Search results for: analytic models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6890

Search results for: analytic models

6680 A-Score, Distress Prediction Model with Earning Response during the Financial Crisis: Evidence from Emerging Market

Authors: Sumaira Ashraf, Elisabete G.S. Félix, Zélia Serrasqueiro

Abstract:

Traditional financial distress prediction models performed well to predict bankrupt and insolvent firms of the developed markets. Previous studies particularly focused on the predictability of financial distress, financial failure, and bankruptcy of firms. This paper contributes to the literature by extending the definition of financial distress with the inclusion of early warning signs related to quotation of face value, dividend/bonus declaration, annual general meeting, and listing fee. The study used five well-known distress prediction models to see if they have the ability to predict early warning signs of financial distress. Results showed that the predictive ability of the models varies over time and decreases specifically for the sample with early warning signs of financial distress. Furthermore, the study checked the differences in the predictive ability of the models with respect to the financial crisis. The results conclude that the predictive ability of the traditional financial distress prediction models decreases for the firms with early warning signs of financial distress and during the time of financial crisis. The study developed a new model comprising significant variables from the five models and one new variable earning response. This new model outperforms the old distress prediction models before, during and after the financial crisis. Thus, it can be used by researchers, organizations and all other concerned parties to indicate early warning signs for the emerging markets.

Keywords: financial distress, emerging market, prediction models, Z-Score, logit analysis, probit model

Procedia PDF Downloads 222
6679 Regeneration of Geological Models Using Support Vector Machine Assisted by Principal Component Analysis

Authors: H. Jung, N. Kim, B. Kang, J. Choe

Abstract:

History matching is a crucial procedure for predicting reservoir performances and making future decisions. However, it is difficult due to uncertainties of initial reservoir models. Therefore, it is important to have reliable initial models for successful history matching of highly heterogeneous reservoirs such as channel reservoirs. In this paper, we proposed a novel scheme for regenerating geological models using support vector machine (SVM) and principal component analysis (PCA). First, we perform PCA for figuring out main geological characteristics of models. Through the procedure, permeability values of each model are transformed to new parameters by principal components, which have eigenvalues of large magnitude. Secondly, the parameters are projected into two-dimensional plane by multi-dimensional scaling (MDS) based on Euclidean distances. Finally, we train an SVM classifier using 20% models which show the most similar or dissimilar well oil production rates (WOPR) with the true values (10% for each). Then, the other 80% models are classified by trained SVM. We select models on side of low WOPR errors. One hundred channel reservoir models are initially generated by single normal equation simulation. By repeating the classification process, we can select models which have similar geological trend with the true reservoir model. The average field of the selected models is utilized as a probability map for regeneration. Newly generated models can preserve correct channel features and exclude wrong geological properties maintaining suitable uncertainty ranges. History matching with the initial models cannot provide trustworthy results. It fails to find out correct geological features of the true model. However, history matching with the regenerated ensemble offers reliable characterization results by figuring out proper channel trend. Furthermore, it gives dependable prediction of future performances with reduced uncertainties. We propose a novel classification scheme which integrates PCA, MDS, and SVM for regenerating reservoir models. The scheme can easily sort out reliable models which have similar channel trend with the reference in lowered dimension space.

Keywords: history matching, principal component analysis, reservoir modelling, support vector machine

Procedia PDF Downloads 139
6678 Stability Analysis of Endemic State of Modelling the Effect of Vaccination and Novel Quarantine-Adjusted Incidence on the Spread of Newcastle Disease Virus

Authors: Nurudeen Oluwasola Lasisi, Abdulkareem Afolabi Ibrahim

Abstract:

Newcastle disease is an infection of domestic poultry and other bird species with virulent Newcastle disease virus (NDV). In this paper, we study the dynamics of modeling the Newcastle disease virus (NDV) using a novel quarantine-adjusted incidence. We do a comparison of Vaccination, linear incident rate, and novel quarantine adjusted incident rate in the models. The dynamics of the models yield disease free and endemic equilibrium states. The effective reproduction numbers of the models are computed in order to measure the relative impact for the individual bird or combined intervention for effective disease control. We showed the local and global stability of endemic equilibrium states of the models, and we found that stability of endemic equilibrium states of models are globally asymptotically stable if the effective reproduction numbers of the models equations are greater than a unit.

