blow spinning. The review discusses current advances in nanofiber materials, production processes, and heavy metal removal performance. Furthermore, the field's difficulties and future opportunities are examined in order to direct future research and development activities.

Keywords: heavy metals, nanofiber composite, filter membranes, adsorption, impaction

Procedia PDF Downloads 68
1793 Electroremediation of Saturated and Unsaturated Nickel-Contaminated Soils

Authors: Waddah Abdullah, Saleh Al-Sarem

Abstract:

Electrokinetic remediation was undoubtedly proven to be one of the most efficient techniques used to clean up soils contaminated with polar charged contaminants (such as heavy metals) and non-polar organic contaminants. It can be efficiently used to clean up low permeability mud, wastewater, electroplating wastes, sludge, and marine dredging. This study presented and discussed the results of electrokinetic remediation processes to clean up soils contaminated with nickel. Two types of electrokinetics cells were used: an open cell and an advanced cylindrical cell. Two types of soils were used for this investigation; the Azraq green clay which has very low permeability taken from the eastern part of Jordan (city of Azraq) and a sandy soil having, relatively, very high permeability. The clayey soil was spiked with 500 ppm of nickel, and the sandy soil was spiked with 1500 ppm of nickel. Fully saturated and partially saturated clayey soils were used for the clean-up process. Clayey soils were tested under a direct current of 80 mA and 50 mA to study the effect of the electrical current on the remediation process. Chelating agent (Na-EDTA), disodium ethylene diamine tetraacetatic acid, was used in both types of soils to enhance the electroremediation process. The effect of carbonates presence in the contaminated soils, also, was investigated by use of sodium carbonate and calcium carbonate. pH changes in the anode and the cathode compartments were controlled by use of buffer solutions. The results of the investigation showed that for the fully saturated clayey soil spiked with nickel had an average removal efficiency of 64%, and the average removal efficiency was 46% for the unsaturated clayey soil. For the sandy soil, the average removal efficiency of Nickel was 90%. Test results showed that presence of carbonates in the remediated soils retarded the clean-up process of nickel-contaminated soils (removal efficiency was reduced from 90% to 60%). EDTA enhanced decontamination of nickel contaminated clayey and sandy soils with carbonates was studied. The average removal efficiency increased from 60% (prior to using EDTA) to more than 90% after using EDTA.

Keywords: buffer solution, EDTA, electroremediation, nickel removal efficiency

Procedia PDF Downloads 184
1792 Eu³⁺ PVC Membrane Sensor Based on 1,2-Diaminopropane-N,N,N',N'-Tetraacetic Acid

Authors: Noshin Mehrabian, Mohammad Reza Abedi, Hassan Ali Zamani

Abstract:

A highly selective poly(vinyl chloride)-based membrane sensor produced by using 1,2-Diaminopropane-N,N,N',N'-tetraacetic acid (DAPTA) as active material is described. The electrode displays Nernstian behavior over the concentration range 1.0×10⁻⁶ to 1.0×10⁻² M. The detection limit of the electrode is 7.2×10⁻⁷ M. The best performance was obtained with the membrane containing 30% polyvinyl chloride (PVC), 65% nitrobenzene (NB), 2% sodium tetra phenyl borate (Na TPB), 3% DAPTA. The potentiometric response of the proposed electrode is pH independent in the range of 2.5–‎‎9.1. ‎The proposed sensor displays a fast response time 'less than 10s'. The electrode shows a good selectivity for Eu (III) ion with respect to most common cations including alkali, alkaline earth, transition, and heavy metal ions. It was used as an indicator electrode in potentiometric ‎titration of 25 mL of a 1.0×10⁻⁴ M Eu (III) solution with a 1.0×10⁻² M EDTA solution.

Keywords: potentiometry, PVC membrane, sensor, ion-selective electrode

Procedia PDF Downloads 191
1791 Inter-Country Parental Child Removal and Subsequent Custody Disputes in India: Need for Legislative Reforms

Authors: Pritam Kumar Ghosh

Abstract:

The phenomenon of inter-country parental child removal and the protection of children against removal from lawful custody by their own parents has been a major issue over the last five decades. This occurs when parents take away their children during pending divorce and custody proceedings or in violation of pre-existing foreign or Indian custody orders through which they may have obtained visitation rights only after divorce but not permanent custody. Even though considerable efforts have been made by the Indian judiciary to resolve the issue, a lot is still left to be desired. A study of the spate of judicial decisions on the issue since 1970 reveals that judges have attempted to resolve the issue mainly through the application of the existing personal law regime and the principle of the best interest of the child. This has made the position of law extremely confusing. The existing precedential jurisprudence contains a wide variety of custody orders in the name of enforcement of the paramount consideration of the best interest and welfare of children. The problem is aggravated by the fact that India has decided not to accede to the Hague Abduction Convention of 1980, which is the main international instrument combating the issue. In this context, the paper discusses the reasons behind the rising instances of inter-country parental child removals. It then goes on to analyze the existing jurisprudence of international child custody disputes in India, which have come before courts post-removal of children from lawful custody. The paper concludes by suggesting essential reforms in the existing Indian legal framework governing the issue. In the process, the paper proposes new legislation for India governing inter-country parental child removals and subsequent custody disputes. The possible structure and content of this new law shall also be outlined as a part of the paper.

Keywords: custody, dispute, child removal, Hague convention

Procedia PDF Downloads 73
1790 Simultaneous Removal of Phosphate and Ammonium from Eutrophic Water Using Dolochar Based Media Filter

Authors: Prangya Ranjan Rout, Rajesh Roshan Dash, Puspendu Bhunia

Abstract:

With the aim of enhancing the nutrient (ammonium and phosphate) removal from eutrophic wastewater with reduced cost, a novel media based multistage bio filter with drop aeration facility was developed in this work. The bio filter was packed with a discarded sponge iron industry by product, ‘dolochar’ primarily to remove phosphate via physicochemical approach. In the multi stage bio-filter drop, aeration was achieved by the process of percolation of the gravity-fed wastewater through the filter media and dropping down of wastewater from stage to stage. Ammonium present in wastewater got adsorbed by the filter media and biomass grown on the filter media and subsequently, got converted to nitrate through biological nitrification in the aerobic condition, as realized by drop aeration. The performance of the bio-filter in treating real eutrophic wastewater was monitored for a period of about 2 months. The influent phosphate concentration was in the range of 16-19 mg/L, and ammonium concentration was in the range of 65-78 mg/L. The average nutrient removal efficiency observed during the study period were 95.2% for phosphate and 88.7% for ammonium, with mean final effluent concentration of 0.91, and 8.74 mg/L, respectively. Furthermore, the subsequent release of nutrient from the saturated filter media, after completion of treatment process has been undertaken in this study and thin layer funnel analytical test results reveal the slow nutrient release nature of spent dolochar, thereby, recommending its potential agricultural application. Thus, the bio-filter displays immense prospective for treating real eutrophic wastewater, significantly decreasing the level of nutrients and keeping the effluent nutrient concentrations at par with the permissible limit and more importantly, facilitating the conversion of the waste materials into usable ones.

Keywords: ammonium removal, phosphate removal, multi-stage bio-filter, dolochar

Procedia PDF Downloads 194
1789 A Novel Nanocomposite Membrane Designed for the Treatment of Oil/Gas Produced Water

Authors: Zhaoyang Liu, Detao Qin, Darren Delai Sun

Abstract:

The onshore production of oil and gas (for example, shale gas) generates large quantities of wastewater, referred to be ‘produced water’, which contains high contents of oils and salts. The direct discharge of produced water, if not appropriately treated, can be toxic to the environment and human health. Membrane filtration has been deemed as an environmental-friendly and cost-effective technology for treating oily wastewater. However, conventional polymeric membranes have their drawbacks of either low salt rejection rate or high membrane fouling tendency when treating oily wastewater. Recent years, forward osmosis (FO) membrane filtration has emerged as a promising technology with its unique advantages of low operation pressure and less membrane fouling tendency. However, until now there is still no report about FO membranes specially designed and fabricated for treating the oily and salty produced water. In this study, a novel nanocomposite FO membrane was developed specially for treating oil- and salt-polluted produced water. By leveraging the recent advance of nanomaterials and nanotechnology, this nanocomposite FO membrane was designed to be made of double layers: an underwater oleophobic selective layer on top of a nanomaterial infused polymeric support layer. Wherein, graphene oxide (GO) nanosheets were selected to add into the polymeric support layer because adding GO nanosheets can optimize the pore structures of the support layer, thus potentially leading to high water flux for FO membranes. In addition, polyvinyl alcohol (PVA) hydrogel was selected as the selective layer because hydrated and chemically-crosslinked PVA hydrogel is capable of simultaneously rejecting oil and salt. After nanocomposite FO membranes were fabricated, the membrane structures were systematically characterized with the instruments of TEM, FESEM, XRD, ATR-FTIR, surface zeta-potential and Contact angles (CA). The membrane performances for treating produced waters were tested with the instruments of TOC, COD and Ion chromatography. The working mechanism of this new membrane was also analyzed. Very promising experimental results have been obtained. The incorporation of GO nanosheets can reduce internal concentration polarization (ICP) effect in the polymeric support layer. The structural parameter (S value) of the new FO membrane is reduced by 23% from 265 ± 31 μm to 205 ± 23 μm. The membrane tortuosity (τ value) is decreased by 20% from 2.55 ± 0.19 to 2.02 ± 0.13 μm, which contributes to the decrease of S value. Moreover, the highly-hydrophilic and chemically-cross-linked hydrogel selective layer present high antifouling property under saline oil/water emulsions. Compared with commercial FO membrane, this new FO membrane possesses three times higher water flux, higher removal efficiencies for oil (>99.9%) and salts (>99.7% for multivalent ions), and significantly lower membrane fouling tendency (<10%). To our knowledge, this is the first report of a nanocomposite FO membrane with the combined merits of high salt rejection, high oil repellency and high water flux for treating onshore oil/gas produced waters. Due to its outstanding performance and ease of fabrication, this novel nanocomposite FO membrane possesses great application potential in wastewater treatment industry.

