Search results for: match outcome forecasting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2955

Search results for: match outcome forecasting

2745 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach

Authors: Dongkwon Han, Sangho Kim, Sunil Kwon

Abstract:

Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.

Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance

Procedia PDF Downloads 196
2744 Forecast Based on an Empirical Probability Function with an Adjusted Error Using Propagation of Error

Authors: Oscar Javier Herrera, Manuel Angel Camacho

Abstract:

This paper addresses a cutting edge method of business demand forecasting, based on an empirical probability function when the historical behavior of the data is random. Additionally, it presents error determination based on the numerical method technique ‘propagation of errors’. The methodology was conducted characterization and process diagnostics demand planning as part of the production management, then new ways to predict its value through techniques of probability and to calculate their mistake investigated, it was tools used numerical methods. All this based on the behavior of the data. This analysis was determined considering the specific business circumstances of a company in the sector of communications, located in the city of Bogota, Colombia. In conclusion, using this application it was possible to obtain the adequate stock of the products required by the company to provide its services, helping the company reduce its service time, increase the client satisfaction rate, reduce stock which has not been in rotation for a long time, code its inventory, and plan reorder points for the replenishment of stock.

Keywords: demand forecasting, empirical distribution, propagation of error, Bogota

Procedia PDF Downloads 630
2743 Comparison Of Data Mining Models To Predict Future Bridge Conditions

Authors: Pablo Martinez, Emad Mohamed, Osama Mohsen, Yasser Mohamed

Abstract:

Highway and bridge agencies, such as the Ministry of Transportation in Ontario, use the Bridge Condition Index (BCI) which is defined as the weighted condition of all bridge elements to determine the rehabilitation priorities for its bridges. Therefore, accurate forecasting of BCI is essential for bridge rehabilitation budgeting planning. The large amount of data available in regard to bridge conditions for several years dictate utilizing traditional mathematical models as infeasible analysis methods. This research study focuses on investigating different classification models that are developed to predict the bridge condition index in the province of Ontario, Canada based on the publicly available data for 2800 bridges over a period of more than 10 years. The data preparation is a key factor to develop acceptable classification models even with the simplest one, the k-NN model. All the models were tested, compared and statistically validated via cross validation and t-test. A simple k-NN model showed reasonable results (within 0.5% relative error) when predicting the bridge condition in an incoming year.

Keywords: asset management, bridge condition index, data mining, forecasting, infrastructure, knowledge discovery in databases, maintenance, predictive models

Procedia PDF Downloads 191
2742 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting

Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos

Abstract:

Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.

Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning

Procedia PDF Downloads 107
2741 Earthquake Identification to Predict Tsunami in Andalas Island, Indonesia Using Back Propagation Method and Fuzzy TOPSIS Decision Seconder

Authors: Muhamad Aris Burhanudin, Angga Firmansyas, Bagus Jaya Santosa

Abstract:

Earthquakes are natural hazard that can trigger the most dangerous hazard, tsunami. 26 December 2004, a giant earthquake occurred in north-west Andalas Island. It made giant tsunami which crushed Sumatra, Bangladesh, India, Sri Lanka, Malaysia and Singapore. More than twenty thousand people dead. The occurrence of earthquake and tsunami can not be avoided. But this hazard can be mitigated by earthquake forecasting. Early preparation is the key factor to reduce its damages and consequences. We aim to investigate quantitatively on pattern of earthquake. Then, we can know the trend. We study about earthquake which has happened in Andalas island, Indonesia one last decade. Andalas is island which has high seismicity, more than a thousand event occur in a year. It is because Andalas island is in tectonic subduction zone of Hindia sea plate and Eurasia plate. A tsunami forecasting is needed to mitigation action. Thus, a Tsunami Forecasting Method is presented in this work. Neutral Network has used widely in many research to estimate earthquake and it is convinced that by using Backpropagation Method, earthquake can be predicted. At first, ANN is trained to predict Tsunami 26 December 2004 by using earthquake data before it. Then after we get trained ANN, we apply to predict the next earthquake. Not all earthquake will trigger Tsunami, there are some characteristics of earthquake that can cause Tsunami. Wrong decision can cause other problem in the society. Then, we need a method to reduce possibility of wrong decision. Fuzzy TOPSIS is a statistical method that is widely used to be decision seconder referring to given parameters. Fuzzy TOPSIS method can make the best decision whether it cause Tsunami or not. This work combines earthquake prediction using neural network method and using Fuzzy TOPSIS to determine the decision that the earthquake triggers Tsunami wave or not. Neural Network model is capable to capture non-linear relationship and Fuzzy TOPSIS is capable to determine the best decision better than other statistical method in tsunami prediction.

