Search results for: adaptive random testing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5987

Search results for: adaptive random testing

5777 Prediction Compressive Strength of Self-Compacting Concrete Containing Fly Ash Using Fuzzy Logic Inference System

Authors: Belalia Douma Omar, Bakhta Boukhatem, Mohamed Ghrici

Abstract:

Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. Fuzzy logic (FL) approaches has recently been used to model some of the human activities in many areas of civil engineering applications. Especially from these systems in the model experimental studies, very good results have been obtained. In the present study, a model for predicting compressive strength of SCC containing various proportions of fly ash, as partial replacement of cement has been developed by using Adaptive Neuro-Fuzzy Inference System (ANFIS). For the purpose of building this model, a database of experimental data were gathered from the literature and used for training and testing the model. The used data as the inputs of fuzzy logic models are arranged in a format of five parameters that cover the total binder content, fly ash replacement percentage, water content, super plasticizer and age of specimens. The training and testing results in the fuzzy logic model have shown a strong potential for predicting the compressive strength of SCC containing fly ash in the considered range.

Keywords: self-compacting concrete, fly ash, strength prediction, fuzzy logic

Procedia PDF Downloads 335
5776 Comparative Analysis of Automation Testing Tools

Authors: Amit Bhanushali

Abstract:

In the ever-changing landscape of software development, automated software testing has emerged as a critical component of the Software Development Life Cycle (SDLC). This research undertakes a comparative study of three major automated testing tools -UFT, Selenium, and RPA- evaluating them on usability, maintenance, and effectiveness. Leveraging existing JAVA-based applications as test cases, the study aims to guide testers in selecting the optimal tool for specific applications. By exploring key features such as source and licensing, testing expenses, object repositories, usability, and language support, the research provides practical insights into UFT, Selenium, and RPA. Acknowledging the pivotal role of these tools in streamlining testing processes amid time constraints and resource limitations, the study assists professionals in making informed choices aligned with their organizational needs.

Keywords: software testing tools, software development lifecycle (SDLC), test automation frameworks, automated software, JAVA-based, UFT, selenium and RPA (robotic process automation), source and licensing, object repository

Procedia PDF Downloads 98
5775 Reversible and Adaptive Watermarking for MRI Medical Images

Authors: Nisar Ahmed Memon

Abstract:

A new medical image watermarking scheme delivering high embedding capacity is presented in this paper. Integer Wavelet Transform (IWT), Companding technique and adaptive thresholding are used in this scheme. The proposed scheme implants, recovers the hidden information and restores the input image to its pristine state at the receiving end. Magnetic Resonance Imaging (MRI) images are used for experimental purposes. The scheme first segment the MRI medical image into non-overlapping blocks and then inserts watermark into wavelet coefficients having a high frequency of each block. The scheme uses block-based watermarking adopting iterative optimization of threshold for companding in order to avoid the histogram pre and post processing. Results show that proposed scheme performs better than other reversible medical image watermarking schemes available in literature for MRI medical images.

Keywords: adaptive thresholding, companding technique, data authentication, reversible watermarking

Procedia PDF Downloads 296
5774 A Study of Adaptive Fault Detection Method for GNSS Applications

Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee

Abstract:

A purpose of this study is to develop efficient detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive estimation. Due to dependence of radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. Thus, to utilize GNSS for aerospace or ground vehicles requiring high level of safety, unhealthy measurements should be considered seriously. For the reason, this paper proposes adaptive fault detection method to deal with unhealthy measurements in various harsh environments. By the proposed method, the test statistics for fault detection is generated by estimated measurement noise. Pseudorange and carrier-phase measurement noise are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. Performance of the proposed method was evaluated by field-collected GNSS measurements. To evaluate the fault detection capability, intentional faults were added to measurements. The experimental result shows that the proposed detection method is efficient in detecting unhealthy measurements and improves the accuracy of GNSS positioning under fault occurrence.