Keywords: effective reproduction number, endemic state, mathematical model, Newcastle disease virus, novel quarantine-adjusted incidence, stability analysis

Procedia PDF Downloads 223
6677 Reservoir Fluids: Occurrence, Classification, and Modeling

Authors: Ahmed El-Banbi

Abstract:

Several PVT models exist to represent how PVT properties are handled in sub-surface and surface engineering calculations for oil and gas production. The most commonly used models include black oil, modified black oil (MBO), and compositional models. These models are used in calculations that allow engineers to optimize and forecast well and reservoir performance (e.g., reservoir simulation calculations, material balance, nodal analysis, surface facilities, etc.). The choice of which model is dependent on fluid type and the production process (e.g., depletion, water injection, gas injection, etc.). Based on close to 2,000 reservoir fluid samples collected from different basins and locations, this paper presents some conclusions on the occurrence of reservoir fluids. It also reviews the common methods used to classify reservoir fluid types. Based on new criteria related to the production behavior of different fluids and economic considerations, an updated classification of reservoir fluid types is presented in the paper. Recommendations on the use of different PVT models to simulate the behavior of different reservoir fluid types are discussed. Each PVT model requirement is highlighted. Available methods for the calculation of PVT properties from each model are also discussed. Practical recommendations and tips on how to control the calculations to achieve the most accurate results are given.

Keywords: PVT models, fluid types, PVT properties, fluids classification

Procedia PDF Downloads 49
6676 Modeling Curriculum for High School Students to Learn about Electric Circuits

Authors: Meng-Fei Cheng, Wei-Lun Chen, Han-Chang Ma, Chi-Che Tsai

Abstract:

Recent K–12 Taiwan Science Education Curriculum Guideline emphasize the essential role of modeling curriculum in science learning; however, few modeling curricula have been designed and adopted in current science teaching. Therefore, this study aims to develop modeling curriculum on electric circuits to investigate any learning difficulties students have with modeling curriculum and further enhance modeling teaching. This study was conducted with 44 10th-grade students in Central Taiwan. Data collection included a students’ understanding of models in science (SUMS) survey that explored the students' epistemology of scientific models and modeling and a complex circuit problem to investigate the students’ modeling abilities. Data analysis included the following: (1) Paired sample t-tests were used to examine the improvement of students’ modeling abilities and conceptual understanding before and after the curriculum was taught. (2) Paired sample t-tests were also utilized to determine the students’ modeling abilities before and after the modeling activities, and a Pearson correlation was used to understand the relationship between students’ modeling abilities during the activities and on the posttest. (3) ANOVA analysis was used during different stages of the modeling curriculum to investigate the differences between the students’ who developed microscopic models and macroscopic models after the modeling curriculum was taught. (4) Independent sample t-tests were employed to determine whether the students who changed their models had significantly different understandings of scientific models than the students who did not change their models. The results revealed the following: (1) After the modeling curriculum was taught, the students had made significant progress in both their understanding of the science concept and their modeling abilities. In terms of science concepts, this modeling curriculum helped the students overcome the misconception that electric currents reduce after flowing through light bulbs. In terms of modeling abilities, this modeling curriculum helped students employ macroscopic or microscopic models to explain their observed phenomena. (2) Encouraging the students to explain scientific phenomena in different context prompts during the modeling process allowed them to convert their models to microscopic models, but it did not help them continuously employ microscopic models throughout the whole curriculum. The students finally consistently employed microscopic models when they had help visualizing the microscopic models. (3) During the modeling process, the students who revised their own models better understood that models can be changed than the students who did not revise their own models. Also, the students who revised their models to explain different scientific phenomena tended to regard models as explanatory tools. In short, this study explored different strategies to facilitate students’ modeling processes as well as their difficulties with the modeling process. The findings can be used to design and teach modeling curricula and help students enhance their modeling abilities.