Keywords: earthquake, fuzzy TOPSIS, neural network, tsunami

Procedia PDF Downloads 493
2740 Treatment Outcome of Cutaneous Leishmaniasis and Its Associated Factors among Admitted Patients in All Africa Leprosy Rehabilitation and Training Center Hospital, Ethiopia

Authors: Kebede Mairie, Getahun Belete, Mitike Abeba

Abstract:

Background: Leishmania aethiopica is a peculiar parasite causing cutaneous leishmaniasis in Ethiopia and its mainstay treatment is Sodium Stibogluconate. However, its treatment outcome in Ethiopia is not well documented. Objectives: To determine the treatment outcome of admitted cutaneous leishmaniasis patients and its associated factors in Addis Ababa, Ethiopia. Methods: A retrospective study was conducted from 1st November 2021 to 30th March 2022. Medical records of all cutaneous leishmaniasis-diagnosed and admitted patients who received parenteral sodium stibogluconate at All Africa Leprosy Rehabilitation and Training Center (ALERT) hospital, the main Leishmania treatment center in Ethiopia from July 2011 to September 2021 were reviewed. Results: A total of 827 charts of admitted cases from July 2011 to September 2021 were retrieved, but 667 (80.65%) were reviewed. Improvement in the treatment outcome was recorded in 93.36 % in the first course of SSG treatment and 96.23%, 94.62%, and 96.97% subsequently in the second, third and fourth treatment courses, respectively. Female gender and diffuse cutaneous leishmaniasis were the two predictive determinants in the treatment of cutaneous leishmaniasis. Conclusion: The study shows that parenteral sodium stibogluconate therapy treats hospitalized cutaneous leishmaniasis patients well, with female gender and diffuse cutaneous leishmaniasis having poor outcomes suggesting the need for a different approach for diffuse cutaneous leishmaniasis patients.

Keywords: cutaneous leishmaniasis, leishmania aethiopica, sodium stibogluconate, diffuse cutaneous leishmaniasis, pentostam

Procedia PDF Downloads 77
2739 The Effect of Diet Intervention for Breast Cancer: A Meta-Analysis

Authors: Bok Yae Chung, Eun Hee Oh

Abstract:

Breast cancer patients require more nutritional interventions than others. However, a few studies have attempted to assess the overall nutritional status, to reduce body weight and BMI by improving diet, and to improve the prognosis of cancer for breast cancer patients. The purpose of this study was to evaluate the effect of diet intervention in the breast cancer patients through meta-analysis. For the study purpose, 16 studies were selected by using PubMed, ScienceDirect, ProQuest and CINAHL. Meta-analysis was performed using a random-effects model, and the effect size on outcome variables in breast cancer was calculated. The effect size for outcome variables of diet intervention was a large effect size. For heterogeneity, moderator analysis was performed using intervention type and intervention duration. All moderators did not significant difference. Diet intervention has significant positive effects on outcome variables in breast cancer. As a result, it is suggested that the timing of the intervention should be no more than six months, but a strategy for sustaining long-term intervention effects should be added if nutritional intervention is to be administered for breast cancer patients in the future.

Keywords: breast cancer, diet, mete-analysis, intervention

Procedia PDF Downloads 434
2738 Forecasting the Sea Level Change in Strait of Hormuz

Authors: Hamid Goharnejad, Amir Hossein Eghbali

Abstract:

Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One models of Discrete Wavelet artificial Neural Network (DWNN) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and predictands to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 to 105 cm. Furthermore the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.

