Search results for: predictive medicine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2477

Search results for: predictive medicine

2267 Derivation of a Risk-Based Level of Service Index for Surface Street Network Using Reliability Analysis

Authors: Chang-Jen Lan

Abstract:

Current Level of Service (LOS) index adopted in Highway Capacity Manual (HCM) for signalized intersections on surface streets is based on the intersection average delay. The delay thresholds for defining LOS grades are subjective and is unrelated to critical traffic condition. For example, an intersection delay of 80 sec per vehicle for failing LOS grade F does not necessarily correspond to the intersection capacity. Also, a specific measure of average delay may result from delay minimization, delay equality, or other meaningful optimization criteria. To that end, a reliability version of the intersection critical degree of saturation (v/c) as the LOS index is introduced. Traditionally, the level of saturation at a signalized intersection is defined as the ratio of critical volume sum (per lane) to the average saturation flow (per lane) during all available effective green time within a cycle. The critical sum is the sum of the maximal conflicting movement-pair volumes in northbound-southbound and eastbound/westbound right of ways. In this study, both movement volume and saturation flow are assumed log-normal distributions. Because, when the conditions of central limit theorem obtain, multiplication of the independent, positive random variables tends to result in a log-normal distributed outcome in the limit, the critical degree of saturation is expected to be a log-normal distribution as well. Derivation of the risk index predictive limits is complex due to the maximum and absolute value operators, as well as the ratio of random variables. A fairly accurate functional form for the predictive limit at a user-specified significant level is yielded. The predictive limit is then compared with the designated LOS thresholds for the intersection critical degree of saturation (denoted as X

Keywords: reliability analysis, level of service, intersection critical degree of saturation, risk based index

Procedia PDF Downloads 130
2266 Development of a One Health and Comparative Medicine Curriculum for Medical Students

Authors: Aliya Moreira, Blake Duffy, Sam Kosinski, Kate Heckman, Erika Steensma

Abstract:

Introduction: The One Health initiative promotes recognition of the interrelatedness between people, animals, plants, and their shared environment. The field of comparative medicine studies the similarities and differences between humans and animals for the purpose of advancing medical sciences. Currently, medical school education is narrowly focused on human anatomy and physiology, but as the COVID-19 pandemic has demonstrated, a holistic understanding of health requires comprehension of the interconnection between health and the lived environment. To prepare future physicians for unique challenges from emerging zoonoses to climate change, medical students can benefit from exposure to and experience with One Health and Comparative Medicine content. Methods: In January 2020, an elective course for medical students on One Health and Comparative Medicine was created to provide medical students with the background knowledge necessary to understand the applicability of animal and environmental health in medical research and practice. The 2-week course was continued in January 2021, with didactic and experiential activities taking place virtually due to the COVID-19 pandemic. In response to student feedback, lectures were added to expand instructional content on zoonotic and wildlife diseases for the second iteration of the course. Other didactic sessions included interprofessional lectures from 20 physicians, veterinarians, public health professionals, and basic science researchers. The first two cohorts of students were surveyed regarding One Health and Comparative Medicine concepts at the beginning and conclusion of the course. Results: 16 medical students have completed the comparative medicine course thus far, with 87.5% (n=14) completing pre-and post-course evaluations. 100% of student respondents indicated little to no exposure to comparative medicine or One Health concepts during medical school. Following the course, 100% of students felt familiar or very familiar with comparative medicine and One Health concepts. To assess course efficacy, questions were evaluated on a five-point Likert scale. 100% agreed or strongly agreed that learning Comparative Medicine and One Health topics augmented their medical education. 100% agreed or strongly agreed that a course covering this content should be regularly offered to medical students. Conclusions: Data from the student evaluation surveys demonstrate that the Comparative Medicine course was successful in increasing medical student knowledge of Comparative Medicine and One Health. Results also suggest that interprofessional training in One Health and Comparative Medicine is applicable and useful for medical trainees. Future iterations of this course could capitalize on the inherently interdisciplinary nature of these topics by enrolling students from veterinary and public health schools into a longitudinal course. Such recruitment may increase the course’s value by offering multidisciplinary student teams the opportunity to conduct research projects, thereby strengthening both the individual learning experience as well as sparking future interprofessional research ventures. Overall, these efforts to educate medical students in One Health topics should be reproducible at other institutions, preparing more future physicians for the diverse challenges they will encounter in practice.

Keywords: medical education, interprofessional instruction, one health, comparative medicine

Procedia PDF Downloads 107
2265 Evaluating the Suitability and Performance of Dynamic Modulus Predictive Models for North Dakota’s Asphalt Mixtures

Authors: Duncan Oteki, Andebut Yeneneh, Daba Gedafa, Nabil Suleiman

Abstract:

Most agencies lack the equipment required to measure the dynamic modulus (|E*|) of asphalt mixtures, necessitating the need to use predictive models. This study compared measured |E*| values for nine North Dakota asphalt mixes using the original Witczak, modified Witczak, and Hirsch models. The influence of temperature on the |E*| models was investigated, and Pavement ME simulations were conducted using measured |E*| and predictions from the most accurate |E*| model. The results revealed that the original Witczak model yielded the lowest Se/Sy and highest R² values, indicating the lowest bias and highest accuracy, while the poorest overall performance was exhibited by the Hirsch model. Using predicted |E*| as inputs in the Pavement ME generated conservative distress predictions compared to using measured |E*|. The original Witczak model was recommended for predicting |E*| for low-reliability pavements in North Dakota.

