Search results for: exchange rate forecasting
9674 Comparison between FEM Simulation and Experiment of Temperature Rise in Power Transformer Inner Steel Plate
Authors: Byung hyun Bae
Abstract:
In power transformer, leakage magnetic flux generate temperature rise of inner steel plate. Sometimes, this temperature rise can be serious problem. If temperature of steel plate is over critical point, harmful gas will be generated in the tank. And this gas can be a reason of fire, explosion and life decrease. So, temperature rise forecasting of steel plate is very important at the design stage of power transformer. To improve accuracy of forecasting of temperature rise, comparison between simulation and experiment achieved in this paper.Keywords: power transformer, steel plate, temperature rise, experiment, simulation
Procedia PDF Downloads 4959673 Forecasting Container Throughput: Using Aggregate or Terminal-Specific Data?
Authors: Gu Pang, Bartosz Gebka
Abstract:
We forecast the demand of total container throughput at the Indonesia’s largest seaport, Tanjung Priok Port. We propose four univariate forecasting models, including SARIMA, the additive Seasonal Holt-Winters, the multiplicative Seasonal Holt-Winters and the Vector Error Correction Model. Our aim is to provide insights into whether forecasting the total container throughput obtained by historical aggregated port throughput time series is superior to the forecasts of the total throughput obtained by summing up the best individual terminal forecasts. We test the monthly port/individual terminal container throughput time series between 2003 and 2013. The performance of forecasting models is evaluated based on Mean Absolute Error and Root Mean Squared Error. Our results show that the multiplicative Seasonal Holt-Winters model produces the most accurate forecasts of total container throughput, whereas SARIMA generates the worst in-sample model fit. The Vector Error Correction Model provides the best model fits and forecasts for individual terminals. Our results report that the total container throughput forecasts based on modelling the total throughput time series are consistently better than those obtained by combining those forecasts generated by terminal-specific models. The forecasts of total throughput until the end of 2018 provide an essential insight into the strategic decision-making on the expansion of port's capacity and construction of new container terminals at Tanjung Priok Port.Keywords: SARIMA, Seasonal Holt-Winters, Vector Error Correction Model, container throughput
Procedia PDF Downloads 5049672 Copper Price Prediction Model for Various Economic Situations
Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.Keywords: copper prices, prediction model, neural network, time series forecasting
Procedia PDF Downloads 1159671 CO₂/CH₄ Exchange Studies on Shales to Assess the Potential for CO₂ Storage and Enhanced Shale Gas Recovery
Authors: Mateusz Kudasik, Katarzyna Kozieł
Abstract:
The work included detailed studies of CO₂/CH₄ exchange on a shale core from the Lewino-1G2 well (Poland) from a depth of 3408 m. The sample permeability coefficients were determined under conditions of confining pressure from 5 MPa to 35 MPa. These studies showed that at a confining pressure of 35 MPa – corresponding to a depth of about 1000 m, the shale core was impermeable in the direction perpendicular to the bedding, and in the direction parallel to the bedding, the sample had very low permeability (k∞=0.001 mD). The sorption tests performed showed low sorption capacities, which amounted to a maximum of 1.28 cm³/g in relation to CO₂ and 0.87 cm³/g to CH₄ at a pressure of 1.4 MPa. The most important study used to assess the possibilities of CO₂ storage and gas recovery from shale rocks were the CO₂/CH₄ exchange experiments, which were carried out under confining pressure conditions of 5 MPa and 30 MPa. These experiments were carried out on a unique apparatus, which makes it possible to apply a confining pressure corresponding to in situ conditions. The obtained results made it possible to carry out a comprehensive balance of gas exchange during the injection of CO₂ into the shale sample, with simultaneous recovery of CH₄. Based on the conducted sorption and gas exchange studies on the core sample under confining pressure conditions, it was found that in situ conditions, at the depths of shale gas occurrence in Poland of 3000-4000 m, where the confining pressure can be about 100 MPa: (i) poorly developed pore structure, (ii) very low permeability, and (iii) low sorption properties, make shale rocks poorly predisposed to the application of CO₂ storage technology with simultaneous recovery of CH₄. Without the stimulation of CO₂/CH₄ exchange rates through fracturing processes, the effectiveness of CO₂-ESGR technology on shale rock is very low. The research presented in this work is extremely important from the point of view of precise assessment of the potential of CO₂-ESGR technology.Keywords: shale gas, shale rocks, CO₂/CH₄ exchange, permeability, sorption, CO₂, CH₄