Keywords: adaptive estimation, fault detection, GNSS, residual

Procedia PDF Downloads 575
5773 Design Development and Qualification of a Magnetically Levitated Blower for C0₂ Scrubbing in Manned Space Missions

Authors: Larry Hawkins, Scott K. Sakakura, Michael J. Salopek

Abstract:

The Marshall Space Flight Center is designing and building a next-generation CO₂ removal system, the Four Bed Carbon Dioxide Scrubber (4BCO₂), which will use the International Space Station (ISS) as a testbed. The current ISS CO2 removal system has faced many challenges in both performance and reliability. Given that CO2 removal is an integral Environmental Control and Life Support System (ECLSS) subsystem, the 4BCO2 Scrubber has been designed to eliminate the shortfalls identified in the current ISS system. One of the key required upgrades was to improve the performance and reliability of the blower that provides the airflow through the CO₂ sorbent beds. A magnetically levitated blower, capable of higher airflow and pressure than the previous system, was developed to meet this need. The design and qualification testing of this next-generation blower are described here. The new blower features a high-efficiency permanent magnet motor, a five-axis, active magnetic bearing system, and a compact controller containing both a variable speed drive and a magnetic bearing controller. The blower uses a centrifugal impeller to pull air from the inlet port and drive it through an annular space around the motor and magnetic bearing components to the exhaust port. Technical challenges of the blower and controller development include survival of the blower system under launch random vibration loads, operation in microgravity, packaging under strict size and weight requirements, and successful operation during 4BCO₂ operational changeovers. An ANSYS structural dynamic model of the controller was used to predict response to the NASA defined random vibration spectrum and drive minor design changes. The simulation results are compared to measurements from qualification testing the controller on a vibration table. Predicted blower performance is compared to flow loop testing measurements. Dynamic response of the system to valve changeovers is presented and discussed using high bandwidth measurements from dynamic pressure probes, magnetic bearing position sensors, and actuator coil currents. The results presented in the paper show that the blower controller will survive launch vibration levels, the blower flow meets the requirements, and the magnetic bearings have adequate load capacity and control bandwidth to maintain the desired rotor position during the valve changeover transients.

Keywords: blower, carbon dioxide removal, environmental control and life support system, magnetic bearing, permanent magnet motor, validation testing, vibration

Procedia PDF Downloads 135
5772 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 80
5771 A Mechanism of Reusable, Portable, and Reliable Script Generator on Android

Authors: Kuei-Chun Liu, Yu-Yu Lai, Ching-Hong Wu

Abstract:

A good automated testing tool could reduce as much as possible the manual work done by testers. Traditional record-replay testing tool provides an automated testing solution by recording mouse coordinates as test scripts, but it will be easily broken if any change of resolutions. Therefore, more and more testers design multiple test scripts to automate the testing process for different devices. In order to improve the traditional record-replay approach and reduce the effort that the testers spending on writing test scripts, we propose an approach for generating the Android application test scripts based on accessibility service without connecting to a computer. This approach simulates user input actions and replays them correctly even at the different conditions such as the internet connection is unstable when the device under test, the different resolutions on Android devices. In this paper, we describe how to generate test scripts automatically and make a comparison with existing tools for Android such as Robotium, Appium, UIAutomator, and MonkeyTalk.

Keywords: accessibility service, Appium, automated testing, MonkeyTalk, Robotium, testing, UIAutomator

Procedia PDF Downloads 378
5770 Assessing Adaptive Capacity to Climate Change and Agricultural Productivity of Farming Households of Makueni County in Kenya

Authors: Lilian Mbinya Muasa

Abstract:

Climate change is inevitable and a global challenge with long term implications to the sustainable development of many countries today. The negative impacts of climate change are creating far reaching social, economic and environmental problems threatening lives and livelihoods of millions of people in the world. Developing countries especially sub-Saharan countries are more vulnerable to climate change due to their weak ecosystem, low adaptive capacity and high dependency on rain fed agriculture. Countries in Sub-Saharan Africa are more vulnerable to climate change impacts due to their weak adaptive capacity and over-reliance on rain fed agriculture. In Kenya, 78% of the rural communities are poor farmers who heavily rely on rain fed agriculture thus are directly affected by climate change impacts.Currently, many parts of Kenya are experiencing successive droughts which are contributing to persistently unstable and declining agricultural productivity especially in semi arid eastern Kenya. As a result, thousands of rural communities repeatedly experience food insecurity which plunge them to an ever over-reliance on relief food from the government and Non-Governmental Organization In addition, they have adopted poverty coping strategies to diversify their income, for instance, deforestation to burn charcoal, sand harvesting and overgrazing which instead contribute to environmental degradation.This research was conducted in Makueni County which is classified as one of the most food insecure counties in Kenya and experiencing acute environmental degradation. The study aimed at analyzing the adaptive capacity to climate change across farming households of Makueni County in Kenya by, 1) analyzing adaptive capacity to climate change and agricultural productivity across farming households, 2) identifying factors that contribute to differences in adaptive capacity across farming households, and 3) understanding the relationship between climate change, agricultural productivity and adaptive capacity. Analytical Hierarchy Process (AHP) was applied to determine adaptive capacity and Total Factor Productivity (TFP) to determine Agricultural productivity per household. Increase in frequency of prolonged droughts and scanty rainfall. Preliminary findings indicate a magnanimous decline in agricultural production in the last 10 years in Makueni County. In addition, there is an over reliance of households on indigenous knowledge which is no longer reliable because of the unpredictability nature of climate change impacts. These findings on adaptive capacity across farming households provide the first step of developing and implementing action-oriented climate change policies in Makueni County and Kenya.

Keywords: adaptive capacity, agricultural productivity, climate change, vulnerability

Procedia PDF Downloads 326
5769 A New Dual Forward Affine Projection Adaptive Algorithm for Speech Enhancement in Airplane Cockpits

Authors: Djendi Mohmaed

Abstract:

In this paper, we propose a dual adaptive algorithm, which is based on the combination between the forward blind source separation (FBSS) structure and the affine projection algorithm (APA). This proposed algorithm combines the advantages of the source separation properties of the FBSS structure and the fast convergence characteristics of the APA algorithm. The proposed algorithm needs two noisy observations to provide an enhanced speech signal. This process is done in a blind manner without the need for ant priori information about the source signals. The proposed dual forward blind source separation affine projection algorithm is denoted (DFAPA) and used for the first time in an airplane cockpit context to enhance the communication from- and to- the airplane. Intensive experiments were carried out in this sense to evaluate the performance of the proposed DFAPA algorithm.

Keywords: adaptive algorithm, speech enhancement, system mismatch, SNR

Procedia PDF Downloads 135
5768 Constructing the Joint Mean-Variance Regions for Univariate and Bivariate Normal Distributions: Approach Based on the Measure of Cumulative Distribution Functions

Authors: Valerii Dashuk

Abstract:

The usage of the confidence intervals in economics and econometrics is widespread. To be able to investigate a random variable more thoroughly, joint tests are applied. One of such examples is joint mean-variance test. A new approach for testing such hypotheses and constructing confidence sets is introduced. Exploring both the value of the random variable and its deviation with the help of this technique allows checking simultaneously the shift and the probability of that shift (i.e., portfolio risks). Another application is based on the normal distribution, which is fully defined by mean and variance, therefore could be tested using the introduced approach. This method is based on the difference of probability density functions. The starting point is two sets of normal distribution parameters that should be compared (whether they may be considered as identical with given significance level). Then the absolute difference in probabilities at each 'point' of the domain of these distributions is calculated. This measure is transformed to a function of cumulative distribution functions and compared to the critical values. Critical values table was designed from the simulations. The approach was compared with the other techniques for the univariate case. It differs qualitatively and quantitatively in easiness of implementation, computation speed, accuracy of the critical region (theoretical vs. real significance level). Stable results when working with outliers and non-normal distributions, as well as scaling possibilities, are also strong sides of the method. The main advantage of this approach is the possibility to extend it to infinite-dimension case, which was not possible in the most of the previous works. At the moment expansion to 2-dimensional state is done and it allows to test jointly up to 5 parameters. Therefore the derived technique is equivalent to classic tests in standard situations but gives more efficient alternatives in nonstandard problems and on big amounts of data.