Keywords: asphalt mixture, binder, dynamic modulus, MEPDG, pavement ME, performance, prediction

Procedia PDF Downloads 44
2264 Effectiveness of the Lacey Assessment of Preterm Infants to Predict Neuromotor Outcomes of Premature Babies at 12 Months Corrected Age

Authors: Thanooja Naushad, Meena Natarajan, Tushar Vasant Kulkarni

Abstract:

Background: The Lacey Assessment of Preterm Infants (LAPI) is used in clinical practice to identify premature babies at risk of neuromotor impairments, especially cerebral palsy. This study attempted to find the validity of the Lacey assessment of preterm infants to predict neuromotor outcomes of premature babies at 12 months corrected age and to compare its predictive ability with the brain ultrasound. Methods: This prospective cohort study included 89 preterm infants (45 females and 44 males) born below 35 weeks gestation who were admitted to the neonatal intensive care unit of a government hospital in Dubai. Initial assessment was done using the Lacey assessment after the babies reached 33 weeks postmenstrual age. Follow up assessment on neuromotor outcomes was done at 12 months (± 1 week) corrected age using two standardized outcome measures, i.e., infant neurological international battery and Alberta infant motor scale. Brain ultrasound data were collected retrospectively. Data were statistically analyzed, and the diagnostic accuracy of the Lacey assessment of preterm infants (LAPI) was calculated -when used alone and in combination with the brain ultrasound. Results: On comparison with brain ultrasound, the Lacey assessment showed superior specificity (96% vs. 77%), higher positive predictive value (57% vs. 22%), and higher positive likelihood ratio (18 vs. 3) to predict neuromotor outcomes at one year of age. The sensitivity of Lacey assessment was lower than brain ultrasound (66% vs. 83%), whereas specificity was similar (97% vs. 98%). A combination of Lacey assessment and brain ultrasound results showed higher sensitivity (80%), positive (66%), and negative (98%) predictive values, positive likelihood ratio (24), and test accuracy (95%) than Lacey assessment alone in predicting neurological outcomes. The negative predictive value of the Lacey assessment was similar to that of its combination with brain ultrasound (96%). Conclusion: Results of this study suggest that the Lacey assessment of preterm infants can be used as a supplementary assessment tool for premature babies in the neonatal intensive care unit. Due to its high specificity, Lacey assessment can be used to identify those babies at low risk of abnormal neuromotor outcomes at a later age. When used along with the findings of the brain ultrasound, Lacey assessment has better sensitivity to identify preterm babies at particular risk. These findings have applications in identifying premature babies who may benefit from early intervention services.

Keywords: brain ultrasound, lacey assessment of preterm infants, neuromotor outcomes, preterm

Procedia PDF Downloads 137
2263 Psychological Testing in Industrial/Organizational Psychology: Validity and Reliability of Psychological Assessments in the Workplace

Authors: Melissa C. Monney

Abstract:

Psychological testing has been of interest to researchers for many years as useful tools in assessing and diagnosing various disorders as well as to assist in understanding human behavior. However, for over 20 years now, researchers and laypersons alike have been interested in using them for other purposes, such as determining factors in employee selection, promotion, and even termination. In recent years, psychological assessments have been useful in facilitating workplace decision processing, regarding employee circulation within organizations. This literature review explores four of the most commonly used psychological tests in workplace environments, namely cognitive ability, emotional intelligence, integrity, and personality tests, as organizations have used these tests to assess different factors of human behavior as predictive measures of future employee behaviors. The findings suggest that while there is much controversy and debate regarding the validity and reliability of these tests in workplace settings as they were not originally designed for these purposes, the use of such assessments in the workplace has been useful in decreasing costs and employee turnover as well as increase job satisfaction by ensuring the right employees are selected for their roles.

Keywords: cognitive ability, personality testing, predictive validity, workplace behavior

Procedia PDF Downloads 241
2262 Treatment of Psoriasis through Thai Traditional Medicine

Authors: Boonsri Lertviriyachit

Abstract:

The objective of this research is to investigate the treatment of psoriasis through Thai traditional medicine in the selected areas of 2 east coast provinces; Samudprakarn Province and Chantaburi Province. The informants in this study were two famous and accepted Thai traditional doctors, who have more than 20 year experiences. Data were collected by in depth interviews and participant-observation method. The research instrument included unstructured interviews, camera, and cassette tape to collect data analyzed by descriptive statistics. The results revealed that the 2 Thai traditional doctors were 54 and 85 years old with 25 and 45 years of treatment experiences. The knowledge of Thai traditional medicine was transferred from generations to generations in the family. The learning process was through close observation as an apprentice with the experience ones and assisted them in collecting herbs and learning by handling real case in individual situations. Before being doctors, they had to take exam to get the Thai traditional medical certificate. Knowledge of being Thai traditional doctors included diagnosis and find to the suitable way of treatment. They have to look into disorder physical fundamental factors such as blood circulation, lymph, emotion, and food consumption habit. It is important that the treatment needs to focus on balancing the fundamental factors and to observe contraindication.