Keywords: nanocomposite, membrane, polymer, graphene oxide

Procedia PDF Downloads 249
1788 A Novel Multi-Block Selective Mapping Scheme for PAPR Reduction in FBMC/OQAM Systems

Authors: Laabidi Mounira, Zayani Rafk, Bouallegue Ridha

Abstract:

Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC/OQAM) is presently known as a sustainable alternative to conventional Orthogonal Frequency Division Multiplexing (OFDM) for signal transmission over multi-path fading channels. Like all multicarrier systems, FBMC/OQAM suffers from high Peak to Average Power Ratio (PAPR). Due to the symbol overlap inherent in the FBMC/OQAM system, the direct application of conventional OFDM PAPR reduction scheme is far from being effective. This paper suggests a novel scheme termed Multi-Blocks Selective Mapping (MB-SLM) whose simulation results show that its performance in terms of PAPR reduction is almost identical to that of OFDM system.

Keywords: FBMC/OQAM, multi-blocks, OFDM, PAPR, SLM

Procedia PDF Downloads 463
1787 Organic Contaminant Degradation Using H₂O₂ Activated Biochar with Enhanced Persistent Free Radicals

Authors: Kalyani Mer

Abstract:

Hydrogen peroxide (H₂O₂) is one of the most efficient and commonly used oxidants in in-situ chemical oxidation (ISCO) of organic contaminants. In the present study, we investigated the activation of H₂O₂ by heavy metal (nickel and lead metal ions) loaded biochar for phenol degradation in an aqueous solution (concentration = 100 mg/L). It was found that H₂O₂ can be effectively activated by biochar, which produces hydroxyl (•OH) radicals owing to an increase in the formation of persistent free radicals (PFRs) on biochar surface. Ultrasound treated (30s duration) biochar, chemically activated by 30% phosphoric acid and functionalized by diethanolamine (DEA) was used for the adsorption of heavy metal ions from aqueous solutions. It was found that modified biochar could remove almost 60% of nickel in eight hours; however, for lead, the removal efficiency reached up to 95% for the same time duration. The heavy metal loaded biochar was further used for the degradation of phenol in the absence and presence of H₂O₂ (20 mM), within 4 hours of reaction time. The removal efficiency values for phenol in the presence of H₂O₂ were 80.3% and 61.9%, respectively, by modified biochar loaded with nickel and lead metal ions. These results suggested that the biochar loaded with nickel exhibits a better removal capacity towards phenol than the lead loaded biochar when used in H₂O₂ based oxidation systems. Meanwhile, control experiments were set in the absence of any activating biochar, and the removal efficiency was found to be 19.1% when only H₂O₂ was added in the reaction solution. Overall, the proposed approach serves a dual purpose of using biochar for heavy metal ion removal and treatment of organic contaminants by further using the metal loaded biochar for H₂O₂ activation in ISCO processes.