Keywords: confidence set, cumulative distribution function, hypotheses testing, normal distribution, probability density function

Procedia PDF Downloads 174
5767 Considering the Reliability of Measurements Issue in Distributed Adaptive Estimation Algorithms

Authors: Wael M. Bazzi, Amir Rastegarnia, Azam Khalili

Abstract:

In this paper we consider the issue of reliability of measurements in distributed adaptive estimation problem. To this aim, we assume a sensor network with different observation noise variance among the sensors and propose new estimation method based on incremental distributed least mean-square (IDLMS) algorithm. The proposed method contains two phases: I) Estimation of each sensors observation noise variance, and II) Estimation of the desired parameter using the estimated observation variances. To deal with the reliability of measurements, in the second phase of the proposed algorithm, the step-size parameter is adjusted for each sensor according to its observation noise variance. As our simulation results show, the proposed algorithm considerably improves the performance of the IDLMS algorithm in the same condition.

Keywords: adaptive filter, distributed estimation, sensor network, IDLMS algorithm

Procedia PDF Downloads 634
5766 Segmentation of Liver Using Random Forest Classifier

Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir

Abstract:

Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.

Keywords: CT images, image validation, random forest, segmentation

Procedia PDF Downloads 313
5765 Wireless Response System Internationalisation Testing for Multilingual

Authors: Bakhtiar Amen, Abduladim Ali, Joan Lu

Abstract:

Recently, wireless technologies have made tremendous influences in advanced technology era, precisely on the learning environment through PADs and smart phones to engage learners to collaborate effectively. In fact, the wireless communication technologies are widely adopted in the education sectors within most of the countries to deliver education support electronically. Today, Introducing multilingual Wireless Response System (WRS) application is an enormous challenge and complex. The purpose of this paper is to implementing internationalization testing strategy through WRS application case study and proposed a questionnaire in multilingual speakers like (Arabic, Kurdish, Chines, Malaysian, Turkish, Dutch, Polish, Russian) to measure the internationalization testing results which includes localization and cultural testing results. This paper identifies issues with each language’s specification attributes for instance right to left (RTL) screen direction related languages, Linguistic test or word spaces in Chines and Dutch languages. Finally, this paper attempt to emphasizes many challenges and solutions that associated with globalization testing model.

Keywords: mobile WRS, internationalization, globalization testing

Procedia PDF Downloads 409
5764 Intelligent Adaptive Learning in a Changing Environment

Authors: G. Valentis, Q. Berthelot

Abstract:

Nowadays the trend to develop ever more intelligent and autonomous systems often takes its inspiration in the living beings on Earth. Some simple isolated systems are able, once brought together, to form a strong and reliable system. When trying to adapt the idea to man-made systems it is not possible to include in their program everything the system may encounter during its life cycle. It is, thus, necessary to make the system able to take decisions based on other criteria such as its past experience, i.e. to make the system learn on its own. However, at some point the acquired knowledge depends also on environment. So the question is: if system environment is modified, how could the system respond to it quickly and appropriately enough? Here, starting from reinforcement learning to rate its decisions, and using adaptive learning algorithms for gain and loss reward, the system is made able to respond to changing environment and to adapt its knowledge as time passes. Application is made to a robot finding an exit in a labyrinth.

Keywords: reinforcement learning, neural network, autonomous systems, adaptive learning, changing environment

Procedia PDF Downloads 424
5763 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm

Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.