Keywords: Thai traditional medicine, psoriasis, Samudprakarn Province, Chantaburi Province

Procedia PDF Downloads 363
2261 Determining Cellular Biomarkers Sensitive to Low Damaging Exposure

Authors: Svetlana Guryeva, Inna Kornienko, Elena Petersen

Abstract:

At present, translational medicine is a rapidly developing branch of biomedicine. The main idea of translational medicine is a practical application of fundamental research. One of the possible applications for translational medicine is researching therapies that improve human age-related organism condition. To fill the gap between experiments and clinical practice, it is necessary to create the standardized system for the investigation of different effects on cellular aging models. In this study, primary human fibroblasts derived from patients of different ages were used as a cellular aging model. The senescence-associated β-galactosidase activity, lipofuscin, γ-H2AX, the reactive oxygen species level, and cell death markers (annexin V/propidium iodide) were used as biomarkers of the cell functional state. The effects of damaging exposures (oxidative stress and heat shock), potential positive factors (metformin and acetaminophen), and their combinations were investigated using the described biomarkers. Oxidative stress and heat shock caused the increase in the levels of all biomarkers, and only the cells from young patients partly coped with stress 3 days after the exposures. Metformin improved the state of pretreatment cells from young and old patients. The acetaminophen did not show significant changes in the biomarker levels compare to the action of metformin. This study proved the opportunity to develop a standardized screening system based on biomarkers of the cell functional state to identify potential positive or negative effects of some physical and chemical exposures. Moreover, such a system can be useful for the aims of regenerative medicine to determine the effect of cell pretreatment before transplantation.

Keywords: biomarkers, primary fibroblasts, regenerative medicine, senescence, test system, translational medicine

Procedia PDF Downloads 401
2260 Human-Computer Interaction Pluriversal Framework for Ancestral Medicine App in Bogota: Asset-Based Design Case Study

Authors: Laura Niño Cáceres, Daisy Yoo, Caroline Hummels

Abstract:

COVID-19 accelerated digital healthcare technology usage in many countries, such as Colombia, whose digital healthcare vision and projects are proof of this. However, with a significant cultural indigenous and Afro-Colombian heritage, only some parts of the country are willing to follow the proposed digital Western approach to health. Our paper presents the national healthcare system’s digital narrative, which we contrast with the micro-narrative of an Afro-Colombian ethnomedicine unit in Bogota called Kilombo Yumma. This ethnomedical unit is building its mobile app to safeguard and represent its ancestral medicine practices in local and national healthcare information systems. Kilombo Yumma is keen on promoting their beliefs and practices, which have been passed on through oral traditions and currently exist in the hands of a few older women. We unraveled their ambition, core beliefs, and practices through asset-based design. These assets outlined pluriversal and decolonizing forms of digital healthcare to increase social justice and connect Western and ancestral medicine digital opportunities through HCI.

Keywords: asset-based design, mobile app, decolonizing HCI, Afro-Colombian ancestral medicine

Procedia PDF Downloads 77
2259 Care at the Intersection of Biomedicine and Traditional Chinese Medicine: Narratives of Integration, Negotiation, and Provision

Authors: Jessica Ding

Abstract:

The field of global health is currently advocating for a resurgence in the use of traditional medicines to improve people-centered care. Healthcare policies are rapidly changing in response; in China, the increasing presence of TCM in the same spaces as biomedicine has led to a new term: integrative medicine. However, the existence of TCM as a part of integrative medicine creates a pressing paradoxical tension where TCM is both seen as a marginalized system within ‘modern’ hospitals and as a modality worth integrating. Additionally, the impact of such shifts has not been fully explored: the World Health Organization for one focuses only on three angles —practices, products, and practitioners— with regards to traditional medicines. Through ten weeks of fieldwork conducted at an urban hospital in Shanghai, China, this research expands the perspective of existing strategies by looking at integrative care through a fourth lens: patients and families. The understanding of self-care, health-seeking behavior, and non-professional caregiving structures are critical to grasping the significance of traditional medicine for people-centered care. Indeed, those individual and informal health care expectations align with the very spaces and needs that traditional medicine has filled before such ideas of integration. It specifically looks at this issue via three processes that operationalize experiences of care: (1) how aspects of TCM are valued within integrative medicine, (2) how negotiations of care occur between patients and doctors, and (3) how 'good quality' caregiving presents in integrative clinical spaces. This research hopes to lend insight into how culturally embedded traditions, bureaucratic and institutional rationalities, and social patterns of health-seeking behavior influence care to shape illness experiences at the intersection of two medical modalities. This analysis of patients’ clinical and illness experiences serves to enrich the narratives of integrative medical care’s ability to provide patient-centered care to determine how international policies are realized at the individual level. This anthropological study of the integration of Traditional Chinese medicine in local contexts can reveal the extent to which global strategies, as promoted by the WHO and the Chinese government actually align with the expectations and perspectives of patients receiving care. Ultimately, this ethnographic analysis of a local Chinese context hopes to inform global policies regarding the future use and integration of traditional medicines.