Keywords: climate change scenarios, sea-level rise, strait of Hormuz, forecasting

Procedia PDF Downloads 271
2737 Outcome of Obstetric Admission to General Intensive Care over a Period of 3 Years

Authors: Kamel Abdelaziz Mohamed

Abstract:

Intoduction:Inadequate knowledge about obstetric admission and infrequent dealing with the obstetric patients in ICU results in high mortality and morbidity. Aim of the work:To evaluate the indications, course, severity of illness, and outcome of obstetric patients admitted to the intensive care unit (ICU). Patients and Methods: We collected baseline data and acute physiology and chronic health evaluation II (APACHE II) scores. ICU mortality was the primary outcome. Results: Seventy obstetric patients were admitted to the ICU over 3 years, 36 of these patients (51.4 %) were admitted during the antepartum period. The primary obstetric indication for ICU admission was pregnancy-induced hypertension (22 patients, 31.4%), followed by sepsis (8 patients, 11.4%) as the leading non-obstetric admission. The mean APACHE II score was 19.6. The predicted mortality rate based on the APACHE II score was 22%, however, only 4 maternal deaths (5.7%) were among the obstetric patients admitted to the ICU. Conclusion: Evaluation of obstetric patients by (APACHE II) scores showed higher predicted mortality rate, however the overall mortality was lower. Regular follow up, together with early detection of complications and prompt ICU admission necessitating proper management by specialized team can improve mortality.

Keywords: obstetric, complication, postpartum, sepsis

Procedia PDF Downloads 307
2736 Preoperative 3D Planning and Reconstruction of Mandibular Defects for Patients with Oral Cavity Tumors

Authors: Janis Zarins, Kristaps Blums, Oskars Radzins, Renars Deksnis, Atis Svare, Santa Salaka

Abstract:

Wide tumor resection remains the first choice method for tumors of the oral cavity. Nevertheless, remained tissue defect impacts patients functional and aesthetical outcome, which could be improved using microvascular tissue transfers. Mandibular reconstruction is challenging due to the complexity of composite tissue defects and occlusal relationships for normal eating, chewing, and pain free jaw motions. Individual 3-D virtual planning would provide better symmetry and functional outcome. The main goal of preoperative planning is to develop a customized surgical approach with patient specific cutting guides of the mandible, osteotomy guides of the fibula, pre-bended osteosynthesis plates to perform more precise reconstruction, to decrease the surgery time and reach the best outcome. Our study is based on the analysis of 32 patients operated on between 2019 to 2021. All patients underwent mandible reconstruction with vascularized fibula flaps. Patients characteristics, surgery profile, survival, functional outcome, and quality of life was evaluated. Preoperative planning provided a significant decrease of surgery time and the best arrangement of bone closely similar as before the surgery. In cases of bone asymmetry, deformity and malposition, a new mandible was created using 3D planning to restore the appearance of lower jaw anatomy and functionality.

Keywords: mandibular, 3D planning, cutting guides, fibula flap, reconstruction

Procedia PDF Downloads 126
2735 Work Engagement, Sense of Humor and Workplace Outcomes: The Mediating Role of Psychological Capital

Authors: Vandana Maurya

Abstract:

Positive psychological capital is the key contributor to the competitive advantage of the organizations. Moreover, work engagement and sense of humor are also positive notions and are able to facilitate positive workplace behaviour but the mechanism behind these relationships are not well understood. The purpose of this study was to examine the relationships among work engagement, sense of humor and outcome variables (organizational citizenship behaviour and ethical performance) as well as investigating how psychological capital (PsyCap) mediates the relationships between work engagement, sense of humor and the outcome variables among healthcare professionals. A cross-sectional survey was conducted on healthcare professionals (n= 240). Data were collected using questionnaires which includes Utrecht Work Engagement Scale (UWES), Multi-dimensional Sense of Humor Scale (MSHS), Psychological Capital Questionnaire (PCQ), Organizational Citizenship Behavior Questionnaire, and Ethical Performance Scale (EPS). The results of the regression analyses showed that work engagement and sense of humor both positively predicted the outcome variables. Mediation analysis reveals that psychological capital mediates the relationship between predictor and outcome variables. The study recommends that the framework presented in this study can be an important tool for managers to enhance their employees’ psychological capital by increasing their levels of work engagement and sense of humor. In turn, psychological capital could be a positive resource for employees to dealing more ethically and enhancing more positive workplace behaviour.