Keywords: indirect vector control, induction motor, adaptive tabu search, control design, artificial intelligence

Procedia PDF Downloads 398
5762 Necessary Condition to Utilize Adaptive Control in Wind Turbine Systems to Improve Power System Stability

Authors: Javad Taherahmadi, Mohammad Jafarian, Mohammad Naser Asefi

Abstract:

The global capacity of wind power has dramatically increased in recent years. Therefore, improving the technology of wind turbines to take different advantages of this enormous potential in the power grid, could be interesting subject for scientists. The doubly-fed induction generator (DFIG) wind turbine is a popular system due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. With an increase in wind power penetration in the network and with regard to the flexible control of wind turbines, the use of wind turbine systems to improve the dynamic stability of power systems has been of significance importance for researchers. Subsynchronous oscillations are one of the important issues in the stability of power systems. Damping subsynchronous oscillations by using wind turbines has been studied in various research efforts, mainly by adding an auxiliary control loop to the control structure of the wind turbine. In most of the studies, this control loop is composed of linear blocks. In this paper, simple adaptive control is used for this purpose. In order to use an adaptive controller, the convergence of the controller should be verified. Since adaptive control parameters tend to optimum values in order to obtain optimum control performance, using this controller will help the wind turbines to have positive contribution in damping the network subsynchronous oscillations at different wind speeds and system operating points. In this paper, the application of simple adaptive control in DFIG wind turbine systems to improve the dynamic stability of power systems is studied and the essential condition for using this controller is considered. It is also shown that this controller has an insignificant effect on the dynamic stability of the wind turbine, itself.

Keywords: almost strictly positive real (ASPR), doubly-fed induction generator (DIFG), simple adaptive control (SAC), subsynchronous oscillations, wind turbine

Procedia PDF Downloads 376
5761 Graphical User Interface Testing by Using Deep Learning

Authors: Akshat Mathur, Sunil Kumar Khatri

Abstract:

This paper presents brief about how the use of Artificial intelligence in respect to GUI testing can reduce workload by using DL-fueled method. This paper also discusses about how graphical user interface and event driven software testing can derive benefits from the use of AI techniques. The use of AI techniques not only reduces the task and work load but also helps in getting better output than manual testing. Although results are same, but the use of Artifical intelligence techniques for GUI testing has proven to provide ideal results. DL-fueled framework helped us to find imperfections of the entire webpage and provides test failure result in a score format between 0 and 1which signifies that are test meets it quality criteria or not. This paper proposes DL-fueled method which helps us to find the genuine GUI bugs and defects and also helped us to scale the existing labour-intensive and skill-intensive methodologies.

Keywords: graphical user interface, GUI, artificial intelligence, deep learning, ML technology

Procedia PDF Downloads 177
5760 Three-Stage Multivariate Stratified Sample Surveys with Probabilistic Cost Constraint and Random Variance

Authors: Sanam Haseen, Abdul Bari

Abstract:

In this paper a three stage multivariate programming problem with random survey cost and variances as random variables has been formulated as a non-linear stochastic programming problem. The problem has been converted into an equivalent deterministic form using chance constraint programming and modified E-modeling. An empirical study of the problem has been done at the end of the paper using R-simulation.

Keywords: chance constraint programming, modified E-model, stochastic programming, stratified sample surveys, three stage sample surveys

Procedia PDF Downloads 457
5759 Testing of Electronic Control Unit Communication Interface

Authors: Petr Šimek, Kamil Kostruk

Abstract:

This paper deals with the problem of testing the Electronic Control Unit (ECU) for the specified function validation. Modern ECUs have many functions which need to be tested. This process requires tracking between the test and the specification. The technique discussed in this paper explores the system for automating this process. The paper focuses in its chapter IV on the introduction to the problem in general, then it describes the proposed test system concept and its principle. It looks at how the process of the ECU interface specification file for automated interface testing and test tracking works. In the end, the future possible development of the project is discussed.