Keywords: emergent systems, global health, integrative medicine, traditional Chinese medicine, TCM

Procedia PDF Downloads 139
2258 Identification and Force Control of a Two Chambers Pneumatic Soft Actuator

Authors: Najib K. Dankadai, Ahmad 'Athif Mohd Faudzi, Khairuddin Osman, Muhammad Rusydi Muhammad Razif, IIi Najaa Aimi Mohd Nordin

Abstract:

Researches in soft actuators are now growing rapidly because of their adequacy to be applied in sectors like medical, agriculture, biological and welfare. This paper presents system identification (SI) and control of the force generated by a two chambers pneumatic soft actuator (PSA). A force mathematical model for the actuator was identified experimentally using data acquisition card and MATLAB SI toolbox. Two control techniques; a predictive functional control (PFC) and conventional proportional integral and derivative (PID) schemes are proposed and compared based on the identified model for the soft actuator flexible mechanism. Results of this study showed that both of the proposed controllers ensure accurate tracking when the closed loop system was tested with the step, sinusoidal and multi step reference input through MATLAB simulation although the PFC provides a better response than the PID.

Keywords: predictive functional control (PFC), proportional integral and derivative (PID), soft actuator, system identification

Procedia PDF Downloads 323
2257 Predicting Match Outcomes in Team Sport via Machine Learning: Evidence from National Basketball Association

Authors: Jacky Liu

Abstract:

This paper develops a team sports outcome prediction system with potential for wide-ranging applications across various disciplines. Despite significant advancements in predictive analytics, existing studies in sports outcome predictions possess considerable limitations, including insufficient feature engineering and underutilization of advanced machine learning techniques, among others. To address these issues, we extend the Sports Cross Industry Standard Process for Data Mining (SRP-CRISP-DM) framework and propose a unique, comprehensive predictive system, using National Basketball Association (NBA) data as an example to test this extended framework. Our approach follows a holistic methodology in feature engineering, employing both Time Series and Non-Time Series Data, as well as conducting Explanatory Data Analysis and Feature Selection. Furthermore, we contribute to the discourse on target variable choice in team sports outcome prediction, asserting that point spread prediction yields higher profits as opposed to game-winner predictions. Using machine learning algorithms, particularly XGBoost, results in a significant improvement in predictive accuracy of team sports outcomes. Applied to point spread betting strategies, it offers an astounding annual return of approximately 900% on an initial investment of $100. Our findings not only contribute to academic literature, but have critical practical implications for sports betting. Our study advances the understanding of team sports outcome prediction a burgeoning are in complex system predictions and pave the way for potential profitability and more informed decision making in sports betting markets.

Keywords: machine learning, team sports, game outcome prediction, sports betting, profits simulation

Procedia PDF Downloads 101
2256 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation

Authors: Vishwesh Kulkarni, Nikhil Bellarykar

Abstract:

Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.

Keywords: synthetic gene network, network identification, optimization, nonlinear modeling

Procedia PDF Downloads 155
2255 A Discrete Event Simulation Model to Manage Bed Usage for Non-Elective Admissions in a Geriatric Medicine Speciality

Authors: Muhammed Ordu, Eren Demir, Chris Tofallis

Abstract:

Over the past decade, the non-elective admissions in the UK have increased significantly. Taking into account limited resources (i.e. beds), the related service managers are obliged to manage their resources effectively due to the non-elective admissions which are mostly admitted to inpatient specialities via A&E departments. Geriatric medicine is one of specialities that have long length of stay for the non-elective admissions. This study aims to develop a discrete event simulation model to understand how possible increases on non-elective demand over the next 12 months affect the bed occupancy rate and to determine required number of beds in a geriatric medicine speciality in a UK hospital. In our validated simulation model, we take into account observed frequency distributions which are derived from a big data covering the period April, 2009 to January, 2013, for the non-elective admission and the length of stay. An experimental analysis, which consists of 16 experiments, is carried out to better understand possible effects of case studies and scenarios related to increase on demand and number of bed. As a result, the speciality does not achieve the target level in the base model although the bed occupancy rate decreases from 125.94% to 96.41% by increasing the number of beds by 30%. In addition, the number of required beds is more than the number of beds considered in the scenario analysis in order to meet the bed requirement. This paper sheds light on bed management for service managers in geriatric medicine specialities.

Keywords: bed management, bed occupancy rate, discrete event simulation, geriatric medicine, non-elective admission

Procedia PDF Downloads 221
2254 Computed Tomography Myocardial Perfusion on a Patient with Hypertrophic Cardiomyopathy

Authors: Jitendra Pratap, Daphne Prybyszcuk, Luke Elliott, Arnold Ng

Abstract:

Introduction: Coronary CT angiography is a non-invasive imaging technique for the assessment of coronary artery disease and has high sensitivity and negative predictive value. However, the correlation between the degree of CT coronary stenosis and the significance of hemodynamic obstruction is poor. The assessment of myocardial perfusion has mostly been undertaken by Nuclear Medicine (SPECT), but it is now possible to perform stress myocardial CT perfusion (CTP) scans quickly and effectively using CT scanners with high temporal resolution. Myocardial CTP is in many ways similar to neuro perfusion imaging technique, where radiopaque iodinated contrast is injected intravenously, transits the pulmonary and cardiac structures, and then perfuses through the coronary arteries into the myocardium. On the Siemens Force CT scanner, a myocardial perfusion scan is performed using a dynamic axial acquisition, where the scanner shuffles in and out every 1-3 seconds (heart rate dependent) to be able to cover the heart in the z plane. This is usually performed over 38 seconds. Report: A CT myocardial perfusion scan can be utilised to complement the findings of a CT Coronary Angiogram. Implementing a CT Myocardial Perfusion study as part of a routine CT Coronary Angiogram procedure provides a ‘One Stop Shop’ for diagnosis of coronary artery disease. This case study demonstrates that although the CT Coronary Angiogram was within normal limits, the perfusion scan provided additional, clinically significant information in regards to the haemodynamics within the myocardium of a patient with Hypertrophic Obstructive Cardio Myopathy (HOCM). This negated the need for further diagnostics studies such as cardiac ECHO or Nuclear Medicine Stress tests. Conclusion: CT coronary angiography with adenosine stress myocardial CTP was utilised in this case to specifically exclude coronary artery disease in conjunction with accessing perfusion within the hypertrophic myocardium. Adenosine stress myocardial CTP demonstrated the reduced myocardial blood flow within the hypertrophic myocardium, but the coronary arteries did not show any obstructive disease. A CT coronary angiogram scan protocol that incorporates myocardial perfusion can provide diagnostic information on the haemodynamic significance of any coronary artery stenosis and has the potential to be a “One Stop Shop” for cardiac imaging.

Keywords: CT, cardiac, myocardium, perfusion

Procedia PDF Downloads 130
2253 Understanding ASPECTS of Stroke: Interrater Reliability between Emergency Medicine Physician and Radiologist in a Rural Setup

Authors: Vineel Inampudi, Arjun Prakash, Joseph Vinod

Abstract:

Aims and Objectives: To evaluate the interrater reliability in grading ASPECTS score, between emergency medicine physician at first contact and radiologist among patients with acute ischemic stroke. Materials and Methods: We conducted a retrospective analysis of 86 acute ischemic stroke cases referred to the Department of Radiodiagnosis during November 2014 to January 2016. The imaging (plain CT scan) was performed using GE Bright Speed Elite 16 Slice CT Scanner. ASPECTS score was calculated separately by an emergency medicine physician and radiologist. Interrater reliability for total and dichotomized ASPECTS (≥ 6 and < 6) scores were assessed using statistical analysis (ICC and Cohen ĸ coefficients) on SPSS software (v17.0). Results: Interrater agreement for total and dichotomized ASPECTS was substantial (ICC 0.79 and Cohen ĸ 0.68) between the emergency physician and radiologist. Mean difference in ASPECTS between the two readers was only 0.15 with standard deviation of 1.58. No proportionality bias was detected. Bland Altman plot was constructed to demonstrate the distribution of ASPECT differences between the two readers. Conclusion: Substantial interrater agreement was noted in grading ASPECTS between emergency medicine physician at first contact and radiologist thereby confirming its robustness even in a rural setting.

Keywords: ASPECTS, computed tomography, MCA territory, stroke

Procedia PDF Downloads 236
2252 Comparison of Two Neural Networks To Model Margarine Age And Predict Shelf-Life Using Matlab

Authors: Phakamani Xaba, Robert Huberts, Bilainu Oboirien

Abstract:

The present study was aimed at developing & comparing two neural-network-based predictive models to predict shelf-life/product age of South African margarine using free fatty acid (FFA), water droplet size (D3.3), water droplet distribution (e-sigma), moisture content, peroxide value (PV), anisidine valve (AnV) and total oxidation (totox) value as input variables to the model. Brick margarine products which had varying ages ranging from fresh i.e. week 0 to week 47 were sourced. The brick margarine products which had been stored at 10 & 25 °C and were characterized. JMP and MATLAB models to predict shelf-life/ margarine age were developed and their performances were compared. The key performance indicators to evaluate the model performances were correlation coefficient (CC), root mean square error (RMSE), and mean absolute percentage error (MAPE) relative to the actual data. The MATLAB-developed model showed a better performance in all three performance indicators. The correlation coefficient of the MATLAB model was 99.86% versus 99.74% for the JMP model, the RMSE was 0.720 compared to 1.005 and the MAPE was 7.4% compared to 8.571%. The MATLAB model was selected to be the most accurate, and then, the number of hidden neurons/ nodes was optimized to develop a single predictive model. The optimized MATLAB with 10 neurons showed a better performance compared to the models with 1 & 5 hidden neurons. The developed models can be used by margarine manufacturers, food research institutions, researchers etc, to predict shelf-life/ margarine product age, optimize addition of antioxidants, extend shelf-life of products and proactively troubleshoot for problems related to changes which have an impact on shelf-life of margarine without conducting expensive trials.

Keywords: margarine shelf-life, predictive modelling, neural networks, oil oxidation

Procedia PDF Downloads 195
2251 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification

Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang

Abstract:

This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.

Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI

Procedia PDF Downloads 99
2250 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach

Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim

Abstract:

De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantation

Keywords: De novo malignancy, bilirubin, data mining, transplantation

Procedia PDF Downloads 104
2249 The Investigation of Predictor Affect of Childhood Trauma, Dissociation, Alexithymia, and Gender on Dissociation in University Students

Authors: Gizem Akcan, Erdinc Ozturk

Abstract:

The purpose of the study was to determine some psychosocial variables that predict dissociation in university students. These psychosocial variables were perceived childhood trauma, alexithymia, and gender. 150 (75 males, 75 females) university students (bachelor, master and postgraduate) were enrolled in this study. They were chosen from universities in Istanbul at the education year of 2016-2017. Dissociative Experiences Scale (DES), Childhood Trauma Questionnaire (CTQ) and Toronto Alexithymia Scale were used to assess related variables. Demographic Information Form was given to students in order to have their demographic information. Frequency Distribution, Linear Regression Analysis, and t-test analysis were used for statistical analysis. Childhood trauma and alexithymia were found to have predictive value on dissociation among university students. However, physical abuse, physical neglect and emotional neglect sub dimensions of childhood trauma and externally-oriented thinking sub dimension of alexithymia did not have predictive value on dissociation. Moreover, there was no significant difference between males and females in terms of dissociation scores of participants.

Keywords: childhood trauma, dissociation, alexithymia, gender

Procedia PDF Downloads 393
2248 Potentially Inappropriate Prescribing in Elderly Population

Authors: Ajit Kumar Sah, Rajesh Kumar Jha, Phoolgen Sah, Dev Kumar Shah

Abstract:

Older individuals often suffer from multiple systemic diseases and are particularly more vulnerable to potentially inappropriate medicine prescribing. Inappropriate medication can cause serious medical problem for the elderly. The purpose of this study was to determine the prevalence of potentially inappropriate medicine (PIM) prescribing in older Nepalese patients in a medicine outpatient department. Beers’ criteria are the most widely used tools to assess PIM to elderly patients. Prospective observational analysis of drugs prescribed in medicine out-patient department (OPD) of a hospital of Bharatpur, Chitwan, Nepal during November 2011 to October 2012 to 869 older adults aged 65 years and above. The use of potentially inappropriate medications (PIM) in elderly patients was analyzed using Beers Criteria updated to 2013. In the 869 patients included the average number of drugs prescribed per prescription was 5.56. The most commonly used drugs were atenolol (24.3%), amlodipine (23.16%), paracetamol (17.6%), salbutamol (15.72%) and vitamin B complex (13.26%). The total number of medications prescribed was 4833. At least one instance of PIM was experienced by approximately 26.3% of patients when evaluated using the Beers criteria. Potentially inappropriate medications are highly prevalent among older patients attending medical OPD and are associated with a number of medications prescribed. Further research is warranted to study the impact of PIMs towards health-related outcomes in these elderly.

Keywords: Beers criteria, elderly, polypharmacy, potentially inappropriate medicines

Procedia PDF Downloads 565
2247 Performance and Limitations of Likelihood Based Information Criteria and Leave-One-Out Cross-Validation Approximation Methods

Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer

Abstract:

Model assessment, in the Bayesian context, involves evaluation of the goodness-of-fit and the comparison of several alternative candidate models for predictive accuracy and improvements. In posterior predictive checks, the data simulated under the fitted model is compared with the actual data. Predictive model accuracy is estimated using information criteria such as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the Deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). The goal of an information criterion is to obtain an unbiased measure of out-of-sample prediction error. Since posterior checks use the data twice; once for model estimation and once for testing, a bias correction which penalises the model complexity is incorporated in these criteria. Cross-validation (CV) is another method used for examining out-of-sample prediction accuracy. Leave-one-out cross-validation (LOO-CV) is the most computationally expensive variant among the other CV methods, as it fits as many models as the number of observations. Importance sampling (IS), truncated importance sampling (TIS) and Pareto-smoothed importance sampling (PSIS) are generally used as approximations to the exact LOO-CV and utilise the existing MCMC results avoiding expensive computational issues. The reciprocals of the predictive densities calculated over posterior draws for each observation are treated as the raw importance weights. These are in turn used to calculate the approximate LOO-CV of the observation as a weighted average of posterior densities. In IS-LOO, the raw weights are directly used. In contrast, the larger weights are replaced by their modified truncated weights in calculating TIS-LOO and PSIS-LOO. Although, information criteria and LOO-CV are unable to reflect the goodness-of-fit in absolute sense, the differences can be used to measure the relative performance of the models of interest. However, the use of these measures is only valid under specific circumstances. This study has developed 11 models using normal, log-normal, gamma, and student’s t distributions to improve the PCR stutter prediction with forensic data. These models are comprised of four with profile-wide variances, four with locus specific variances, and three which are two-component mixture models. The mean stutter ratio in each model is modeled as a locus specific simple linear regression against a feature of the alleles under study known as the longest uninterrupted sequence (LUS). The use of AIC, BIC, DIC, and WAIC in model comparison has some practical limitations. Even though, IS-LOO, TIS-LOO, and PSIS-LOO are considered to be approximations of the exact LOO-CV, the study observed some drastic deviations in the results. However, there are some interesting relationships among the logarithms of pointwise predictive densities (lppd) calculated under WAIC and the LOO approximation methods. The estimated overall lppd is a relative measure that reflects the overall goodness-of-fit of the model. Parallel log-likelihood profiles for the models conditional on equal posterior variances in lppds were observed. This study illustrates the limitations of the information criteria in practical model comparison problems. In addition, the relationships among LOO-CV approximation methods and WAIC with their limitations are discussed. Finally, useful recommendations that may help in practical model comparisons with these methods are provided.