Keywords: ethical performance, humor, organizational citizenship behavior, PsyCap, work engagement

Procedia PDF Downloads 216
2734 Modeling Usage Patterns of Mobile App Service in App Market Using Hidden Markov Model

Authors: Yangrae Cho, Jinseok Kim, Yongtae Park

Abstract:

Mobile app service ecosystem has been abruptly emerged, explosively grown, and dynamically transformed. In contrast with product markets in which product sales directly cause increment in firm’s income, customer’s usage is less visible but more valuable in service market. Especially, the market situation with cutthroat competition in mobile app store makes securing and keeping of users as vital. Although a few service firms try to manage their apps’ usage patterns by fitting on S-curve or applying other forecasting techniques, the time series approaches based on past sequential data are subject to fundamental limitation in the market where customer’s attention is being moved unpredictably and dynamically. We therefore propose a new conceptual approach for detecting usage pattern of mobile app service with Hidden Markov Model (HMM) which is based on the dual stochastic structure and mainly used to clarify unpredictable and dynamic sequential patterns in voice recognition or stock forecasting. Our approach could be practically utilized for app service firms to manage their services’ lifecycles and academically expanded to other markets.

Keywords: mobile app service, usage pattern, Hidden Markov Model, pattern detection

Procedia PDF Downloads 336
2733 Designing Price Stability Model of Red Cayenne Pepper Price in Wonogiri District, Centre Java, Using ARCH/GARCH Method

Authors: Fauzia Dianawati, Riska W. Purnomo

Abstract:

Food and agricultural sector become the biggest sector contributing to inflation in Indonesia. Especially in Wonogiri district, red cayenne pepper was the biggest sector contributing to inflation on 2016. A national statistic proved that in recent five years red cayenne pepper has the highest average level of fluctuation among all commodities. Some factors, like supply chain, price disparity, production quantity, crop failure, and oil price become the possible factor causes high volatility level in red cayenne pepper price. Therefore, this research tries to find the key factor causing fluctuation on red cayenne pepper by using ARCH/GARCH method. The method could accommodate the presence of heteroscedasticity in time series data. At the end of the research, it is statistically found that the second level of supply chain becomes the biggest part contributing to inflation with 3,35 of coefficient in fluctuation forecasting model of red cayenne pepper price. This model could become a reference to the government to determine the appropriate policy in maintaining the price stability of red cayenne pepper.

Keywords: ARCH/GARCH, forecasting, red cayenne pepper, volatility, supply chain

Procedia PDF Downloads 186
2732 Comparison of Agree Method and Shortest Path Method for Determining the Flow Direction in Basin Morphometric Analysis: Case Study of Lower Tapi Basin, Western India

Authors: Jaypalsinh Parmar, Pintu Nakrani, Bhaumik Shah

Abstract:

Digital Elevation Model (DEM) is elevation data of the virtual grid on the ground. DEM can be used in application in GIS such as hydrological modelling, flood forecasting, morphometrical analysis and surveying etc.. For morphometrical analysis the stream flow network plays a very important role. DEM lacks accuracy and cannot match field data as it should for accurate results of morphometrical analysis. The present study focuses on comparing the Agree method and the conventional Shortest path method for finding out morphometric parameters in the flat region of the Lower Tapi Basin which is located in the western India. For the present study, open source SRTM (Shuttle Radar Topography Mission with 1 arc resolution) and toposheets issued by Survey of India (SOI) were used to determine the morphometric linear aspect such as stream order, number of stream, stream length, bifurcation ratio, mean stream length, mean bifurcation ratio, stream length ratio, length of overland flow, constant of channel maintenance and aerial aspect such as drainage density, stream frequency, drainage texture, form factor, circularity ratio, elongation ratio, shape factor and relief aspect such as relief ratio, gradient ratio and basin relief for 53 catchments of Lower Tapi Basin. Stream network was digitized from the available toposheets. Agree DEM was created by using the SRTM and stream network from the toposheets. The results obtained were used to demonstrate a comparison between the two methods in the flat areas.

