Search results for: interval regression
3768 Urban-Rural Inequality in Mexico after Nafta: A Quantile Regression Analysis
Authors: Rene Valdiviezo-Issa
Abstract:
In this paper, we use Mexico’s Households Income and Expenditures (ENIGH) survey to explain the behaviour that the urban-rural expenditure gap has had since Mexico’s incorporation to the North American Free Trade Agreement (NAFTA) in 1994 and we compare it with the latest available survey, which took place in 2014. We use real trimestral expenditure per capita (RTEPC) as the measure of welfare. We use quantile regressions and a quantile regression decomposition to describe the gap between urban and rural distributions of log RTEPC. We discover that the decrease in the difference between the urban and rural distributions of log RTEPC, or inequality, is motivated because of a deprivation of the urban areas, in very specific characteristics, rather than an improvement of the urban areas. When using the decomposition we observe that the gap is primarily brought about because differences in returns to covariates between the urban and rural areas.Keywords: quantile regression, urban-rural inequality, inequality in Mexico, income decompositon
Procedia PDF Downloads 2823767 Knowledge Representation Based on Interval Type-2 CFCM Clustering
Authors: Lee Myung-Won, Kwak Keun-Chang
Abstract:
This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation
Procedia PDF Downloads 3223766 Analysis of Critical Success Factors for Implementing Industry 4.0 and Circular Economy to Enhance Food Traceability
Authors: Mahsa Pishdar
Abstract:
Food traceability through the supply chain is facing increased demand. IoT and blockchain are among the tools under consideration in the Industry 4.0 era that could be integrated to help implementation of the Circular Economy (CE) principles while enhancing food traceability solutions. However, such tools need intellectual system, and infrastructureto be settled as guidance through the way, helping overcoming obstacles. That is why the critical success factors for implementing Industry 4.0 and circular economy principles in food traceability concept are analyzed in this paper by combination of interval type 2 fuzzy Worst Best Method and Measurement Alternatives and Ranking according to Compromise Solution (Interval Type 2 fuzzy WBM-MARCOS). Results indicate that “Knowledge of Industry 4.0 obligations and CE principle” is the most important factor that is the basis of success following by “Management commitment and support”. This will assist decision makers to seize success in gaining a competitive advantage while reducing costs through the supply chain.Keywords: food traceability, industry 4.0, internet of things, block chain, best worst method, marcos
Procedia PDF Downloads 2053765 Developing Variable Repetitive Group Sampling Control Chart Using Regression Estimator
Authors: Liaquat Ahmad, Muhammad Aslam, Muhammad Azam
Abstract:
In this article, we propose a control chart based on repetitive group sampling scheme for the location parameter. This charting scheme is based on the regression estimator; an estimator that capitalize the relationship between the variables of interest to provide more sensitive control than the commonly used individual variables. The control limit coefficients have been estimated for different sample sizes for less and highly correlated variables. The monitoring of the production process is constructed by adopting the procedure of the Shewhart’s x-bar control chart. Its performance is verified by the average run length calculations when the shift occurs in the average value of the estimator. It has been observed that the less correlated variables have rapid false alarm rate.Keywords: average run length, control charts, process shift, regression estimators, repetitive group sampling
Procedia PDF Downloads 5653764 BART Matching Method: Using Bayesian Additive Regression Tree for Data Matching
Authors: Gianna Zou
Abstract:
Propensity score matching (PSM), introduced by Paul R. Rosenbaum and Donald Rubin in 1983, is a popular statistical matching technique which tries to estimate the treatment effects by taking into account covariates that could impact the efficacy of study medication in clinical trials. PSM can be used to reduce the bias due to confounding variables. However, PSM assumes that the response values are normally distributed. In some cases, this assumption may not be held. In this paper, a machine learning method - Bayesian Additive Regression Tree (BART), is used as a more robust method of matching. BART can work well when models are misspecified since it can be used to model heterogeneous treatment effects. Moreover, it has the capability to handle non-linear main effects and multiway interactions. In this research, a BART Matching Method (BMM) is proposed to provide a more reliable matching method over PSM. By comparing the analysis results from PSM and BMM, BMM can perform well and has better prediction capability when the response values are not normally distributed.Keywords: BART, Bayesian, matching, regression
Procedia PDF Downloads 1473763 The Relationship Between Hourly Compensation and Unemployment Rate Using the Panel Data Regression Analysis