Procedia PDF Downloads 209670 The Fight against Pollution of Heavy Metals
Authors: K. Menad, A. Feddag, M. A. Hassnaoui
Abstract:
We are living in a time and in a world heavily polluted. In the list of the great dangers awaiting the man can be placed on top of the list pollution by heavy metals: lead, mercury, cadmium, etc. Fatigue, Depression, Thyroid disorder, Alzheimer's, Parkinson's, Cancer, are some of the health problems caused by heavy metal pollution. The environmental protection has long since become a major political and economic issue. Among the priorities, include safeguarding water resources. All countries of the world are concerned either because they lack water or because they pollute it. There are several ways to remove these heavy metals; ion exchange by zeolites is one of these ways, which our work is based on. Zeolites were among the main clean up materials by either adsorption, ion exchange and catalysis. Lead and cadmium, heavy metals, is one of the main dangers fulminate the flora and fauna of our small planet, so many resources are deployed to remedy them. The elimination of lead and cadmium by ion exchange has been extensively studied. However, exchange capacity of more and larger formed a major challenge for researchers and industry.Keywords: composite, ion excahnge, zeolite LTA, zeolite x
Procedia PDF Downloads 2759669 Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting
Authors: Andres F. Ramirez, Carlos F. Valencia
Abstract:
The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones.Keywords: copula autoregressive, solar irradiance forecasting, solar energy forecasting, time series generation
Procedia PDF Downloads 3249668 Walmart Sales Forecasting using Machine Learning in Python
Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad
Abstract:
Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error
Procedia PDF Downloads 1509667 Implication of the Exchange-Correlation on Electromagnetic Wave Propagation in Single-Wall Carbon Nanotubes
Authors: A. Abdikian
Abstract:
Using the linearized quantum hydrodynamic model (QHD) and by considering the role of quantum parameter (Bohm’s potential) and electron exchange-correlation potential in conjunction with Maxwell’s equations, electromagnetic wave propagation in a single-walled carbon nanotubes was studied. The electronic excitations are described. By solving the mentioned equations with appropriate boundary conditions and by assuming the low-frequency electromagnetic waves, two general expressions of dispersion relations are derived for the transverse magnetic (TM) and transverse electric (TE) modes, respectively. The dispersion relations are analyzed numerically and it was found that the dependency of dispersion curves with the exchange-correlation effects (which have been ignored in previous works) in the low frequency would be limited. Moreover, it has been realized that asymptotic behaviors of the TE and TM modes are similar in single wall carbon nanotubes (SWCNTs). The results show that by adding the function of electron exchange-correlation potential lead to the phenomena and make to extend the validity range of QHD model. The results can be important in the study of collective phenomena in nanostructures.Keywords: transverse magnetic, transverse electric, quantum hydrodynamic model, electron exchange-correlation potential, single-wall carbon nanotubes
Procedia PDF Downloads 4549666 Forecasting of Innovative Development of Kondratiev-Schumpeter’s Economic Cycles
Authors: Alexander Gretchenko, Liudmila Goncharenko, Sergey Sybachin
Abstract:
This article summarizes the history of the discovery of N.D. Kondratiev of large cycles of economic conditions, as well as the creation and justification of the theory of innovation-cyclical economic development of Kondratiev-Schumpeter. An analysis of it in modern conditions is providing. The main conclusion in this article is that in general terms today it can be argued that the Kondratiev-Schumpeter theory is sufficiently substantiated. Further, the possibility of making a forecast of the development of the economic situation in the direction of applying this theory in practice, which demonstrate its effectiveness, is considered.Keywords: Kondratiev's big cycles of economic conjuncture, Schumpeter's theory of innovative economic development, long-term cyclical forecasting, dating of Kondratiev cycles