Keywords: electric circuits, modeling curriculum, science learning, scientific model

Procedia PDF Downloads 435
6675 A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models

Authors: R. Hellmuth

Abstract:

The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated.

Keywords: building information modeling, digital factory model, factory planning, maintenance

Procedia PDF Downloads 92
6674 Mediation Models in Triadic Relationships: Illness Narratives and Medical Education

Authors: Yoko Yamada, Chizumi Yamada

Abstract:

Narrative psychology is based on the dialogical relationship between self and other. The dialogue can consist of divided, competitive, or opposite communication between self and other. We constructed models of coexistent dialogue in which self and other were positioned side by side and communicated sympathetically. We propose new mediation models for narrative relationships. The mediation models are based on triadic relationships that incorporate a medium or a mediator along with self and other. We constructed three types of mediation model. In the first type, called the “Joint Attention Model”, self and other are positioned side by side and share attention with the medium. In the second type, the “Triangle Model”, an agent mediates between self and other. In the third type, the “Caring Model”, a caregiver stands beside the communication between self and other. We apply the three models to the illness narratives of medical professionals and patients. As these groups have different views and experiences of disease or illness, triadic mediation facilitates the ability to see things from the other person’s perspective and to bridge differences in people’s experiences and feelings. These models would be useful for medical education in various situations, such as in considering the relationships between senior and junior doctors and between old and young patients.

Keywords: illness narrative, mediation, psychology, model, medical education

Procedia PDF Downloads 388
6673 Design and Study of a Parabolic Trough Solar Collector for Generating Electricity

Authors: A. A. A. Aboalnour, Ahmed M. Amasaib, Mohammed-Almujtaba A. Mohammed-Farah, Abdelhakam, A. Noreldien

Abstract:

This paper presents a design and study of Parabolic Trough Solar Collector (PTC). Mathematical models were used in this work to find the direct and reflected solar radiation from the air layer on the surface of the earth per hour based on the total daily solar radiation on a horizontal surface. Also mathematical models had been used to calculate the radiation of the tilted surfaces. Most of the ingredients used in this project as previews data required on several solar energy applications, thermal simulation, and solar power systems. In addition, mathematical models had been used to study the flow of the fluid inside the tube (receiver), and study the effect of direct and reflected solar radiation on the pressure, temperature, speed, kinetic energy and forces of fluid inside the tube. Finally, the mathematical models had been used to study the (PTC) performances and estimate its thermal efficiency.

Keywords: CFD, experimental, mathematical models, parabolic trough, radiation

Procedia PDF Downloads 393
6672 A Study of the Planning and Designing of the Built Environment under the Green Transit-Oriented Development

Authors: Wann-Ming Wey

Abstract:

In recent years, the problems of global climate change and natural disasters have induced the concerns and attentions of environmental sustainability issues for the public. Aside from the environmental planning efforts done for human environment, Transit-Oriented Development (TOD) has been widely used as one of the future solutions for the sustainable city development. In order to be more consistent with the urban sustainable development, the development of the built environment planning based on the concept of Green TOD which combines both TOD and Green Urbanism is adapted here. The connotation of the urban development under the green TOD including the design toward environment protect, the maximum enhancement resources and the efficiency of energy use, use technology to construct green buildings and protected areas, natural ecosystems and communities linked, etc. Green TOD is not only to provide the solution to urban traffic problems, but to direct more sustainable and greener consideration for future urban development planning and design. In this study, we use both the TOD and Green Urbanism concepts to proceed to the study of the built environment planning and design. Fuzzy Delphi Technique (FDT) is utilized to screen suitable criteria of the green TOD. Furthermore, Fuzzy Analytic Network Process (FANP) and Quality Function Deployment (QFD) were then developed to evaluate the criteria and prioritize the alternatives. The study results can be regarded as the future guidelines of the built environment planning and designing under green TOD development in Taiwan.