Authors: S. K. Ashiquer Rahman
Abstract:
the paper concentrations on the importance of hourly compensation, emphasizing the significance of the unemployment rate. There are the two most important factors of a nation these are its unemployment rate and hourly compensation. These are not merely statistics but they have profound effects on individual, families, and the economy. They are inversely related to one another. When we consider the unemployment rate that will probably decline as hourly compensations in manufacturing rise. But when we reduced the unemployment rates and increased job prospects could result from higher compensation. That’s why, the increased hourly compensation in the manufacturing sector that could have a favorable effect on job changing issues. Moreover, the relationship between hourly compensation and unemployment is complex and influenced by broader economic factors. In this paper, we use panel data regression models to evaluate the expected link between hourly compensation and unemployment rate in order to determine the effect of hourly compensation on unemployment rate. We estimate the fixed effects model, evaluate the error components, and determine which model (the FEM or ECM) is better by pooling all 60 observations. We then analysis and review the data by comparing 3 several countries (United States, Canada and the United Kingdom) using panel data regression models. Finally, we provide result, analysis and a summary of the extensive research on how the hourly compensation effects on the unemployment rate. Additionally, this paper offers relevant and useful informational to help the government and academic community use an econometrics and social approach to lessen on the effect of the hourly compensation on Unemployment rate to eliminate the problem.Keywords: hourly compensation, Unemployment rate, panel data regression models, dummy variables, random effects model, fixed effects model, the linear regression model
Procedia PDF Downloads 813762 A Novel Meta-Heuristic Algorithm Based on Cloud Theory for Redundancy Allocation Problem under Realistic Condition
Authors: H. Mousavi, M. Sharifi, H. Pourvaziri
Abstract:
Redundancy Allocation Problem (RAP) is a well-known mathematical problem for modeling series-parallel systems. It is a combinatorial optimization problem which focuses on determining an optimal assignment of components in a system design. In this paper, to be more practical, we have considered the problem of redundancy allocation of series system with interval valued reliability of components. Therefore, during the search process, the reliabilities of the components are considered as a stochastic variable with a lower and upper bounds. In order to optimize the problem, we proposed a simulated annealing based on cloud theory (CBSAA). Also, the Monte Carlo simulation (MCS) is embedded to the CBSAA to handle the random variable components’ reliability. This novel approach has been investigated by numerical examples and the experimental results have shown that the CBSAA combining MCS is an efficient tool to solve the RAP of systems with interval-valued component reliabilities.Keywords: redundancy allocation problem, simulated annealing, cloud theory, monte carlo simulation
Procedia PDF Downloads 4123761 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression
Procedia PDF Downloads 3043760 Comparison of Cardiovascular and Metabolic Responses Following In-Water and On-Land Jump in Postmenopausal Women
Authors: Kuei-Yu Chien, Nai-Wen Kan, Wan-Chun Wu, Guo-Dong Ma, Shu-Chen Chen
Abstract:
Purpose: The purpose of this study was to investigate the responses of systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), rating of perceived exertion (RPE) and lactate following continued high-intensity interval exercise in water and on land. The results of studies can be an exercise program design reference for health care and fitness professionals. Method: A total of 20 volunteer postmenopausal women was included in this study. The inclusion criteria were: duration of menopause > 1 year; and sedentary lifestyle, defined as engaging in moderate-intensity exercise less than three times per week, or less than 20 minutes per day. Participants need to visit experimental place three times. The first time visiting, body composition was performed and participant filled out the questionnaire. Participants were assigned randomly to the exercise environment (water or land) in second and third time visiting. Water exercise testing was under water of trochanter level. In continuing jump testing, each movement consisted 10-second maximum volunteer jump for two sets. 50% heart rate reserve dynamic resting (walking or running) for one minute was within each set. SBP, DBP, HR, RPE of whole body/thigh (RPEW/RPET) and lactate were performed at pre and post testing. HR, RPEW, and RPET were monitored after 1, 2, and 10 min of exercise testing. SBP and DBP were performed after 10 and 30 min of exercise testing. Results: The responses of SBP and DBP after exercise testing in water were higher than those on land. Lactate levels after exercise testing in water were lower than those