Keywords: cross-validation, importance sampling, information criteria, predictive accuracy

Procedia PDF Downloads 391
2246 Epistemic Stance in Chinese Medicine Translation: A Systemic Functional Perspective

Authors: Yan Yue

Abstract:

Epistemic stance refers to the writer’s judgement about the certainty of the proposition, which demonstrates writer’s degree of commitment and confidence to the status of the information. Epistemic stance can exert great consequence to the validity or reliability of the values of a statement, however, to date, it receives little attention in translations studies, especially from the perspective of systemic functional linguistics (SFL) and with the relation to translator’s domain knowledge. This study is corpus-based research carried out in SFL perspective, which investigates translator’s epistemic stance pattern in Chinese medicine discourse translations by translators with and without medical domain knowledge. Overall, our findings show that all translators tend to be neither too assertive nor too doubted about Chinese medicine statements, and they all tend to express their epistemic stance in a subjective rather than objective way. Individually, there is a clear pattern of epistemic stance marked off by translators’ medical expertise, which further consolidates the previous finding that epistemic asymmetry is found most salient between lay people and professionals. However, contrary to our hypothesis, translators as clinicians who have more medical knowledge are found to be more tentative to TCM statements than translators as non-clinicians. This finding could serve to refine the statements about the relation between writer’s domain knowledge and epistemic stance-taking and the current debate whether Chinese medicine texts should only be translated by clinicians.

Keywords: epistemic stance, domain knowledge, SFL, medical translation

Procedia PDF Downloads 145
2245 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles

Authors: Masood Roohi, Amir Taghavipour

Abstract:

This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.

Keywords: hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time

Procedia PDF Downloads 351
2244 Virtualization of Biomass Colonization: Potential of Application in Precision Medicine

Authors: Maria Valeria De Bonis, Gianpaolo Ruocco

Abstract:

Nowadays, computational modeling is paving new design and verification ways in a number of industrial sectors. The technology is ripe to challenge some case in the Bioengineering and Medicine frameworks: for example, looking at the strategical and ethical importance of oncology research, efforts should be made to yield new and powerful resources to tumor knowledge and understanding. With these driving motivations, we approach this gigantic problem by using some standard engineering tools such as the mathematics behind the biomass transfer. We present here some bacterial colonization studies in complex structures. As strong analogies hold with some tumor proliferation, we extend our study to a benchmark case of solid tumor. By means of a commercial software, we model biomass and energy evolution in arbitrary media. The approach will be useful to cast virtualization cases of cancer growth in human organs, while augmented reality tools will be used to yield for a realistic aid to informed decision in treatment and surgery.

Keywords: bacteria, simulation, tumor, precision medicine

Procedia PDF Downloads 333
2243 The Effect of Parathyroid Hormone on Aldosterone Secretion in Patients with Primary Hyperparathyroidism

Authors: Branka Milicic Stanic, Romana Mijovic

Abstract:

In primary hyperparathyroidism, an increased risk of developing cardiovascular disease may exist due to increased activity of the renin-angiotensin-aldosterone system (RAAS). In adenomatous altered tissue of parathyroid gland, compared to normal tissue, there are two to fourfold increase in the expression of type 1 angiotensin II receptors. As there is a clear evidence of the independent role of aldosterone on the cardiovascular system, the aim of this study was to evaluate the existence of an association between aldosterone secretion and parathyroid hormone in patients with primary hyperparathyroidism. This study included 48 patients with elevated parathyroid hormone who had come to the Departement of Nuclear Medicine, Clinical Center of Vojvodina, for Parathyroid Scintigraphy. The control group consisted of 30 healthy subjects who matched age and gender to the study group. All the results were statistically processed by statistical package STATISTICA 14 (Statsoft Inc,Tulsa, OK, USA). The survey was conducted between February 2017 and April 2018 at the Departement of Nuclear Medicine and at the Departement for Endocinology Diagnoistics, in Clinical Center of Vojvodina, Novi Sad. Compared to the control group, the study group had statistically significantly higher values of aldosterone (p=0.028), total calcium (p=0.01), ionized calcium (p=0.003) and parathyroid hormone (N-TACT PTH) (p=0.00), while statistically a significant lower levels in the study group were for phosphorus (p=0.003) and vitamin D (p=0.04). A linear correlation analysis in the study group revealed a statistically significant degree of positive correlation between renin and N-TACT PTH (r=0.688, p<0.05); renin and calcium (r=0.673, p<0.05) and renin and ionized calcium (r=0.641, p<0.05). Serum aldosterone and parathyroid hormone levels (N-TACT) were correlated positively in patients with primary hyperparathyroidism (r=0.509, p<0.05). According to the linear correlation analysis in the control group, aldosterone showed no positive correlation with N-TACT PTH (r=-0.285, p>0.05), as well as total and ionized calcium (r=-0.200, p>0.05; r=-0.313, p>0.05). In multivariate regression analysis of the study group, the strongest predictive variable of aldosterone secretion was N-TACT PTH (p=0.011). Aldosterone correlated positively to PTH levels in patients with primary hyperparathyroidism, and the fact is that in these patients aldosterone might be a key mediator of cardiovascular symptoms. All this knowledge should help to find new treatments to prevent cardiovascular disease.