Keywords: green TOD, built environment, fuzzy delphi technique, quality function deployment, fuzzy analytic network process

Procedia PDF Downloads 355
6671 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models

Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand

Abstract:

Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models on two different realworld electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.

Keywords: EHR, machine learning, imputation, laboratory variables, algorithmic bias

Procedia PDF Downloads 63
6670 Improvement of Process Competitiveness Using Intelligent Reference Models

Authors: Julio Macedo

Abstract:

Several methodologies are now available to conceive the improvements of a process so that it becomes competitive as for example total quality, process reengineering, six sigma, define measure analysis improvement control method. These improvements are of different nature and can be external to the process represented by an optimization model or a discrete simulation model. In addition, the process stakeholders are several and have different desired performances for the process. Hence, the methodologies above do not have a tool to aid in the conception of the required improvements. In order to fill this void we suggest the use of intelligent reference models. A reference model is a set of qualitative differential equations and an objective function that minimizes the gap between the current and the desired performance indexes of the process. The reference models are intelligent so when they receive the current state of the problematic process and the desired performance indexes they generate the required improvements for the problematic process. The reference models are fuzzy cognitive maps added with an objective function and trained using the improvements implemented by the high performance firms. Experiments done in a set of students show the reference models allow them to conceive more improvements than students that do not use these models.

Keywords: continuous improvement, fuzzy cognitive maps, process competitiveness, qualitative simulation, system dynamics

Procedia PDF Downloads 66
6669 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models

Authors: Suriya

Abstract:

Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.

Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar

Procedia PDF Downloads 25
6668 Statistical Analysis for Overdispersed Medical Count Data

Authors: Y. N. Phang, E. F. Loh

Abstract:

Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling over-dispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling over-dispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling over-dispersed medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling over-dispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian, and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling over-dispersed medical count data when ZIP and ZINB are inadequate.

Keywords: zero inflated, inverse trinomial distribution, Poisson inverse Gaussian distribution, strict arcsine distribution, Pearson’s goodness of fit

Procedia PDF Downloads 517
6667 The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models

Authors: Jihye Jeon

Abstract:

This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed.

Keywords: multiple regression, path analysis, structural equation models, statistical modeling, social and psychological phenomenon

Procedia PDF Downloads 616
6666 Some Inequalities Related with Starlike Log-Harmonic Mappings

Authors: Melike Aydoğan, Dürdane Öztürk

Abstract:

Let H(D) be the linear space of all analytic functions defined on the open unit disc. A log-harmonic mappings is a solution of the nonlinear elliptic partial differential equation where w(z) ∈ H(D) is second dilatation such that |w(z)| < 1 for all z ∈ D. The aim of this paper is to define some inequalities of starlike logharmonic functions of order α(0 ≤ α ≤ 1).

Keywords: starlike log-harmonic functions, univalent functions, distortion theorem

Procedia PDF Downloads 503
6665 Evaluation of Football Forecasting Models: 2021 Brazilian Championship Case Study

Authors: Flavio Cordeiro Fontanella, Asla Medeiros e Sá, Moacyr Alvim Horta Barbosa da Silva

Abstract:

In the present work, we analyse the performance of football results forecasting models. In order to do so, we have performed the data collection from eight different forecasting models during the 2021 Brazilian football season. First, we guide the analysis through visual representations of the data, designed to highlight the most prominent features and enhance the interpretation of differences and similarities between the models. We propose using a 2-simplex triangle to investigate visual patterns from the results forecasting models. Next, we compute the expected points for every team playing in the championship and compare them to the final league standings, revealing interesting contrasts between actual to expected performances. Then, we evaluate forecasts’ accuracy using the Ranked Probability Score (RPS); models comparison accounts for tiny scale differences that may become consistent in time. Finally, we observe that the Wisdom of Crowds principle can be appropriately applied in the context, driving into a discussion of results forecasts usage in practice. This paper’s primary goal is to encourage football forecasts’ performance discussion. We hope to accomplish it by presenting appropriate criteria and easy-to-understand visual representations that can point out the relevant factors of the subject.