on land. The responses of RPET were lower than those on land post exercise 1 and 2 minutes. The heart rate recovery in water was faster than those on land at post exercise 5 minutes. Conclusion: This study showed water interval jump exercise induces higher cardiovascular responses with lower RPE responses and lactate levels than on-land jumps exercise in postmenopausal women. Fatigue is one of the major reasons to obstruct exercise behavior. Jump exercise could enhance cardiorespiratory fitness, the lower-extremity power, strength, and bone mass. There are several health benefits to the middle to older adults. This study showed that water interval jumping could be more relaxed and not tried to reach the same land-based cardiorespiratory exercise intensity.Keywords: interval exercise, power, recovery, fatigue
Procedia PDF Downloads 4083759 Psychological Impact of the COVID-19 Pandemic on Health Care Workers in Tunisia: Risk and Protective Factor
Authors: Ahmed Sami Hammami, Mohamed Jellazi
Abstract:
Background: The aim of the study is to evaluate the magnitude of different psychological outcomes among Tunisian health care professionals (HCP) during the COVID-19 pandemic and to identify the associated factors. Methods: HCP completed a cross-sectional questionnaire from April 4th to April, 28th 2020. The survey collected demographic information, factors that may interfere with the psychological outcomes, behavior changes and mental health measurements. The latter was assessed through 3 scales; the 7-item questions Insomnia Severity Index, the 2-item Patient Health Questionnaire and the 2-item Generalized Anxiety Disorder. Multivariable logistic regression was conducted to identify factors associated with psychological outcomes. Results: A total of 503 HCP successfully completed the survey; among those, n=493 consented to enroll in the study, 411 [83.4%] were physicians, 323 [64.2%] were women and 271 [55%] had a second-line working position. A significant proportion of HCP had anxiety 35.7%, depression 35.1% and insomnia 23.7%. Females, those with psychiatric history and those using public transport exhibited the highest proportions for overall symptoms compared to other groups e.g., depression among females vs. males: 44,9% vs. 18,2%, P=0.00. Those with a previous medical history and nurses, had more anxiety and insomnia compared to other groups e.g. anxiety among nurses vs. interns/residents vs. attending 45,1% vs 36,1% vs 27,5%; p=0.04. Multivariable logistic regression showed that female gender was a risk factor for all psychological outcomes e.g. female sex increased the odds of anxiety by 2.86; 95% confidence interval [CI], 1, 78-4, 60; P=0.00, whereas having a psychiatric history was a risk factor for both anxiety and insomnia. (e.g. for insomnia OR=2,86; 95% [CI], 1,78-4,60; P=0.00), Having protective equipment was associated with lower risk for depression (OR=0,41; 95% CI, 0,27-0,62; P=0.00) and anxiety. Physical activity was also protective against depression and anxiety (OR=0,41, 95% CI, 0,25-0,67, P=0.00). Conclusion: Psychological symptoms are usually undervalued among HCP, though the COVID-19 pandemic played a major role in exacerbating this burden. Prompt psychological support should be endorsed and simple measures such as physical activity and ensuring the necessary protection are paramount to improve mental health outcomes and the quality of care provided to patients.Keywords: COVID-19 pandemic, health care professionals, mental health, protective factors, psychological symptoms, risk factors
Procedia PDF Downloads 1953758 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis
Procedia PDF Downloads 3933757 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria
Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah
Abstract:
The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models
Procedia PDF Downloads 353756 Non-Linear Regression Modeling for Composite Distributions
Authors: Mostafa Aminzadeh, Min Deng
Abstract:
Modeling loss data is an important part of actuarial science. Actuaries use models to predict future losses and manage financial risk, which can be beneficial for marketing purposes. In the insurance industry, small claims happen frequently while large claims are rare. Traditional distributions such as Normal, Exponential, and inverse-Gaussian are not suitable for describing insurance data, which often show skewness and fat tails. Several authors have studied classical and Bayesian inference for parameters of composite distributions, such as Exponential-Pareto, Weibull-Pareto, and Inverse Gamma-Pareto. These models separate small to moderate losses from large losses using a threshold parameter. This research introduces a computational approach using a nonlinear regression model for loss data that relies on multiple predictors. Simulation studies were conducted to assess the accuracy of the proposed estimation method. The simulations confirmed that the proposed method provides precise estimates for regression parameters. It's important to note that this approach can be applied to datasets if goodness-of-fit tests confirm that the composite distribution under study fits the data well. To demonstrate the computations, a real data set from the insurance industry is analyzed. A Mathematica code uses the Fisher information algorithm as an iteration method to obtain the maximum likelihood estimation (MLE) of regression parameters.Keywords: maximum likelihood estimation, fisher scoring method, non-linear regression models, composite distributions