Keywords: biochar, ultrasound, heavy metals, in-situ chemical oxidation, chemical activation

Procedia PDF Downloads 135
1786 Different Formula of Mixed Bacteria as a Bio-Treatment for Sewage Wastewater

Authors: E. Marei, A. Hammad, S. Ismail, A. El-Gindy

Abstract:

This study aims to investigate the ability of different formula of mixed bacteria as a biological treatments of wastewater after primary treatment as a bio-treatment and bio-removal and bio-adsorbent of different heavy metals in natural circumstances. The wastewater was collected from Sarpium forest site-Ismailia Governorate, Egypt. These treatments were mixture of free cells and mixture of immobilized cells of different bacteria. These different formulas of mixed bacteria were prepared under Lab. condition. The obtained data indicated that, as a result of wastewater bio-treatment, the removal rate was found to be 76.92 and 76.70% for biological oxygen demand, 79.78 and 71.07% for chemical oxygen demand, 32.45 and 36.84 % for ammonia nitrogen as well as 91.67 and 50.0% for phosphate after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. Moreover, the bio-removals of different heavy metals were found to reach 90.0 and 50. 0% for Cu ion, 98.0 and 98.5% for Fe ion, 97.0 and 99.3% for Mn ion, 90.0 and 90.0% Pb, 80.0% and 75.0% for Zn ion after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. The results indicated that 13.86 and 17.43% of removal efficiency and reduction of total dissolved solids were achieved after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively.

Keywords: wastewater bio-treatment , bio-sorption heavy metals, biological desalination, immobilized bacteria, free cell bacteria

Procedia PDF Downloads 201
1785 Comparative Study of Fenton and Activated Carbon Treatment for Dyeing Waste Water

Authors: Prem Mohan, Namrata Jariwala

Abstract:

In recent years 10000 dyes are approximately used by dying industry which makes dyeing wastewater more complex in nature. It is very difficult to treat dyeing wastewater by conventional methods. Here an attempt has been made to treat dyeing wastewater by the conventional and advanced method for removal of COD. Fenton process is the advanced method and activated carbon treatment is the conventional method. Experiments have been done on synthetic wastewater prepared from three different dyes; acidic, disperse and reactive. Experiments have also been conducted on real effluent obtained from industry. The optimum dose of catalyst and hydrogen peroxide in Fenton process and optimum activated carbon dose for each of these wastewaters were obtained. In Fenton treatment, COD removal was obtained up to 95% whereas 70% removal was obtained with activated carbon treatment.

Keywords: activated carbon, advanced oxidation process, dyeing waste water, fenton oxidation process

Procedia PDF Downloads 211
1784 Lead Removal From Ex- Mining Pond Water by Electrocoagulation: Kinetics, Isotherm, and Dynamic Studies

Authors: Kalu Uka Orji, Nasiman Sapari, Khamaruzaman W. Yusof

Abstract:

Exposure of galena (PbS), tealite (PbSnS2), and other associated minerals during mining activities release lead (Pb) and other heavy metals into the mining water through oxidation and dissolution. Heavy metal pollution has become an environmental challenge. Lead, for instance, can cause toxic effects to human health, including brain damage. Ex-mining pond water was reported to contain lead as high as 69.46 mg/L. Conventional treatment does not easily remove lead from water. A promising and emerging treatment technology for lead removal is the application of the electrocoagulation (EC) process. However, some of the problems associated with EC are systematic reactor design, selection of maximum EC operating parameters, scale-up, among others. This study investigated an EC process for the removal of lead from synthetic ex-mining pond water using a batch reactor and Fe electrodes. The effects of various operating parameters on lead removal efficiency were examined. The results obtained indicated that the maximum removal efficiency of 98.6% was achieved at an initial PH of 9, the current density of 15mA/cm2, electrode spacing of 0.3cm, treatment time of 60 minutes, Liquid Motion of Magnetic Stirring (LM-MS), and electrode arrangement = BP-S. The above experimental data were further modeled and optimized using a 2-Level 4-Factor Full Factorial design, a Response Surface Methodology (RSM). The four factors optimized were the current density, electrode spacing, electrode arrangements, and Liquid Motion Driving Mode (LM). Based on the regression model and the analysis of variance (ANOVA) at 0.01%, the results showed that an increase in current density and LM-MS increased the removal efficiency while the reverse was the case for electrode spacing. The model predicted the optimal lead removal efficiency of 99.962% with an electrode spacing of 0.38 cm alongside others. Applying the predicted parameters, the lead removal efficiency of 100% was actualized. The electrode and energy consumptions were 0.192kg/m3 and 2.56 kWh/m3 respectively. Meanwhile, the adsorption kinetic studies indicated that the overall lead adsorption system belongs to the pseudo-second-order kinetic model. The adsorption dynamics were also random, spontaneous, and endothermic. The higher temperature of the process enhances adsorption capacity. Furthermore, the adsorption isotherm fitted the Freundlish model more than the Langmuir model; describing the adsorption on a heterogeneous surface and showed good adsorption efficiency by the Fe electrodes. Adsorption of Pb2+ onto the Fe electrodes was a complex reaction, involving more than one mechanism. The overall results proved that EC is an efficient technique for lead removal from synthetic mining pond water. The findings of this study would have application in the scale-up of EC reactor and in the design of water treatment plants for feed-water sources that contain lead using the electrocoagulation method.