Keywords: accuracy evaluation, Brazilian championship, football results forecasts, forecasting models, visual analysis

Procedia PDF Downloads 71
6664 Statistical Channel Modeling for Multiple-Input-Multiple-Output Communication System

Authors: M. I. Youssef, A. E. Emam, M. Abd Elghany

Abstract:

The performance of wireless communication systems is affected mainly by the environment of its associated channel, which is characterized by dynamic and unpredictable behavior. In this paper, different statistical earth-satellite channel models are studied with emphasize on two main models, first is the Rice-Log normal model, due to its representation for the environment including shadowing and multi-path components that affect the propagated signal along its path, and a three-state model that take into account different fading conditions (clear area, moderate shadow and heavy shadowing). The provided models are based on AWGN, Rician, Rayleigh, and log-normal distributions were their Probability Density Functions (PDFs) are presented. The transmission system Bit Error Rate (BER), Peak-Average-Power Ratio (PAPR), and the channel capacity vs. fading models are measured and analyzed. These simulations are implemented using MATLAB tool, and the results had shown the performance of transmission system over different channel models.

Keywords: fading channels, MIMO communication, RNS scheme, statistical modeling

Procedia PDF Downloads 125
6663 Site Suitability of Offshore Wind Energy: A Combination of Geographic Referenced Information and Analytic Hierarchy Process

Authors: Ayat-Allah Bouramdane

Abstract:

Power generation from offshore wind energy does not emit carbon dioxide or other air pollutants and therefore play a role in reducing greenhouse gas emissions from the energy sector. In addition, these systems are considered more efficient than onshore wind farms, as they generate electricity from the wind blowing across the sea, thanks to the higher wind speed and greater consistency in direction due to the lack of physical interference that the land or human-made objects can present. This means offshore installations require fewer turbines to produce the same amount of energy as onshore wind farms. However, offshore wind farms require more complex infrastructure to support them and, as a result, are more expensive to construct. In addition, higher wind speeds, strong seas, and accessibility issues makes offshore wind farms more challenging to maintain. This study uses a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP) to identify the most suitable sites for offshore wind farm development in Morocco, with a particular focus on the Dakhla city. A range of environmental, socio-economic, and technical criteria are taken into account to solve this complex Multi-Criteria Decision-Making (MCDM) problem. Based on experts' knowledge, a pairwise comparison matrix at each level of the hierarchy is performed, and fourteen sub-criteria belong to the main criteria have been weighted to generate the site suitability of offshore wind plants and obtain an in-depth knowledge on unsuitable areas, and areas with low-, moderate-, high- and very high suitability. We find that wind speed is the most decisive criteria in offshore wind farm development, followed by bathymetry, while proximity to facilities, the sediment thickness, and the remaining parameters show much lower weightings rendering technical parameters most decisive in offshore wind farm development projects. We also discuss the potential of other marine renewable energy potential, in Morocco, such as wave and tidal energy. The proposed approach and analysis can help decision-makers and can be applied to other countries in order to support the site selection process of offshore wind farms.

Keywords: analytic hierarchy process, dakhla, geographic referenced information, morocco, multi-criteria decision-making, offshore wind, site suitability

Procedia PDF Downloads 127
6662 Battery Grading Algorithm in 2nd-Life Repurposing LI-Ion Battery System

Authors: Ya L. V., Benjamin Ong Wei Lin, Wanli Niu, Benjamin Seah Chin Tat

Abstract:

This article introduces a methodology that improves reliability and cyclability of 2nd-life Li-ion battery system repurposed as an energy storage system (ESS). Most of the 2nd-life retired battery systems in the market have module/pack-level state-of-health (SOH) indicator, which is utilized for guiding appropriate depth-of-discharge (DOD) in the application of ESS. Due to the lack of cell-level SOH indication, the different degrading behaviors among various cells cannot be identified upon reaching retired status; in the end, considering end-of-life (EOL) loss and pack-level DOD, the repurposed ESS has to be oversized by > 1.5 times to complement the application requirement of reliability and cyclability. This proposed battery grading algorithm, using non-invasive methodology, is able to detect outlier cells based on historical voltage data and calculate cell-level historical maximum temperature data using semi-analytic methodology. In this way, the individual battery cell in the 2nd-life battery system can be graded in terms of SOH on basis of the historical voltage fluctuation and estimated historical maximum temperature variation. These grades will have corresponding DOD grades in the application of the repurposed ESS to enhance system reliability and cyclability. In all, this introduced battery grading algorithm is non-invasive, compatible with all kinds of retired Li-ion battery systems which lack of cell-level SOH indication, as well as potentially being embedded into battery management software for preventive maintenance and real-time cyclability optimization.

Keywords: battery grading algorithm, 2nd-life repurposing battery system, semi-analytic methodology, reliability and cyclability

Procedia PDF Downloads 179
6661 Managing Diversity in MNCS: A Literature Review of Existing Strategic Models for Managing Diversity and a Roadmap to Transfer Them to the Subsidiaries

Authors: Debora Gottardello, Mireia Valverde Aparicio, Juan Llopis Taverner

Abstract:

Globalization has given rise to a great diversity in the composition of people in organizations. Diversity management is therefore key to create growth in today’s competitive global marketplace. This work develops a literature review related to the existing models for managing diversity covering the period from 1980 until 2014. Furthermore, it identifies limitations in previous models. More specifically, the literature review reveals that there is a lack of information about how these models can be adapted from the headquarters to the subsidiaries. Therefore, the contribution of this paper is to suggest how the models should be adapted when they are directed to host countries. Our aim is to highlight the limitations of the developed models with regards to the translation of the diversity management practices to the subsidiaries. Accordingly, a model that will enable MNCs to ensure a global strategy is suggested. Taking advantage of the potential incorporated in a culturally diverse work team should be at the top of every international company’s aims. Executives from headquarters need to use different attitudes when transferring diversity practices towards their subsidiaries. Further studies should reassess local practices of diversity management to find out how this universal management model is translated.

Keywords: culture diversity, diversity management, human resources management, MNCs, subsidiaries, workforce diversity

Procedia PDF Downloads 234
6660 Numerical Investigation of the Effect of Blast Pressure on Discrete Model in Shock Tube

Authors: Aldin Justin Sundararaj, Austin Lord Tennyson, Divya Jose, A. N. Subash

Abstract:

Blast waves are generated due to the explosions of high energy materials. An explosion yielding a blast wave has the potential to cause severe damage to buildings and its personnel. In order to understand the physics of effects of blast pressure on buildings, studies in the shock tube on generic configurations are carried out at various pressures on discrete models. The strength of shock wave is systematically varied by using different driver gases and diaphragm thickness. The basic material of the diaphragm is Aluminum. To simulate the effect of shock waves on discrete models a shock tube was used. Generic models selected for this study are suitably scaled cylinder, cone and cubical blocks. The experiments were carried out with 2mm diaphragm with burst pressure ranging from 28 to 31 bar. Numerical analysis was carried out over these discrete models. A 3D model of shock-tube with different discrete models inside the tube was used for CFD computation. It was found that cone has dissipated most of the shock pressure compared to cylinder and cubical block. The robustness and the accuracy of the numerical model were validation with the analytical and experimental data.