Procedia PDF Downloads 333755 Statistic Regression and Open Data Approach for Identifying Economic Indicators That Influence e-Commerce
Authors: Apollinaire Barme, Simon Tamayo, Arthur Gaudron
Abstract:
This paper presents a statistical approach to identify explanatory variables linearly related to e-commerce sales. The proposed methodology allows specifying a regression model in order to quantify the relevance between openly available data (economic and demographic) and national e-commerce sales. The proposed methodology consists in collecting data, preselecting input variables, performing regressions for choosing variables and models, testing and validating. The usefulness of the proposed approach is twofold: on the one hand, it allows identifying the variables that influence e- commerce sales with an accessible approach. And on the other hand, it can be used to model future sales from the input variables. Results show that e-commerce is linearly dependent on 11 economic and demographic indicators.Keywords: e-commerce, statistical modeling, regression, empirical research
Procedia PDF Downloads 2263754 A Joinpoint Regression Analysis of Trends in Tuberculosis Notifications in Two Urban Regions in Namibia
Authors: Anna M. N. Shifotoka, Richard Walker, Katie Haighton, Richard McNally
Abstract:
An analysis of trends in Case Notification Rates (CNR) can be used to monitor the impact of Tuberculosis (TB) control interventions over time in order to inform the implementation of current and future TB interventions. A retrospective analysis of trends in TB CNR for two urban regions in Namibia, namely Khomas and Erongo regions, was conducted. TB case notification data were obtained from annual TB reports of the national TB programme, Ministry of Health and Social Services, covering the period from 1997 to 2015. Joinpoint regression was used to analyse trends in CNR for different types of TB groups. A trend was considered to be statistically significant when a p-value was less than 0.05. During the period under review, the crude CNR for all forms of TB declined from 808 to 400 per 100 000 population in Khomas, and from 1051 to 611 per 100 000 population in Erongo. In both regions, significant change points in trends were observed for all types of TB groups examined. In Khomas region, the trend for new smear positive pulmonary TB increased significantly by an annual rate of 4.1% (95% Confidence Interval (CI): 0.3% to 8.2%) during the period 1997 to 2004, and thereafter declined significantly by -6.2% (95%CI: -7.7% to -4.3%) per year until 2015. Similarly, the trend for smear negative pulmonary TB increased significantly by 23.7% (95%CI: 9.7 to 39.5) per year from 1997 to 2004 and thereafter declined significantly by an annual change of -26.4% (95%CI: -33.1% to -19.8%). The trend for all forms of TB CNR in Khomas region increased significantly by 8.1% (95%CI: 3.7 to 12.7) per year from 1997 to 2004 and thereafter declined significantly a rate of -8.7% (95%CI: -10.6 to -6.8). In Erongo region, the trend for smear positive pulmonary TB increased at a rate of 1.2% (95%CI: -1.2% to 3.6%) annually during the earlier years (1997 to 2008), and thereafter declined significantly by -9.3% (95%CI: -13.3% to -5.0%) per year from 2008 to 2015. Also in Erongo, the trend for all forms of TB CNR increased significantly by an annual rate of 4.0% (95%CI: 1.4% to 6.6%) during the years between 1997 to 2006 and thereafter declined significantly by -10.4% (95%CI: -12.7% to -8.0%) per year during 2006 to 2015. The trend for extra-pulmonary TB CNR declined but did not reach statistical significance in both regions. In conclusion, CNRs declined for all types of TB examined in both regions. Further research is needed to study trends for other TB dimensions such as treatment outcomes and notification of drug resistant TB cases.Keywords: epidemiology, Namibia, temporal trends, tuberculosis
Procedia PDF Downloads 1513753 Evaluation of Relationship between Job Stress Dimensions with Occupational Accidents in Industrial Factories in Southwest of Iran
Authors: Ali Ahmadi, Maryam Abbasi, Mohammad Mehdi Parsaei
Abstract:
Background: Stress in the workplace today is one of the most important public health concerns and a serious threat to the health of the workforce worldwide. Occupational stress can cause occupational events and reduce quality of life. As a result, it has a very undesirable impact on the performance of organizations, companies, and their human resources. This study aimed to evaluate the relationship between job stress dimensions and occupational accidents in industrial factories in Southwest Iran. Materials and Methods: This cross-sectional study was conducted among 200 workers in the summer of 2023 in the Southwest of Iran. To select participants, we used a convenience sampling method. The research tools in this study were the Health and Safety Executive (HSE) stress questionnaire with 35 questions and 7 dimensions and demographic information. A high score on this questionnaire indicates that there is low job stress and pressure. All workers completed the informed consent form. Univariate analysis was performed using chi-square and T-test. Multiple regression analysis was used to estimate the odds ratios (OR) and 95% confidence interval (CI) for the association of stress-related factors with job accidents in participants. Stata 14.0 software was used for analysis. Results: The mean age of the participants was 39.81(6.36) years. The prevalence of job accidents was 28.0% (95%CI: 21.0, 34.0). Based on the results of the multiple logistic regression with the adjustment of the effect of the confounding variables, one increase in the score of the demand dimension had a protective impact on the risk of job accidents(aOR=0.91,95%CI:0.85-0.95). Additionally, an increase in one of the scores of the managerial support (aOR=0.89, 95% CI: 0.83-0.95) and peer support (aOR=0.76, 95%CI: 0.67-87) dimensions was associated with a lower number of job accidents. Among dimensions, an increase in the score of relationship (aOR=0.89, 95%CI: 0.80-0.98) and change (aOR=0.86, 95%CI: 0.74-0.96) reduced the odds of the accident's occurrence among the workers by 11% and 16%, respectively. However, there was no significant association between role and control dimensions and the job accident (p>0.05). Conclusions: The results show that the prevalence of job accidents was alarmingly high. Our results suggested that an increase in scores of dimensions HSE questioners is significantly associated with a decrease the accident occurrence in the workplace. Therefore, planning to address stressful factors in the workplace seems necessary to prevent occupational accidents.Keywords: HSE, Iran, job stress occupational accident, safety, occupational health
Procedia PDF Downloads 713752 Middle Ordovician (Llanvirnian) Relative Sea-Level Fluctuations
Authors: Ying Jia Teoh
Abstract:
The Canning Basin is located between the Kimberley and Pilbara Precambrian cratonic blocks. It is a large but relatively poorly explored Paleozoic basin in remote Western Australia. During the early Ordovician period, the Australian continent was located near the equator. Middle Ordovician age Nita and Goldwyer Formations in Canning Basin are therefore warm water carbonates. The Nita Formation carbonates are a regressive sequence which conformably overlies the Goldwyer Formation. It contains numerous progradational cycles of limestone, vuggy dolomitized carbonate beds and shale deposited in subtidal to supratidal environments. The Goldwyer Formation contains transgressive shale sequences and regressive carbonates deposited in shallow subtidal conditions. The shales contain oil-prone Gloeocapsormorpha prisca-bearing source rocks. Llanvirnian relative sea-level fluctuations were reconstructed by using Fischer plots methodology for three key wells (wells McLarty 1, Looma 1 and Robert 1) in Broome Platform and compared with INPEFA data. The Goldwyer lower shale (interval Or1000P) shows increasing relative sea-level and this matches with a transgressive systems tract. Goldwyer middle carbonate (interval Or2000) shows relative sea-level drop and this matches with a regressive systems tract. Goldwyer upper shale (interval Or2000P) shows relative sea-level drop and this matches with a transgressive systems tract. Nita Formation Leo Member (interval Or3000) shows a relative sea level drop and this matches with a regressive systems tract. The Nita Formation Cudalgarra Member (intervals Or3000P and Or4000) with transgressive systems tract then this is followed by a regressive systems tract. This pattern matches with the relative sea-level curves in wells McLarty 1 and Robert 1. The correlation is weak for parts of well Looma 1. This is probably influenced by the fact that the thickness of this section is quite small. As a conclusion, Fischer plots for the Llanvirnian Goldwyer and Nita Formations show good agreement with the third order global sea level cycles of Haq and others. Fischer plots are generally correlated well with trend and cyclicity determined by INPEFA curves and as a method of cross-checking INPEFA data and sea-level change.Keywords: canning basin, Fischer plots, Llanvirnian, middle Ordovician, sea-level fluctuations, stratigraphy
Procedia PDF Downloads 2823751 Effect of Traffic Composition on Delay and Saturation Flow at Signal Controlled Intersections
Authors: Arpita Saha, Apoorv Jain, Satish Chandra, Indrajit Ghosh
Abstract:
Level of service at a signal controlled intersection is directly measured from the delay. Similarly, saturation flow rate is a fundamental parameter to measure the intersection capacity. The present study calculates vehicle arrival rate, departure rate, and queue length for every five seconds interval in each cycle. Based on the queue lengths, the total delay of the cycle has been calculated using Simpson’s 1/3rd rule. Saturation flow has been estimated in terms of veh/hr of green/lane for every five seconds interval of the green period until at least three vehicles are left to cross the stop line. Vehicle composition shows an immense effect on total delay and saturation flow rate. The increase in two-wheeler proportion increases the saturation flow rate and reduces the total delay per vehicle significantly. Additionally, an increase in the heavy vehicle proportion reduces the saturation flow rate and increases the total delay for each vehicle.Keywords: delay, saturation flow, signalised intersection, vehicle composition