Keywords: agree method, morphometric analysis, lower Tapi basin, shortest path method

Procedia PDF Downloads 239
2731 Factor Study Affecting Visual Awareness on Dynamic Object Monitoring

Authors: Terry Liang Khin Teo, Sun Woh Lye, Kai Lun Brendon Goh

Abstract:

As applied to dynamic monitoring situations, the prevailing approach to situation awareness (SA) assumes that the relevant areas of interest (AOI) be perceived before that information can be processed further to affect decision-making and, thereafter, action. It is not entirely clear whether this is the case. This study seeks to investigate the monitoring of dynamic objects through matching eye fixations with the relevant AOIs in boundary-crossing scenarios. By this definition, a match is where a fixation is registered on the AOI. While many factors may affect monitoring characteristics, traffic simulations were designed in this study to explore two factors, namely: the number of inbounds/outbound traffic transfers and the number of entry and/or exit points in a radar monitoring sector. These two factors were graded into five levels of difficulty ranging from low to high traffic flow numbers. Combined permutation in terms of levels of difficulty of these two factors yielded a total of thirty scenarios. Through this, results showed that changes in the traffic flow numbers on transfer resulted in greater variations having match limits ranging from 29%-100%, as compared to the number of sector entry/exit points of range limit from 80%-100%. The subsequent analysis is able to determine the type and combination of traffic scenarios where imperfect matching is likely to occur.

Keywords: air traffic simulation, eye-tracking, visual monitoring, focus attention

Procedia PDF Downloads 57
2730 Contribution of Automated Early Warning Score Usage to Patient Safety

Authors: Phang Moon Leng

Abstract:

Automated Early Warning Scores is a newly developed clinical decision tool that is used to streamline and improve the process of obtaining a patient’s vital signs so a clinical decision can be made at an earlier stage to prevent the patient from further deterioration. This technology provides immediate update on the score and clinical decision to be taken based on the outcome. This paper aims to study the use of an automated early warning score system on whether the technology has assisted the hospital in early detection and escalation of clinical condition and improve patient outcome. The hospital adopted the Modified Early Warning Scores (MEWS) Scoring System and MEWS Clinical Response into Philips IntelliVue Guardian Automated Early Warning Score equipment and studied whether the process has been leaned, whether the use of technology improved the usage & experience of the nurses, and whether the technology has improved patient care and outcome. It was found the steps required to obtain vital signs has been significantly reduced and is used more frequently to obtain patient vital signs. The number of deaths, and length of stay has significantly decreased as clinical decisions can be made and escalated more quickly with the Automated EWS. The automated early warning score equipment has helped improve work efficiency by removing the need for documenting into patient’s EMR. The technology streamlines clinical decision-making and allows faster care and intervention to be carried out and improves overall patient outcome which translates to better care for patient.

Keywords: automated early warning score, clinical quality and safety, patient safety, medical technology

Procedia PDF Downloads 177
2729 Enhancement of Long Term Peak Demand Forecast in Peninsular Malaysia Using Hourly Load Profile

Authors: Nazaitul Idya Hamzah, Muhammad Syafiq Mazli, Maszatul Akmar Mustafa

Abstract:

The peak demand forecast is crucial to identify the future generation plant up needed in the long-term capacity planning analysis for Peninsular Malaysia as well as for the transmission and distribution network planning activities. Currently, peak demand forecast (in Mega Watt) is derived from the generation forecast by using load factor assumption. However, a forecast using this method has underperformed due to the structural changes in the economy, emerging trends and weather uncertainty. The dynamic changes of these drivers will result in many possible outcomes of peak demand for Peninsular Malaysia. This paper will look into the independent model of peak demand forecasting. The model begins with the selection of driver variables to capture long-term growth. This selection and construction of variables, which include econometric, emerging trend and energy variables, will have an impact on the peak forecast. The actual framework begins with the development of system energy and load shape forecast by using the system’s hourly data. The shape forecast represents the system shape assuming all embedded technology and use patterns to continue in the future. This is necessary to identify the movements in the peak hour or changes in the system load factor. The next step would be developing the peak forecast, which involves an iterative process to explore model structures and variables. The final step is combining the system energy, shape, and peak forecasts into the hourly system forecast then modifying it with the forecast adjustments. Forecast adjustments are among other sales forecasts for electric vehicles, solar and other adjustments. The framework will result in an hourly forecast that captures growth, peak usage and new technologies. The advantage of this approach as compared to the current methodology is that the peaks capture new technology impacts that change the load shape.