Procedia PDF Downloads 1649665 Development and Adaptation of a LGBM Machine Learning Model, with a Suitable Concept Drift Detection and Adaptation Technique, for Barcelona Household Electric Load Forecasting During Covid-19 Pandemic Periods (Pre-Pandemic and Strict Lockdown)
Authors: Eric Pla Erra, Mariana Jimenez Martinez
Abstract:
While aggregated loads at a community level tend to be easier to predict, individual household load forecasting present more challenges with higher volatility and uncertainty. Furthermore, the drastic changes that our behavior patterns have suffered due to the COVID-19 pandemic have modified our daily electrical consumption curves and, therefore, further complicated the forecasting methods used to predict short-term electric load. Load forecasting is vital for the smooth and optimized planning and operation of our electric grids, but it also plays a crucial role for individual domestic consumers that rely on a HEMS (Home Energy Management Systems) to optimize their energy usage through self-generation, storage, or smart appliances management. An accurate forecasting leads to higher energy savings and overall energy efficiency of the household when paired with a proper HEMS. In order to study how COVID-19 has affected the accuracy of forecasting methods, an evaluation of the performance of a state-of-the-art LGBM (Light Gradient Boosting Model) will be conducted during the transition between pre-pandemic and lockdowns periods, considering day-ahead electric load forecasting. LGBM improves the capabilities of standard Decision Tree models in both speed and reduction of memory consumption, but it still offers a high accuracy. Even though LGBM has complex non-linear modelling capabilities, it has proven to be a competitive method under challenging forecasting scenarios such as short series, heterogeneous series, or data patterns with minimal prior knowledge. An adaptation of the LGBM model – called “resilient LGBM” – will be also tested, incorporating a concept drift detection technique for time series analysis, with the purpose to evaluate its capabilities to improve the model’s accuracy during extreme events such as COVID-19 lockdowns. The results for the LGBM and resilient LGBM will be compared using standard RMSE (Root Mean Squared Error) as the main performance metric. The models’ performance will be evaluated over a set of real households’ hourly electricity consumption data measured before and during the COVID-19 pandemic. All households are located in the city of Barcelona, Spain, and present different consumption profiles. This study is carried out under the ComMit-20 project, financed by AGAUR (Agència de Gestiód’AjutsUniversitaris), which aims to determine the short and long-term impacts of the COVID-19 pandemic on building energy consumption, incrementing the resilience of electrical systems through the use of tools such as HEMS and artificial intelligence.Keywords: concept drift, forecasting, home energy management system (HEMS), light gradient boosting model (LGBM)
Procedia PDF Downloads 1069664 Kinetic Modeling of Transesterification of Triacetin Using Synthesized Ion Exchange Resin (SIERs)
Authors: Hafizuddin W. Yussof, Syamsutajri S. Bahri, Adam P. Harvey
Abstract:
Strong anion exchange resins with QN+OH-, have the potential to be developed and employed as heterogeneous catalyst for transesterification, as they are chemically stable to leaching of the functional group. Nine different SIERs (SIER1-9) with QN+OH- were prepared by suspension polymerization of vinylbenzyl chloride-divinylbenzene (VBC-DVB) copolymers in the presence of n-heptane (pore-forming agent). The amine group was successfully grafted into the polymeric resin beads through functionalization with trimethylamine. These SIERs are then used as a catalyst for the transesterification of triacetin with methanol. A set of differential equations that represents the Langmuir-Hinshelwood-Hougen-Watson (LHHW) and Eley-Rideal (ER) models for the transesterification reaction were developed. These kinetic models of LHHW and ER were fitted to the experimental data. Overall, the synthesized ion exchange resin-catalyzed reaction were well-described by the Eley-Rideal model compared to LHHW models, with sum of square error (SSE) of 0.742 and 0.996, respectively.Keywords: anion exchange resin, Eley-Rideal, Langmuir-Hinshelwood-Hougen-Watson, transesterification
Procedia PDF Downloads 3629663 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter
Authors: Amartya Hatua, Trung Nguyen, Andrew Sung
Abstract:
In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter
Procedia PDF Downloads 3929662 Combining the Dynamic Conditional Correlation and Range-GARCH Models to Improve Covariance Forecasts
Authors: Piotr Fiszeder, Marcin Fałdziński, Peter Molnár
Abstract:
The dynamic conditional correlation model of Engle (2002) is one of the most popular multivariate volatility models. However, this model is based solely on closing prices. It has been documented in the literature that the high and low price of the day can be used in an efficient volatility estimation. We, therefore, suggest a model which incorporates high and low prices into the dynamic conditional correlation framework. Empirical evaluation of this model is conducted on three datasets: currencies, stocks, and commodity exchange-traded funds. The utilisation of realized variances and covariances as proxies for true variances and covariances allows us to reach a strong conclusion that our model outperforms not only the standard dynamic conditional correlation model but also a competing range-based dynamic conditional correlation model.Keywords: volatility, DCC model, high and low prices, range-based models, covariance forecasting
Procedia PDF Downloads 1869661 Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fiber Ion-Exchanged with Alkali Metal Cation
Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher, I. Musbah
Abstract:
Cs-type nanocomposite zeolite membrane was successfully synthesized on an alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm; cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.Keywords: MFI membrane, nanocomposite, ceramic hollow fibre, CO2, ion-exchange
Procedia PDF Downloads 3009660 Gains and Pitfalls of Participating on International Staff Exchange Programs: Individual Experiences of Academic Staff of Makerere University, Uganda
Authors: David Onen
Abstract:
Staff exchanges amongst different work organizations are a growing international phenomenon. In higher education in particular, it is not only the staff participating on international exchange programs, but their students as well. The practice of exchanging staff is premised on the belief that participating members of staff would not only get the chance to network with colleagues from partner institutions but also gain the opportunity for knowledge sharing and skills development. As a result, it would not only benefit the participating individual staff but their institutions too. However, in practice, staff exchange programs everywhere are not all ‘a bed of roses’. In fact, some of the programs seem to be laden with unapparent source of trouble or danger for the participating staff. This paper is a report on an on-going study investigating the experiences of members of academic staff of Makerere University in Uganda who have ever participated on international staff exchange programs. The study is aimed at documenting individual experiences in order to stimulate, not only a debate, but practical ways of enriching the experiences of staff who engage on well-meant international staff exchange programs. The study has employed an exploratory survey research design in which self-administered questionnaire and interview guide are being used to collect data from university academic staff respondents selected through snow-ball and purposive sampling techniques. Data have been analysed with the use of appropriate descriptive and inferential statistics as well as content analysis techniques. Preliminary study findings reveal that the majority of the respondents (95.5%) were, to a large extent, fully satisfied with their participation on the staff exchange programs. Many attested to gaining new experience (97%), networking (75%), gaining new knowledge (94%), acquiring new skills (88%), and therefore bringing to their institutions something ‘new’ and ‘beneficial’. However, a reasonably large percentage (57%) of the participants too expressed dissatisfaction in the institutional support that Makerere University gave them during their participation on the exchange programs. Some respondents reported about the ‘unfriendly welcome’ they received upon returning ‘home’ because colleagues detested how they were chosen to participate on such programs. The researcher thus concluded that international staff exchange programs are truly beneficial to both the participating staff and their institutions though with pitfalls. The researcher thus recommended for mutual and preferably equal engagement of the participating institutions on staff exchange programs if such programs are to benefit both the participating staff and institutions. Besides, exchange programs require clear terms of cooperation including on how staff are selected, facilitated and what are expected of the sending and host institutions as well as the concerned staff.Keywords: gains, exchange programs, higher education, pitfalls