Keywords: ex-mining water, electrocoagulation, lead, adsorption kinetics

Procedia PDF Downloads 149
1783 A Green Method for Selective Spectrophotometric Determination of Hafnium(IV) with Aqueous Extract of Ficus carica Tree Leaves

Authors: A. Boveiri Monji, H. Yousefnia, M. Haji Hosseini, S. Zolghadri

Abstract:

A clean spectrophotometric method for the determination of hafnium by using a green reagent, acidic extract of Ficus carica tree leaves is developed. In 6-M hydrochloric acid, hafnium reacts with this reagent to form a yellow product. The formed product shows maximum absorbance at 421 nm with a molar absorptivity value of 0.28 × 104 l mol⁻¹ cm⁻¹, and the method was linear in the 2-11 µg ml⁻¹ concentration range. The detection limit value was found to be 0.312 µg ml⁻¹. Except zirconium and iron, the selectivity was good, and most of the ions did not show any significant spectral interference at concentrations up to several hundred times. The proposed method was green, simple, low cost, and selective.

Keywords: spectrophotometric determination, Ficus caricatree leaves, synthetic reagents, hafnium

Procedia PDF Downloads 209
1782 Treatment of Leather Industry Wastewater with Advance Treatment Methods

Authors: Seval Yilmaz, Filiz Bayrakci Karel, Ali Savas Koparal

Abstract:

Textile products produced by leather have been indispensable for human consumption. Various chemicals are used to enhance the durability of end-products in the processing of leather products. The wastewaters from the leather industry which contain these chemicals exhibit toxic effects on the receiving environment and threaten the natural ecosystem. In this study, leather industry wastewater (LIW), which has high loads of contaminants, was treated using advanced treatment techniques instead of conventional methods. During the experiments, the performance of electrochemical methods was investigated. During the electrochemical experiments, the performance of batch electrooxidation (EO) using boron-doped diamond (BDD) electrodes with monopolar configuration for removal of chemical oxygen demand (COD) from LIW were investigated. The influences of electrolysis time, current density (which varies as 5 mA/cm², 10 mA/cm², 20 mA/cm², 30 mA/cm², 50 mA/cm²) and initial pH (which varies as 3,80 (natural pH of LIW), 7, 9) on removal efficiency were investigated in a batch stirred cell to determine the best treatment conditions. The current density applied to the electrochemical reactors is directly proportional to the consumption of electric energy, so electrical energy consumption was monitored during the experiment. The best experimental conditions obtained in electrochemical studies were as follows: electrolysis time = 60 min, current density = 30.0 mA/cm², pH 7. Using these parameters, 53.59% COD removal rates for LIW was achieved and total energy consumption was obtained as 13.03 kWh/m³. It is concluded that electrooxidation process constitutes a plausible and developable method for the treatment of LIW.

Keywords: BDD electrodes, COD removal, electrochemical treatment, leather industry wastewater

Procedia PDF Downloads 159
1781 Feasibility Studies on the Removal of Fluoride from Aqueous Solution by Adsorption Using Agro-Based Waste Materials

Authors: G. Anusha, J. Raja Murugadoss

Abstract:

In recent years, the problem of water contaminant is drastically increasing due to the disposal of industrial wastewater containing iron, fluoride, mercury, lead, cadmium, phosphorus, silver etc. into water bodies. The non-biodegradable heavy metals could accumulate in the human system through food chain and cause various dreadful diseases and permanent disabilities and in worst cases it leads to casual losses. Further, the presence of the excess quantity of such heavy metals viz. Lead, Cadmium, Chromium, Nickel, Zinc, Copper, Iron etc. seriously affect the natural quality of potable water and necessitates the treatment process for removal. Though there are dozens of standard procedures available for the removal of heavy metals, their cost keeps the industrialists away from adopting such technologies. In the present work, an attempt has been made to remove such contaminants particularly fluoride and to study the efficiency of the removal of fluoride by adsorption using a new agro-based materials namely Limonia acidissima and Emblica officinalis which is commonly referred as wood apple and gooseberry respectively. Accordingly a set of experiments has been conducted using batch and column processes, with the help of activated carbon prepared from the shell of wood apple and seeds of gooseberries. Experiments reveal that the adsorption capacity of the shell of wood apple is significant to yield promising solutions.