Keywords: shock wave, blast wave, discrete models, shock tube

Procedia PDF Downloads 298
6659 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: big data, k-NN, machine learning, traffic speed prediction

Procedia PDF Downloads 335
6658 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata

Procedia PDF Downloads 364
6657 Leverage Effect for Volatility with Generalized Laplace Error

Authors: Farrukh Javed, Krzysztof Podgórski

Abstract:

We propose a new model that accounts for the asymmetric response of volatility to positive ('good news') and negative ('bad news') shocks in economic time series the so-called leverage effect. In the past, asymmetric powers of errors in the conditionally heteroskedastic models have been used to capture this effect. Our model is using the gamma difference representation of the generalized Laplace distributions that efficiently models the asymmetry. It has one additional natural parameter, the shape, that is used instead of power in the asymmetric power models to capture the strength of a long-lasting effect of shocks. Some fundamental properties of the model are provided including the formula for covariances and an explicit form for the conditional distribution of 'bad' and 'good' news processes given the past the property that is important for the statistical fitting of the model. Relevant features of volatility models are illustrated using S&P 500 historical data.

Keywords: heavy tails, volatility clustering, generalized asymmetric laplace distribution, leverage effect, conditional heteroskedasticity, asymmetric power volatility, GARCH models

Procedia PDF Downloads 365
6656 Strain Based Failure Criterion for Composite Notched Laminates

Authors: Ibrahim A. Elsayed, Mohamed H. Elalfy, Mostafa M. Abdalla

Abstract:

A strain-based failure criterion for composite notched laminates is introduced where the most critical stress concentration factor for the anisotropic notched laminates could be related to the failure of the corresponding quasi-isotropic laminate and the anisotropy ratio of the laminate. The proposed criterion will simplify the design of composites to meet notched failure requirements by eliminating the need for the detailed specifications of the stacking sequence at the preliminary design stage. The designer will be able to design based on the stiffness of the laminate, then at a later stage, select an appropriate stacking sequence to meet the stiffness requirements. The failure strains for the notched laminates are computed using the material’s Omni-strain envelope. The concept of Omni-strain envelope concerns the region of average strain where the laminate is safe regardless of ply orientation. In this work, we use Hashin’s failure criteria and the strains around the hole are computed using Savin’s analytic solution. A progressive damage analysis study has been conducted where the failure loads for the notched laminates are computed using finite element analysis. The failure strains are computed and used to estimate the concentration factor. It is found that the correlation found using Savin’s analytic solution predicts the same ratio of concentration factors between anisotropic and quasi-isotropic laminates as the more expensive progressive failure analysis.

Keywords: anisotropy ratio, failure criteria, notched laminates, Omni-strain envelope, savin’s solution

Procedia PDF Downloads 94
6655 Analyzing Business Model Choices and Sustainable Value Capturing: A Multiple Case Study of Sharing Economy Business Models

Authors: Minttu Laukkanen, Janne Huiskonen

Abstract:

This study investigates the sharing economy business models as examples of the sustainable business models. The aim is to contribute to the limited literature on sharing economy in connection with sustainable business models by explaining sharing economy business models value capturing. Specifically, this research answers the following question: How business model choices affect captured sustainable value? A multiple case study approach is applied in this study. Twenty different successful sharing economy business models focusing on consumer business and covering four main areas, accommodation, mobility, food, and consumer goods, are selected for analysis. The secondary data available on companies’ websites, previous research, reports, and other public documents are used. All twenty cases are analyzed through the sharing economy business model framework and sustainable value analysis framework using qualitative data analysis. This study represents general sharing economy business model value attributes and their specifications, i.e. sustainable value propositions for different stakeholders, and further explains the sustainability impacts of different sharing economy business models through captured and uncaptured value. In conclusion, this study represents how business model choices affect sustainable value capturing through eight business model attributes identified in this study. This paper contributes to the research on sustainable business models and sharing economy by examining how business model choices affect captured sustainable value. This study highlights the importance of careful business model and sustainability impacts analyses including the triple bottom line, multiple stakeholders and value captured and uncaptured perspectives as well as sustainability trade-offs. It is not self-evident that sharing economy business models advance sustainability, and business model choices does matter.