Procedia PDF Downloads 4643750 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band
Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant K. Srivastava
Abstract:
An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input-output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986, and 0.9214, respectively at HH-polarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373, and 0.9428, respectively.Keywords: bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE
Procedia PDF Downloads 4283749 A Hybrid Block Multistep Method for Direct Numerical Integration of Fourth Order Initial Value Problems
Authors: Adamu S. Salawu, Ibrahim O. Isah
Abstract:
Direct solution to several forms of fourth-order ordinary differential equations is not easily obtained without first reducing them to a system of first-order equations. Thus, numerical methods are being developed with the underlying techniques in the literature, which seeks to approximate some classes of fourth-order initial value problems with admissible error bounds. Multistep methods present a great advantage of the ease of implementation but with a setback of several functions evaluation for every stage of implementation. However, hybrid methods conventionally show a slightly higher order of truncation for any k-step linear multistep method, with the possibility of obtaining solutions at off mesh points within the interval of solution. In the light of the foregoing, we propose the continuous form of a hybrid multistep method with Chebyshev polynomial as a basis function for the numerical integration of fourth-order initial value problems of ordinary differential equations. The basis function is interpolated and collocated at some points on the interval [0, 2] to yield a system of equations, which is solved to obtain the unknowns of the approximating polynomial. The continuous form obtained, its first and second derivatives are evaluated at carefully chosen points to obtain the proposed block method needed to directly approximate fourth-order initial value problems. The method is analyzed for convergence. Implementation of the method is done by conducting numerical experiments on some test problems. The outcome of the implementation of the method suggests that the method performs well on problems with oscillatory or trigonometric terms since the approximations at several points on the solution domain did not deviate too far from the theoretical solutions. The method also shows better performance compared with an existing hybrid method when implemented on a larger interval of solution.Keywords: Chebyshev polynomial, collocation, hybrid multistep method, initial value problems, interpolation
Procedia PDF Downloads 1223748 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius
Authors: Mina Adel Shokry Fahim, Jūratė Sužiedelytė Visockienė
Abstract:
With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realisation often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.Keywords: air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter
Procedia PDF Downloads 533747 Forecasting Equity Premium Out-of-Sample with Sophisticated Regression Training Techniques
Authors: Jonathan Iworiso
Abstract:
Forecasting the equity premium out-of-sample is a major concern to researchers in finance and emerging markets. The quest for a superior model that can forecast the equity premium with significant economic gains has resulted in several controversies on the choice of variables and suitable techniques among scholars. This research focuses mainly on the application of Regression Training (RT) techniques to forecast monthly equity premium out-of-sample recursively with an expanding window method. A broad category of sophisticated regression models involving model complexity was employed. The RT models include Ridge, Forward-Backward (FOBA) Ridge, Least Absolute Shrinkage and Selection Operator (LASSO), Relaxed LASSO, Elastic Net, and Least Angle Regression were trained and used to forecast the equity premium out-of-sample. In this study, the empirical investigation of the RT models demonstrates significant evidence of equity premium predictability both statistically and economically relative to the benchmark historical average, delivering significant utility gains. They seek to provide meaningful economic information on mean-variance portfolio investment for investors who are timing the market to earn future gains at minimal risk. Thus, the forecasting models appeared to guarantee an investor in a market setting who optimally reallocates a monthly portfolio between equities and risk-free treasury bills using equity premium forecasts at minimal risk.Keywords: regression training, out-of-sample forecasts, expanding window, statistical predictability, economic significance, utility gains