Keywords: aldosterone, hyperparathyroidism, parathyroid hormone, parathyroid gland

Procedia PDF Downloads 136
2242 Development of a Predictive Model to Prevent Financial Crisis

Authors: Tengqin Han

Abstract:

Delinquency has been a crucial factor in economics throughout the years. Commonly seen in credit card and mortgage, it played one of the crucial roles in causing the most recent financial crisis in 2008. In each case, a delinquency is a sign of the loaner being unable to pay off the debt, and thus may cause a lost of property in the end. Individually, one case of delinquency seems unimportant compared to the entire credit system. China, as an emerging economic entity, the national strength and economic strength has grown rapidly, and the gross domestic product (GDP) growth rate has remained as high as 8% in the past decades. However, potential risks exist behind the appearance of prosperity. Among the risks, the credit system is the most significant one. Due to long term and a large amount of balance of the mortgage, it is critical to monitor the risk during the performance period. In this project, about 300,000 mortgage account data are analyzed in order to develop a predictive model to predict the probability of delinquency. Through univariate analysis, the data is cleaned up, and through bivariate analysis, the variables with strong predictive power are detected. The project is divided into two parts. In the first part, the analysis data of 2005 are split into 2 parts, 60% for model development, and 40% for in-time model validation. The KS of model development is 31, and the KS for in-time validation is 31, indicating the model is stable. In addition, the model is further validation by out-of-time validation, which uses 40% of 2006 data, and KS is 33. This indicates the model is still stable and robust. In the second part, the model is improved by the addition of macroeconomic economic indexes, including GDP, consumer price index, unemployment rate, inflation rate, etc. The data of 2005 to 2010 is used for model development and validation. Compared with the base model (without microeconomic variables), KS is increased from 41 to 44, indicating that the macroeconomic variables can be used to improve the separation power of the model, and make the prediction more accurate.

Keywords: delinquency, mortgage, model development, model validation

Procedia PDF Downloads 226
2241 The Application of Local Wisdom in Health Care of Early Childhood at Ban Nam Chieo Community, Laem Ngop, Trat Province

Authors: Supalak Fakkhum, Wannita Pochanakul

Abstract:

This research is qualitative research that aims to study the application of local wisdom in health care of early childhood at Ban Nam Chieo Community, Laem Ngop, Trat Province. The target is one folk medicine healer and 45 parents who have children or grandchildren aged between 0-5 years. The folk medicine healer was interviewed and observed during early childhood health care practice. Parents were interviewed. The results showed that local wisdom in health care of early childhood are as follows: 1. Local wisdom about early childhood diseases: It is believed that the disease was determined while the child was still in the womb, in the third month of pregnancy. When a child is born, they will have La, La-ong and Saang diseases, which are URI (upper respiratory infection) and DI (diarrhea) diseases. Supernatural aspect is also considered. 2. The treatment is chosen to match the symptoms of the disease. Caring for early childhood includes psychological therapy by rituals and spells. 3. For local wisdom concerning prevention and health promotion, parents normally bring their child to folk medicine healers for “throat paint” as an act of protection and health promotion. Folk healers often prescribe food according to belief and local wisdom.

Keywords: local wisdom, early childhood, folk medicine, healer

Procedia PDF Downloads 478
2240 Online Learning for Modern Business Models: Theoretical Considerations and Algorithms

Authors: Marian Sorin Ionescu, Olivia Negoita, Cosmin Dobrin

Abstract:

This scientific communication reports and discusses learning models adaptable to modern business problems and models specific to digital concepts and paradigms. In the PAC (probably approximately correct) learning model approach, in which the learning process begins by receiving a batch of learning examples, the set of learning processes is used to acquire a hypothesis, and when the learning process is fully used, this hypothesis is used in the prediction of new operational examples. For complex business models, a lot of models should be introduced and evaluated to estimate the induced results so that the totality of the results are used to develop a predictive rule, which anticipates the choice of new models. In opposition, for online learning-type processes, there is no separation between the learning (training) and predictive phase. Every time a business model is approached, a test example is considered from the beginning until the prediction of the appearance of a model considered correct from the point of view of the business decision. After choosing choice a part of the business model, the label with the logical value "true" is known. Some of the business models are used as examples of learning (training), which helps to improve the prediction mechanisms for future business models.

Keywords: machine learning, business models, convex analysis, online learning

Procedia PDF Downloads 138
2239 The Role of Mass Sport Guidance in the Health Service Industry of China

Authors: Qiu Jian-Rong, Li Qing-Hui, Zhan Dong, Zhang Lei

Abstract:

Facing the problem of the demand of economic restructuring and risk of social economy stagnation due to the ageing of population, the Health Service Industry will play a very important role in the structure of industry in the future. During the process, the orient of Chinese sports medicine as well as the joint with preventive medicine, and the integration with data bank and cloud computing will be involved.

Keywords: China, the health service industry, mass sport, data bank

Procedia PDF Downloads 626
2238 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles

Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan

Abstract:

Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.

Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks

Procedia PDF Downloads 52