Keywords: sharing economy, sustainable business model innovation, sustainable value, value capturing

Procedia PDF Downloads 146
6654 Generic Hybrid Models for Two-Dimensional Ultrasonic Guided Wave Problems

Authors: Manoj Reghu, Prabhu Rajagopal, C. V. Krishnamurthy, Krishnan Balasubramaniam

Abstract:

A thorough understanding of guided ultrasonic wave behavior in structures is essential for the application of existing Non Destructive Evaluation (NDE) technologies, as well as for the development of new methods. However, the analysis of guided wave phenomena is challenging because of their complex dispersive and multimodal nature. Although numerical solution procedures have proven to be very useful in this regard, the increasing complexity of features and defects to be considered, as well as the desire to improve the accuracy of inspection often imposes a large computational cost. Hybrid models that combine numerical solutions for wave scattering with faster alternative methods for wave propagation have long been considered as a solution to this problem. However usually such models require modification of the base code of the solution procedure. Here we aim to develop Generic Hybrid models that can be directly applied to any two different solution procedures. With this goal in mind, a Numerical Hybrid model and an Analytical-Numerical Hybrid model has been developed. The concept and implementation of these Hybrid models are discussed in this paper.

Keywords: guided ultrasonic waves, Finite Element Method (FEM), Hybrid model

Procedia PDF Downloads 438
6653 Computational Models for Accurate Estimation of Joint Forces

Authors: Ibrahim Elnour Abdelrahman Eltayeb

Abstract:

Computational modelling is a method used to investigate joint forces during a movement. It can get high accuracy in the joint forces via subject-specific models. However, the construction of subject-specific models remains time-consuming and expensive. The purpose of this paper was to identify what alterations we can make to generic computational models to get a better estimation of the joint forces. It appraised the impact of these alterations on the accuracy of the estimated joint forces. It found different strategies of alterations: joint model, muscle model, and an optimisation problem. All these alterations affected joint contact force accuracy, so showing the potential for improving the model predictions without involving costly and time-consuming medical images.

Keywords: joint force, joint model, optimisation problem, validation

Procedia PDF Downloads 148
6652 Modelling Mode Choice Behaviour Using Cloud Theory

Authors: Leah Wright, Trevor Townsend

Abstract:

Mode choice models are crucial instruments in the analysis of travel behaviour. These models show the relationship between an individual’s choice of transportation mode for a given O-D pair and the individual’s socioeconomic characteristics such as household size and income level, age and/or gender, and the features of the transportation system. The most popular functional forms of these models are based on Utility-Based Choice Theory, which addresses the uncertainty in the decision-making process with the use of an error term. However, with the development of artificial intelligence, many researchers have started to take a different approach to travel demand modelling. In recent times, researchers have looked at using neural networks, fuzzy logic and rough set theory to develop improved mode choice formulas. The concept of cloud theory has recently been introduced to model decision-making under uncertainty. Unlike the previously mentioned theories, cloud theory recognises a relationship between randomness and fuzziness, two of the most common types of uncertainty. This research aims to investigate the use of cloud theory in mode choice models. This paper highlights the conceptual framework of the mode choice model using cloud theory. Merging decision-making under uncertainty and mode choice models is state of the art. The cloud theory model is expected to address the issues and concerns with the nested logit and improve the design of mode choice models and their use in travel demand.

Keywords: Cloud theory, decision-making, mode choice models, travel behaviour, uncertainty

Procedia PDF Downloads 358
6651 Simulation of Channel Models for Device-to-Device Application of 5G Urban Microcell Scenario

Authors: H. Zormati, J. Chebil, J. Bel Hadj Tahar

Abstract:

Next generation wireless transmission technology (5G) is expected to support the development of channel models for higher frequency bands, so clarification of high frequency bands is the most important issue in radio propagation research for 5G, multiple urban microcellular measurements have been carried out at 60 GHz. In this paper, the collected data is uniformly analyzed with focus on the path loss (PL), the objective is to compare simulation results of some studied channel models with the purpose of testing the performance of each one.

Keywords: 5G, channel model, 60GHz channel, millimeter-wave, urban microcell

Procedia PDF Downloads 286