Procedia PDF Downloads 3469659 Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fibre Ion-Exchanged with Alkali Metal Cation
Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher, I. Musbah
Abstract:
Cs-type nanocomposite zeolite membrane was successfully synthesized on a alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm, cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.Keywords: MFI membrane, CO2, nanocomposite, ceramic hollow fibre, ion-exchange
Procedia PDF Downloads 4859658 Construct the Fur Input Mixed Model with Activity-Based Benefit Assessment Approach of Leather Industry
Authors: M. F. Wu, F. T. Cheng
Abstract:
Leather industry is the most important traditional industry to provide the leather products in the world for thousand years. The fierce global competitive environment and common awareness of global carbon reduction make livestock supply quantities falling, salt and wet blue leather material reduces and the price skyrockets significantly. Exchange rate fluctuation led sales revenue decreasing which due to the differences of export exchanges and compresses the overall profitability of leather industry. This paper applies activity-based benefit assessment approach to build up fitness fur input mixed model, fur is Wet Blue, which concerned with four key factors: the output rate of wet blue, unit cost of wet blue, yield rate and grade level of Wet Blue to achieve the low cost strategy under given unit price of leather product condition of the company. The research findings indicate that applying this model may improve the input cost structure, decrease numbers of leather product inventories and to raise the competitive advantages of the enterprise in the future.Keywords: activity-based benefit assessment approach, input mixed, output rate, wet blue
Procedia PDF Downloads 3769657 Forecasting of COVID-19 Cases, Hospitalization Admissions, and Death Cases Based on Wastewater Sars-COV-2 Surveillance Using Copula Time Series Model
Authors: Hueiwang Anna Jeng, Norou Diawara, Nancy Welch, Cynthia Jackson, Rekha Singh, Kyle Curtis, Raul Gonzalez, David Jurgens, Sasanka Adikari
Abstract:
Modeling effort is needed to predict the COVID-19 trends for developing management strategies and adaptation measures. The objective of this study was to assess whether SARS-CoV-2 viral load in wastewater could serve as a predictor for forecasting COVID-19 cases, hospitalization cases, and death cases using copula-based time series modeling. SARS-CoV-2 RNA load in raw wastewater in Chesapeake VA was measured using the RT-qPCR method. Gaussian copula time series marginal regression model, incorporating an autoregressive moving average model and the copula function, served as a forecasting model. COVID-19 cases were correlated with wastewater viral load, hospitalization cases, and death cases. The forecasted trend of COVID-19 cases closely paralleled one of the reported cases, with over 90% of the forecasted COVID-19 cases falling within the 99% confidence interval of the reported cases. Wastewater SARS-CoV-2 viral load could serve as a predictor for COVID-19 cases and hospitalization cases.Keywords: COVID-19, modeling, time series, copula function
Procedia PDF Downloads 719656 Volatility Model with Markov Regime Switching to Forecast Baht/USD
Authors: Nop Sopipan
Abstract:
In this paper, we forecast the volatility of Baht/USDs using Markov Regime Switching GARCH (MRS-GARCH) models. These models allow volatility to have different dynamics according to unobserved regime variables. The main purpose of this paper is to find out whether MRS-GARCH models are an improvement on the GARCH type models in terms of modeling and forecasting Baht/USD volatility. The MRS-GARCH is the best performance model for Baht/USD volatility in short term but the GARCH model is best perform for long term.Keywords: volatility, Markov Regime Switching, forecasting, Baht/USD
Procedia PDF Downloads 3049655 Unveiling Special Policy Regime, Judgment, and Taylor Rules in Tunisia
Authors: Yosra Baaziz, Moez Labidi
Abstract:
Given limited research on monetary policy rules in revolutionary countries, this paper challenges the suitability of the Taylor rule in characterizing the monetary policy behavior of the Tunisian Central Bank (BCT), especially in turbulent times. More specifically, we investigate the possibility that the Taylor rule should be formulated as a threshold process and examine the validity of such nonlinear Taylor rule as a robust rule for conducting monetary policy in Tunisia. Using quarterly data from 1998:Q4 to 2013:Q4 to analyze the movement of nominal short-term interest rate of the BCT, we find that the nonlinear Taylor rule improves its performance with the advent of special events providing thus a better description of the Tunisian interest rate setting. In particular, our results show that the adoption of an appropriate nonlinear approach leads to a reduction in the errors of 150 basis points in 1999 and 2009, and 60 basis points in 2011, relative to the linear approach.Keywords: policy rule, central bank, exchange rate, taylor rule, nonlinearity
Procedia PDF Downloads 2969654 Impact of Foreign Debt on Economic Growth of Nigeria
Authors: Gylych Jelilov
Abstract:
This paper investigates the effect of foreign debt on economic growth. Example has been chosen from Africa, Nigeria. By conducting cointegration test we have tested for a long-run relationship between. GDP = Real gross domestic product, EXTDEBT = External debt, INT = Interest rate, CAB = Current account balance, and EXCHR = Real exchange rate over the period 1990 to 2012. It was found out by the study that there is a negative but insignificant relationship between external debt and real gross domestic product. While a positive relationship exists between external debt and economic growth. Also, showed a negative and significant relationship between interest rate and real gross domestic product and there was a positive but insignificant relationship between current account balance and real gross domestic product.Keywords: economic growth, foreign debt, Nigeria, sustainable development, economic stability
Procedia PDF Downloads 4779653 Short-Term Energy Efficiency Decay and Risk Analysis of Ground Source Heat Pump System
Authors: Tu Shuyang, Zhang Xu, Zhou Xiang
Abstract:
The objective of this paper is to investigate the effect of short-term heat exchange decay of ground heat exchanger (GHE) on the ground source heat pump (GSHP) energy efficiency and capacity. A resistance-capacitance (RC) model was developed and adopted to simulate the transient characteristics of the ground thermal condition and heat exchange. The capacity change of the GSHP was linked to the inlet and outlet water temperature by polynomial fitting according to measured parameters given by heat pump manufacturers. Thus, the model, which combined the heat exchange decay with the capacity change, reflected the energy efficiency decay of the whole system. A case of GSHP system was analyzed by the model, and the result showed that there was risk that the GSHP might not meet the load demand because of the efficiency decay in a short-term operation. The conclusion would provide some guidances for GSHP system design to overcome the risk.Keywords: capacity, energy efficiency, GSHP, heat exchange
Procedia PDF Downloads 3529652 Corporate Social Responsibility, Earnings, and Tax Avoidance: Evidence from Indonesia
Authors: Cahyaningsih Cahyaningsih, Fu'ad Rakhman
Abstract:
This study examines empirically the association between corporate social responsibility (CSR) and tax avoidance. This study also investigates the effect of earnings on the relation between CSR and tax avoidance. Effective tax rate (ETR) and cash effective tax rate (CETR) were used to measure tax avoidance. Corporate social responsibility fund (CSRF) and corporate social responsibility disclosure (CSRD) were used as proxies for CSR. Test was conducted for public firms which were listed in the Indonesia Stock Exchange during the period of 2011-2014. Based on slack resource theory, this study finds that the relation between CSR and tax avoidance is moderated by earnings.Keywords: corporate social responsibility disclosure, corporate social responsibility fund, earnings, tax avoidance
Procedia PDF Downloads 2809651 Integrated Farming Barns as a Strategy for National Food Security
Authors: Ilma Ulfatul Janah, Ibnu Rizky Briwantara, Muhammad Afif
Abstract:
The agricultural sector is one of the sectors that contribute to national development. The benefit of the agricultural sector can be felt directly by the majority of Indonesian people. Indonesia is one of the agricultural countries and most of the people working in the agricultural sector. Hence, the agricultural sector’s become the second sector which has contributed greatly to the growth of Gross Domestic Product (GDP) after the manufacture sector. Based on the National Medium Term Development Plan (RPJMN) from 2015 to 2019, one of the targets to be achieved by the Indonesian government is rice’s self-sufficient. Rice is the main food commodities which as most people in Indonesia, and it is making Indonesian government attempt self-sufficient in rice. Indonesia as an agricultural country becomes one of the countries that have a lower percentage of food security than other ASEAN countries. Rice self-sufficiency can be created through agricultural productivity and the availability of a market for the output. There are some problems still to be faced by the farmers such as farmer exchange rate is low. The low exchange rate of farmers showed that the level of the welfare’s Indonesian farmers is still low. The aims of this paper are to resolve problems related to food security and improve the welfare of the national rice farmers. The method by using materials obtained from the analysis of secondary data with the descriptive approach and conceptual framework. Integrated Farmers barn raising rice production is integrated and managed by the government coupled with the implementation of technology in the form of systems connected and accessible to farmers, namely 'SIBUNGTAN'.Keywords: agriculture, self-sufficiency, technology, productivity
Procedia PDF Downloads 2539650 A Research on Tourism Market Forecast and Its Evaluation
Authors: Min Wei
Abstract:
The traditional prediction methods of the forecast for tourism market are paid more attention to the accuracy of the forecasts, ignoring the results of the feasibility of forecasting and predicting operability, which had made it difficult to predict the results of scientific testing. With the application of Linear Regression Model, this paper attempts to construct a scientific evaluation system for predictive value, both to ensure the accuracy, stability of the predicted value, and to ensure the feasibility of forecasting and predicting the results of operation. The findings show is that a scientific evaluation system can implement the scientific concept of development, the harmonious development of man and nature co-ordinate.Keywords: linear regression model, tourism market, forecast, tourism economics
Procedia PDF Downloads 3349649 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius
Authors: Mina Adel Shokry Fahim, Jūratė Sužiedelytė Visockienė
Abstract:
With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realisation often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.Keywords: air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter
Procedia PDF Downloads 559648 Empirical Research on Rate of Return, Interest Rate and Mudarabah Deposit
Authors: Inten Meutia, Emylia Yuniarti
Abstract:
The objective of this study is to analyze the effects of interest rate, the rate of return of Islamic banks on the amount of mudarabah deposits in Islamic banks. In analyzing the effect of rate of return in the Islamic banks and interest rate risk in the conventional banks, the 1-month Islamic deposit rate of return and 1 month fixed deposit interest rate of a total Islamic deposit are considered. Using data covering the period from January 2010 to Sepember 2013, the study applies the regression analysis to analyze the effect between variable and independence t-test to analyze the mean difference between rate of return and rate of interest. Regression analysis shows that rate of return have significantly negative influence on mudarabah deposits, while interest rate have negative influence but not significant. The result of independent t test shows that the interest rate is not different from the rate of return in Islamic Bank. It supports the hyphotesis that rate of return in Islamic banking mimic rate of interest in conventional bank. The results of the study have important implications on the risk management practices of the Islamic banks in Indonesia.Keywords: conventional bank, interest rate, Islamic bank, rate of return
Procedia PDF Downloads 5159647 Fill Rate Window as a Criterion for Spares Allocation
Authors: Michael Dreyfuss, Yahel Giat
Abstract:
Limited battery range and long recharging times are the greatest obstacles to the successful adoption of electric cars. One of the suggestions to overcome these problems is that carmakers retain ownership of batteries and provide battery swapping service so that customers exchange their depleted batteries for recharged batteries. Motivated by this example, we consider the problem of optimal spares allocation in an exchangeable-item, multi-location repair system. We generalize the standard service measures of fill rate and average waiting time to reflect the fact that customers penalize the service provider only if they have to wait more than a ‘tolerable’ time window. These measures are denoted as the window fill rate and the truncated waiting time, respectively. We find that the truncated waiting time is convex and therefore a greedy algorithm solves the spares allocation problem efficiently. We show that the window fill rate is generally S-shaped and describe an efficient algorithm to find a near-optimal solution and detail a priori and a posteriori upper bounds to the distance from optimum. The theory is complemented with a large scale numerical example demonstrating the spare battery allocation in battery swapping stations.Keywords: convex-concave optimization, exchangeable item, M/G/infinity, multiple location, repair system, spares allocation, window fill rate
Procedia PDF Downloads 4949646 Adjusting Electricity Demand Data to Account for the Impact of Loadshedding in Forecasting Models
Authors: Migael van Zyl, Stefanie Visser, Awelani Phaswana
Abstract:
The electricity landscape in South Africa is characterized by frequent occurrences of loadshedding, a measure implemented by Eskom to manage electricity generation shortages by curtailing demand. Loadshedding, classified into stages ranging from 1 to 8 based on severity, involves the systematic rotation of power cuts across municipalities according to predefined schedules. However, this practice introduces distortions in recorded electricity demand, posing challenges to accurate forecasting essential for budgeting, network planning, and generation scheduling. Addressing this challenge requires the development of a methodology to quantify the impact of loadshedding and integrate it back into metered electricity demand data. Fortunately, comprehensive records of loadshedding impacts are maintained in a database, enabling the alignment of Loadshedding effects with hourly demand data. This adjustment ensures that forecasts accurately reflect true demand patterns, independent of loadshedding's influence, thereby enhancing the reliability of electricity supply management in South Africa. This paper presents a methodology for determining the hourly impact of load scheduling and subsequently adjusting historical demand data to account for it. Furthermore, two forecasting models are developed: one utilizing the original dataset and the other using the adjusted data. A comparative analysis is conducted to evaluate forecast accuracy improvements resulting from the adjustment process. By implementing this methodology, stakeholders can make more informed decisions regarding electricity infrastructure investments, resource allocation, and operational planning, contributing to the overall stability and efficiency of South Africa's electricity supply system.Keywords: electricity demand forecasting, load shedding, demand side management, data science
Procedia PDF Downloads 639645 Effect of the Binary and Ternary Exchanges on Crystallinity and Textural Properties of X Zeolites
Authors: H. Hammoudi, S. Bendenia, K. Marouf-Khelifa, R. Marouf, J. Schott, A. Khelifa
Abstract:
The ionic exchange of the NaX zeolite by Cu2+ and/or Zn2+ cations is progressively driven while following the development of some of its characteristic: crystallinity by XR diffraction, profile of isotherms, RI criterion, isosteric adsorption heat and microporous volume using both the Dubinin–Radushkevich (DR) equation and the t-plot through the Lippens–de Boer method which also makes it possible to determine the external surface area. Results show that the cationic exchange process, in the case of Cu2+ introduced at higher degree, is accompanied by crystalline degradation for Cu(x)X, in contrast to Zn2+-exchanged zeolite X. This degradation occurs without significant presence of mesopores, because the RI criterion values were found to be much lower than 2.2. A comparison between the binary and ternary exchanges shows that the curves of CuZn(x)X are clearly below those of Zn(x)X and Cu(x)X, whatever the examined parameter. On the other hand, the curves relating to CuZn(x)X tend towards those of Cu(x)X. This would again confirm the sensitivity of the crystalline structure of CuZn(x)X with respect to the introduction of Cu2+ cations. An original result is the distortion of the zeolitic framework of X zeolites at middle exchange degree, when Cu2+ competes with another divalent cation, such as Zn2+, for the occupancy of sites distributed within zeolitic cavities. In other words, the ternary exchange accentuates the crystalline degradation of X zeolites. An unexpected result also is the no correlation between crystal damage and the external surface area.Keywords: adsorption, crystallinity, ion exchange, zeolite
Procedia PDF Downloads 261