Keywords: hourly load profile, load forecasting, long term peak demand forecasting, peak demand

Procedia PDF Downloads 172
2728 Comparison of Visual Acuity Outcome and Complication after Phacoemulsification between Diabetic and Non-Diabetic Patients at Burapha University Hospital, Chonburi, Thailand

Authors: Luksanaporn Krungkraipetch

Abstract:

One hundred cataract patients with phacoemulsification were enrolled in the study to compare of visual acuity outcome and complication after phacoemulsification between diabetic and non-diabetic patients at Burapha University Hospital, Chonburi, Thailand. Fifty patients were diabetic (type II) group and 50 patients were non-diabetic group. All cases were operated by one doctor with the same pre-operative care, operation (phacoemulsification), and post-operative care. Visual acuity and complication after surgery were assessed after the operation for two years. There were no significant differences in demographic data between the two groups. The visual outcome values ≥ 2 lines and ≥ 20/40 had no significant differences between two groups after two years of surgery. The complication rate in diabetic group had cystoid macular edema 16%, rupture posterior capsule 8%, posterior capsule opacity 2%, uveitis 2 %, and 2% endophthalmitis. The non-diabetic group had cystoid macular edema 12%, rupture posterior capsule 8%, uveitis 2%, posterior capsule opacity 2%, and 2% wound leak. Comparison of visual acuity outcome and complication after phacoemulsification between diabetic and non-diabetic patients had no statistical significant differences between these two groups. It was found that cystoid macular edema was the most common complication in both groups and 10% of retinopathy progression was seen.

Keywords: cataract, visual acuity, cataract extraction, phacoemulsification, diabetic retinopathy

Procedia PDF Downloads 349
2727 Assessing Future Offshore Wind Farms in the Gulf of Roses: Insights from Weather Research and Forecasting Model Version 4.2

Authors: Kurias George, Ildefonso Cuesta Romeo, Clara Salueña Pérez, Jordi Sole Olle

Abstract:

With the growing prevalence of wind energy there is a need, for modeling techniques to evaluate the impact of wind farms on meteorology and oceanography. This study presents an approach that utilizes the WRF (Weather Research and Forecasting )with that include a Wind Farm Parametrization model to simulate the dynamics around Parc Tramuntana project, a offshore wind farm to be located near the Gulf of Roses off the coast of Barcelona, Catalonia. The model incorporates parameterizations for wind turbines enabling a representation of the wind field and how it interacts with the infrastructure of the wind farm. Current results demonstrate that the model effectively captures variations in temeperature, pressure and in both wind speed and direction over time along with their resulting effects on power output from the wind farm. These findings are crucial for optimizing turbine placement and operation thus improving efficiency and sustainability of the wind farm. In addition to focusing on atmospheric interactions, this study delves into the wake effects within the turbines in the farm. A range of meteorological parameters were also considered to offer a comprehensive understanding of the farm's microclimate. The model was tested under different horizontal resolutions and farm layouts to scrutinize the wind farm's effects more closely. These experimental configurations allow for a nuanced understanding of how turbine wakes interact with each other and with the broader atmospheric and oceanic conditions. This modified approach serves as a potent tool for stakeholders in renewable energy, environmental protection, and marine spatial planning. environmental protection and marine spatial planning. It provides a range of information regarding the environmental and socio economic impacts of offshore wind energy projects.

Keywords: weather research and forecasting, wind turbine wake effects, environmental impact, wind farm parametrization, sustainability analysis

Procedia PDF Downloads 72
2726 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 42
2725 Survival Data with Incomplete Missing Categorical Covariates

Authors: Madaki Umar Yusuf, Mohd Rizam B. Abubakar

Abstract:

The survival censored data with incomplete covariate data is a common occurrence in many studies in which the outcome is survival time. With model when the missing covariates are categorical, a useful technique for obtaining parameter estimates is the EM by the method of weights. The survival outcome for the class of generalized linear model is applied and this method requires the estimation of the parameters of the distribution of the covariates. In this paper, we propose some clinical trials with ve covariates, four of which have some missing values which clearly show that they were fully censored data.