Procedia PDF Downloads 1073746 Self-Image of Police Officers
Authors: Leo Carlo B. Rondina
Abstract:
Self-image is an important factor to improve the self-esteem of the personnel. The purpose of the study is to determine the self-image of the police. The respondents were the 503 policemen assigned in different Police Station in Davao City, and they were chosen with the used of random sampling. With the used of Exploratory Factor Analysis (EFA), latent construct variables of police image were identified as follows; professionalism, obedience, morality and justice and fairness. Further, ordinal regression indicates statistical characteristics on ages 21-40 which means the age of the respondent statistically improves self-image.Keywords: police image, exploratory factor analysis, ordinal regression, Galatea effect
Procedia PDF Downloads 2873745 Regression Analysis of Travel Indicators and Public Transport Usage in Urban Areas
Authors: Mehdi Moeinaddini, Zohreh Asadi-Shekari, Muhammad Zaly Shah, Amran Hamzah
Abstract:
Currently, planners try to have more green travel options to decrease economic, social and environmental problems. Therefore, this study tries to find significant urban travel factors to be used to increase the usage of alternative urban travel modes. This paper attempts to identify the relationship between prominent urban mobility indicators and daily trips by public transport in 30 cities from various parts of the world. Different travel modes, infrastructures and cost indicators were evaluated in this research as mobility indicators. The results of multi-linear regression analysis indicate that there is a significant relationship between mobility indicators and the daily usage of public transport.Keywords: green travel modes, urban travel indicators, daily trips by public transport, multi-linear regression analysis
Procedia PDF Downloads 5493744 Development of Generalized Correlation for Liquid Thermal Conductivity of N-Alkane and Olefin
Authors: A. Ishag Mohamed, A. A. Rabah
Abstract:
The objective of this research is to develop a generalized correlation for the prediction of thermal conductivity of n-Alkanes and Alkenes. There is a minority of research and lack of correlation for thermal conductivity of liquids in the open literature. The available experimental data are collected covering the groups of n-Alkanes and Alkenes.The data were assumed to correlate to temperature using Filippov correlation. Nonparametric regression of Grace Algorithm was used to develop the generalized correlation model. A spread sheet program based on Microsoft Excel was used to plot and calculate the value of the coefficients. The results obtained were compared with the data that found in Perry's Chemical Engineering Hand Book. The experimental data correlated to the temperature ranged "between" 273.15 to 673.15 K, with R2 = 0.99.The developed correlation reproduced experimental data that which were not included in regression with absolute average percent deviation (AAPD) of less than 7 %. Thus the spread sheet was quite accurate which produces reliable data.Keywords: N-Alkanes, N-Alkenes, nonparametric, regression
Procedia PDF Downloads 6543743 Considerations for the Use of High Intensity Interval Training in Secondary Physical Education
Authors: Amy Stringer, Resa Chandler
Abstract:
High Intensity Interval Training (HIIT) involves a 3-10-minute circuit of various exercises which is a viable alternative to a traditional cardiovascular and strength training regimen. Research suggests that measures of health-related fitness can either be maintained or actually improve with the use of this training method. After conducting a 6-week HIIT research study with 10-14 year old children, considerations for using a daily HIIT workout are presented. Is the use of HIIT with children a reasonable consideration for physical education programs? The benefits and challenges of this type of an intervention are identified. This study is significant in that achieving fitness gains in a small amount of daily class time is an attractive concept – especially for physical education teachers who often do not have the time necessary to accomplish all of their curricular goals in the amount of class time assigned. Basic methodologies include students participating in a circuit of exercises for 7-10 minutes at 80-95% of max heart rate as measured by heart rate monitors. Student pre and post fitness test data were collected for cardio-vascular endurance, muscular endurance, and body composition. Research notes as well as commentary by the teachers and researchers who participated in the HIIT study contributed to the understanding of the cost-benefit analysis. Major findings of the study are that HIIT has limited effectiveness but is a good choice for limited class times. Student efficacy of their ability to complete the exercises and visible heart rate data were considered to be significant factors in success of the HIIT study. The effective use of technology promoting positive audience effect during the display of heart rate data was more important at the beginning of the study than at the end. Student ‘buy-in’ and motivation, teacher motivation and ‘buy-in’, the variety of activities in the circuit and the fitness level of the student at the beginning of the study were also findings influencing the fitness outcomes of the study. Concluding Statement: High intensity interval training can be used effectively in a secondary physical education program. It is not a ‘magic bullet’ to produce health-related fitness outcomes in every student but it is an effective tool to enhance student fitness in a limited time and contribute to the goals of the program.Keywords: cardio vascular fitness, children, high intensity interval training, physical education