Keywords: adsorption, fluoride, agro-based waste materials, Limonia acidissima, Emblica officinalis

Procedia PDF Downloads 428
1780 A Sustainable and Low-Cost Filter to Treat Pesticides in Water

Authors: T. Abbas, J. McEvoy, E. Khan

Abstract:

Pesticide contamination in water supply is a common environmental problem in rural agricultural communities. Advanced water treatment processes such as membrane filtration and adsorption on activated carbon only remove pesticides from water without degrading them into less toxic/easily degradable compounds leaving behind contaminated brine and activated carbon that need to be managed. Rural communities which normally cannot afford expensive water treatment technologies need an economical and sustainable filter which not only treats pesticides from water but also degrades them into benign products. In this study, iron turning waste experimented as potential point-of-use filtration media for the removal/degradation of a mixture of six chlorinated pesticides (lindane, heptachlor, endosulfan, dieldrin, endrin, and DDT) in water. As a common and traditional medium for water filtration, sand was also tested along with iron turning waste. Iron turning waste was characterized using scanning electron microscopy and energy dispersive X-Ray analyzer. Four glass columns with different filter media layer configurations were set up: (1) only sand, (2) only iron turning, (3) sand and iron turning (two separate layers), and (4) sand, iron turning and sand (three separate layers). The initial pesticide concentration and flow rate were 2 μg/L and 10 mL/min. Results indicate that sand filtration was effective only for the removal of DDT (100%) and endosulfan (94-96%). Iron turning filtration column effectively removed endosulfan, endrin, and dieldrin (85-95%) whereas the lindane and DDT removal were 79-85% and 39-56%, respectively. The removal efficiencies for heptachlor, endosulfan, endrin, dieldrin, and DDT were 90-100% when sand and iron turning waste (two separate layers) were used. However, better removal efficiencies (93-100%) for five out of six pesticides were achieved, when sand, iron turning and sand (three separate layers) were used as filtration media. Moreover, the effects of water pH, amounts of media, and minerals present in water such as magnesium, sodium, calcium, and nitrate on the removal of pesticides were examined. Results demonstrate that iron turning waste efficiently removed all the pesticides under studied parameters. Also, it completely de-chlorinated all the pesticides studied and based on the detection of by-products, the degradation mechanisms for all six pesticides were proposed.

Keywords: pesticide contamination, rural communities, iron turning waste, filtration

Procedia PDF Downloads 255
1779 A Survey on Types of Noises and De-Noising Techniques

Authors: Amandeep Kaur

Abstract:

Digital Image processing is a fundamental tool to perform various operations on the digital images for pattern recognition, noise removal and feature extraction. In this paper noise removal technique has been described for various types of noises. This paper comprises discussion about various noises available in the image due to different environmental, accidental factors. In this paper, various de-noising approaches have been discussed that utilize different wavelets and filters for de-noising. By analyzing various papers on image de-noising we extract that wavelet based de-noise approaches are much effective as compared to others.

Keywords: de-noising techniques, edges, image, image processing

Procedia PDF Downloads 336
1778 Microwave Assisted Extractive Desulfurization of Gas Oil Feedstock

Authors: Hamida Y. Mostafa, Ghada E. Khedr, Dina M. Abd El-Aty

Abstract:

Sulfur compound removal from petroleum fractions is a critical component of environmental protection demands. Solvent extraction, oxidative desulfurization, or hydro-treatment techniques have traditionally been used as the removal processes. While all methods were capable of eliminating sulfur compounds at moderate rates, they had some limitations. A major problem with these routes is their high running expenses, which are caused by their prolonged operation times and high energy consumption. Therefore, new methods for removing sulfur are still necessary. In the current study, a simple assisted desulfurization system for gas oil fraction has been successfully developed using acetonitrile and methanol as a solvent under microwave irradiation. The key variables affecting sulfur removal have been studied, including microwave power, irradiation time, and solvent to gas oil volume ratio. At the conclusion of the research that is being presented, promising results have been found. The results show that a microwave-assisted extractive desulfurization method had remove sulfur with a high degree of efficiency under the suitable conditions.

Keywords: extractive desulfurization, microwave assisted extraction, petroleum fractions, acetonitrile and methanol

Procedia PDF Downloads 103