Keywords: EM algorithm, incomplete categorical covariates, ignorable missing data, missing at random (MAR), Weibull Distribution

Procedia PDF Downloads 405
2724 Embolization of Spinal Dural Arteriovenous Fistulae: Clinical Outcomes and Long-Term Follow-Up: A Multicenter Study

Authors: Walid Abouzeid, Mohamed Shadad, Mostafa Farid, Magdy El Hawary

Abstract:

The most frequent treatable vascular abnormality of the spinal canal is spinal dural arteriovenous fistulae (SDAVFs), which cause progressive para- or quadriplegia mostly affecting elderly males. SDAVFs are present in the thoracolumbar region. The main goal of treatment must be to obliterate the shunting zone via superselective embolization with the usage of a liquid embolic agent. This study aims to evaluate endovascular technique as a safe and efficient approach for the treatment SDAVFs, especially with long-term follow-up clinical outcomes. Study Design: A retrospective clinical case study. From May 2010 to May 2017, 15 patients who had symptoms attributed to SDAVFs underwent the operation in the Departments of Neurosurgery in Suhag, Tanta, and Al-Azhar Universities and Interventional Radiology, Ain Shams University. All the patients had varying degrees of progressive spastic paraparesis with and without sphincteric disturbances. Endovascular embolization was used in all cases. Fourteen were males, with ages ranging from 45 to 74 years old. After the treatment, good outcome was found in five patients (33.3%), a moderate outcome was delineated in six patients (40 %), and four patients revealed a poor outcome (26.7%). Spinal AVF could be treated safely and effectively by the endovascular approach. Generally, there is no correlation between the disappearance of MRI abnormalities and significant clinical improvement. The preclinical state of the patient is directly proportional to the clinical outcome. Due to unexpected responses, embolization should be attempted even the patient is in a bad clinical condition.

Keywords: spine, arteriovenous, fistula, endovascular, embolization

Procedia PDF Downloads 108
2723 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System

Authors: R. Ramesh, K. K. Shivaraman

Abstract:

The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.

Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management

Procedia PDF Downloads 304
2722 Pres Syndrome in Pregnancy: A Case Series of Five Cases

Authors: Vaibhavi Birle

Abstract:

Posterior reversible encephalopathy syndrome is a rare clinic-radiological syndrome associated with acute changes in blood pressure during pregnancy. It is characterized symptomatically by headache, seizures, altered mental status, and visual blurring with radiological changes of white matter (vasogenic oedema) affecting the posterior occipital and parietal lobes of the brain. It is being increasingly recognized due to increased institutional deliveries and advances in imaging particularly magnetic resonance imaging (MRI). In spite of the increasing diagnosis the prediction of PRES and patient factors affecting susceptibility is still not clear. Hence, we conducted the retrospective study to analyse the factors associated with PRES at our tertiary centre.

Keywords: pres syndrome, eclampsia, maternal outcome, fetal outcome

Procedia PDF Downloads 150
2721 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria

Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah

Abstract:

The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.

Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models

Procedia PDF Downloads 35
2720 Outcome Analysis of Surgical and Nonsurgical Treatment on Indicated Operative Chronic Subdural Hematoma: Serial Case in Cipto Mangunkusumo Hospital Indonesia

Authors: Novie Nuraini, Sari Hanifa, Yetty Ramli

Abstract:

Chronic subdural hematoma (cSDH) is a common condition after head trauma. Although the size of the thickness of cSDH has an important role in the decision to perform surgery, but the size limit of the thickness is not absolute. In this serial case report, we evaluate three case report of cSDH that indicated to get the surgical procedure because of deficit neurologic and neuroimaging finding with subfalcine herniation more than 0.5 cm and hematoma thickness more than one cm. On the first case, the patient got evacuation hematoma procedure, but the second and third case, we did nonsurgical treatment because the patient and family refused to do the operation. We did the conservative treatment with bed rest and mannitol. Serial radiologic evaluation is done when we found worsening condition. We also reevaluated radiologic examination two weeks after the treatment. The results in this serial case report, the first and second case have a good outcome. On the third case, there was a worsening condition, which in this patient there was a comorbid with type two diabetic mellitus, pneumonie and chronic kidney disease. Some conservative treatment such as bed rest, corticosteroid, mannitol or the other hyperosmolar has a good outcome in patient without neurologic deficits, small hematoma, and or patient without comorbid disease. Evacuate hematome is the best choice in cSDH treatment with deficit neurologic finding. Afterall, there is some condition that we can not do the surgical procedure. Serial radiologic examination needed after two weeks to evaluate the treatment or if there is any worsening condition.

Keywords: chronic subdural hematoma, traumatic brain injury, surgical treatment, nonsurgical treatment, outcome

Procedia PDF Downloads 332
2719 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem

Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq

Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch

Procedia PDF Downloads 188
2718 The Term Spread Impact on Economic Activity for Transition Economies: Case of Georgia

Authors: L. Totladze

Abstract:

The role of financial sector in supporting economic growth and development is well acknowledged. The term spread (the difference between the yields on long-term and short-term Treasury securities) has been found useful for predicting economic variables as output growth, inflation, industrial production, consumption. The temp spread is one of the leading economic indicators according to NBER methodology. Leading economic indicators are widely used in forecasting of economic activity. Many empirical studies find that the term spread predicts future economic activity. The article shortly explains how the term spread might predict future economic activity. This paper analyses the dynamics of the spread between short and long-term interest rates in countries with transition economies. The research paper analyses term spread dynamics in Georgia and compare it with post-communist countries and transition economies spread dynamics. In Georgia, the banking sector plays an important and dominant role in the financial sector, especially with respect to the mobilization of savings and provision of credit and may impact on economic activity. For this purpose, we study the impact of the term spread on economic growth in Georgia.

Keywords: forecasting, leading economic indicators, term spread, transition economies

Procedia PDF Downloads 176
2717 HKIE Accreditation: A Comparative Study on the Old and New Criteria

Authors: Peter P. K. Chiu

Abstract:

This paper reports a comparative study of new and old criteria for the professional accreditation of programme by the Hong Kong Institution of Engineers (HKIE). The major change in the criteria is the adoption of the outcome-based accreditation criteria and the use of measurement of attainment of outcomes which is very different from what academic did in the past. This has imposed a lot of difficulty for people in preparation for such exercise. Through this comparative study, the major difference between the two criteria is identified and a methodology is devised to help the academic to handle the issues due to the adoption of the new criteria. Thus it saves a lot of efforts.

Keywords: Hong Kong institution of engineers, outcome-based accreditation, Sydney accord, Washington accord

Procedia PDF Downloads 290
2716 Forecasting Age-Specific Mortality Rates and Life Expectancy at Births for Malaysian Sub-Populations

Authors: Syazreen N. Shair, Saiful A. Ishak, Aida Y. Yusof, Azizah Murad

Abstract:

In this paper, we forecast age-specific Malaysian mortality rates and life expectancy at births by gender and ethnic groups including Malay, Chinese and Indian. Two mortality forecasting models are adopted the original Lee-Carter model and its recent modified version, the product ratio coherent model. While the first forecasts the mortality rates for each subpopulation independently, the latter accounts for the relationship between sub-populations. The evaluation of both models is performed using the out-of-sample forecast errors which are mean absolute percentage errors (MAPE) for mortality rates and mean forecast errors (MFE) for life expectancy at births. The best model is then used to perform the long-term forecasts up to the year 2030, the year when Malaysia is expected to become an aged nation. Results suggest that in terms of overall accuracy, the product ratio model performs better than the original Lee-Carter model. The association of lower mortality group (Chinese) in the subpopulation model can improve the forecasts of high mortality groups (Malay and Indian).

Keywords: coherent forecasts, life expectancy at births, Lee-Carter model, product-ratio model, mortality rates

Procedia PDF Downloads 218