Procedia PDF Downloads 1143742 Thyroid Hormones and Thyrotropin Status in Nepalese Postmenopausal Women
Authors: S. A. Khan, B. Mishra, O. Sherchan
Abstract:
Background and Aims: Thyroid disorder is the most common endocrine disorder after diabetes mellitus. Females are more vulnerable to this disease, and old age is an important risk factor. This study was undertaken to investigate the burden of thyroid disorder in Nepalese postmenopausal women. Methods: In the present cross-sectional study, we included 271 post-menopausal women. Three ml of blood was collected following standard protocol after taking the written consent. Serum was separated and analyzed for free T3, free T4, and Thyroid Stimulating Hormone (TSH) by Chemiluminescence Immunoassay (CLIA) method in Snibe Maglumi 1000 analyzer. Data obtained was analyzed in SPSS Version 21. P < 0.05 was set for statistical significant at 95% Confidence Interval (CI). Results: Majority of the participants belong to Janjati (46.5%) ethnicity, followed by Brahmin/Chhetri (41.7%), residing either in urban or suburban locality. Most of them were non-vegetarian, non-smoker, and non-alcoholic. Subjects were divided into hyperthyroid (TSH < 0.3 uIU/ml), hypothyroid (TSH > 4.5 uIU/ml), and euthyroid (TSH=0.3-4.5 uIU/ml) based on TSH value. We reported 10.3% hyperthyroid and 29.2% hypothyroid cases. TSH was significantly correlated with T3 (r=-0.244; p < 0.001) T4 (r=-0.398; p < 0.001); age (r=-0.138; p=0.023) and BMI (r=0.123; p=0.043). Multiple linear regression model for TSH reveals only T3 and T4 were significantly associated with TSH (p < 0.001; p=0.001). Conclusion: To conclude, nearly 39.5% of the postmenopausal women had thyroid disorder. Postmenopausal women are vulnerable to thyroid disorder; therefore, requires regular thyroid monitoring.Keywords: thyroid stimulating hormone, TSH, T3, T4, thyroid disorder
Procedia PDF Downloads 1313741 Response Surface Methodology for the Optimization of Paddy Husker by Medium Brown Rice Peeling Machine 6 Rubber Type
Authors: S. Bangphan, P. Bangphan, C. Ketsombun, T. Sammana
Abstract:
Optimization of response surface methodology (RSM) was employed to study the effects of three factor (rubber of clearance, spindle of speed, and rice of moisture) in brown rice peeling machine of the optimal good rice yield (99.67, average of three repeats). The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α=0.05, the values of Regression coefficient, R2 adjust were 96.55% and standard deviation were 1.05056. The independent variables are initial rubber of clearance, spindle of speed and rice of moisture parameters namely. The investigating responses are final rubber clearance, spindle of speed and moisture of rice.Keywords: brown rice, response surface methodology (RSM), peeling machine, optimization, paddy husker
Procedia PDF Downloads 5743740 Outcome of Induction of Labour by Cervical Ripening with an Osmotic Dilator in a District General Hospital
Authors: A. Wahid Uddin
Abstract:
Osmotic dilator for cervical ripening bypasses the initial hormonal exposure necessary for a routine method of induction. The study was a clinical intervention with an osmotic dilator followed by prospective observation. The aim was to calculate the percentage of women who had successful cervical ripening using modified BISHOP score as evidenced by artificial rupture of membrane. The study also estimated the delivery interval following a single administration of osmotic dilators. Randomly selected patients booked for induction of labour accepting the intervention were included in the study. The study population comprised singleton term pregnancy, cephalic presentation, intact membranes with a modified BISHOP score of less than 6. Initial sample recruited was 30, but 6 patients left the study and the study was concluded on 24 patients. The data were collected in a pre-designed questionnaire and analysis were expressed in percentages along with using mean value for continuous variables. In 70 % of cases, artificial rupture of the membrane was possible and the mean time from insertion of the osmotic dilator to the delivery interval was 30 hours. The study concluded that an osmotic dilator could be a suitable alternative for hormone-based induction of labour.Keywords: dilator, induction, labour, osmotic
Procedia PDF Downloads 1383739 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis
Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho
Abstract:
This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis
Procedia PDF Downloads 182