Keywords: electronic control unit testing, embedded system, test generate, test automation, process automation, CAN bus, ethernet

Procedia PDF Downloads 112
5758 Estimation of a Finite Population Mean under Random Non Response Using Improved Nadaraya and Watson Kernel Weights

Authors: Nelson Bii, Christopher Ouma, John Odhiambo

Abstract:

Non-response is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random non-response using auxiliary data. In this study, it is assumed that random non-response occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random non-response. In particular, the auxiliary information is used via an improved Nadaraya-Watson kernel regression technique to compensate for random non-response. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at a 95% coverage rate. The results obtained in this study are useful, for instance, in choosing efficient estimators of the finite population mean in demographic sample surveys.

Keywords: mean squared error, random non-response, two-stage cluster sampling, confidence interval lengths

Procedia PDF Downloads 139
5757 Blocking of Random Chat Apps at Home Routers for Juvenile Protection in South Korea

Authors: Min Jin Kwon, Seung Won Kim, Eui Yeon Kim, Haeyoung Lee

Abstract:

Numerous anonymous chat apps that help people to connect with random strangers have been released in South Korea. However, they become a serious problem for young people since young people often use them for channels of prostitution or sexual violence. Although ISPs in South Korea are responsible for making inappropriate content inaccessible on their networks, they do not block traffic of random chat apps since 1) the use of random chat apps is entirely legal. 2) it is reported that they use HTTP proxy blocking so that non-HTTP traffic cannot be blocked. In this paper, we propose a service model that can block random chat apps at home routers. A service provider manages a blacklist that contains blocked apps’ information. Home routers that subscribe the service filter the traffic of the apps out using deep packet inspection. We have implemented a prototype of the proposed model, including a centralized server providing the blacklist, a Raspberry Pi-based home router that can filter traffic of the apps out, and an Android app used by the router’s administrator to locally customize the blacklist.

Keywords: deep packet inspection, internet filtering, juvenile protection, technical blocking

Procedia PDF Downloads 349
5756 Design of Transmit Beamspace and DOA Estimation in MIMO Radar

Authors: S. Ilakkiya, A. Merline

Abstract:

A multiple-input multiple-output (MIMO) radar systems use modulated waveforms and directive antennas to transmit electromagnetic energy into a specific volume in space to search for targets. This paper deals with the design of transmit beamspace matrix and DOA estimation for multiple-input multiple-output (MIMO) radar with collocated antennas.The design of transmit beamspace matrix is based on minimizing the difference between a desired transmit beampattern and the actual one while enforcing the constraint of uniform power distribution across the transmit array elements. Rotational invariance property is established at the transmit array by imposing a specific structure on the beamspace matrix. Semidefinite programming and spatial-division based design (SDD) are also designed separately. In MIMO radar systems, DOA estimation is an essential process to determine the direction of incoming signals and thus to direct the beam of the antenna array towards the estimated direction. This estimation deals with non-adaptive spectral estimation and adaptive spectral estimation techniques. The design of the transmit beamspace matrix and spectral estimation techniques are studied through simulation.

Keywords: adaptive and non-adaptive spectral estimation, direction of arrival estimation, MIMO radar, rotational invariance property, transmit, receive beamforming

Procedia PDF Downloads 519
5755 Design and Analysis of Adaptive Type-I Progressive Hybrid Censoring Plan under Step Stress Partially Accelerated Life Testing Using Competing Risk

Authors: Ariful Islam, Showkat Ahmad Lone

Abstract:

Statistical distributions have long been employed in the assessment of semiconductor devices and product reliability. The power function-distribution is one of the most important distributions in the modern reliability practice and can be frequently preferred over mathematically more complex distributions, such as the Weibull and the lognormal, because of its simplicity. Moreover, it may exhibit a better fit for failure data and provide more appropriate information about reliability and hazard rates in some circumstances. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests for competing risk based on adoptive type-I progressive hybrid censoring criteria. The life data of the units under test is assumed to follow Mukherjee-Islam distribution. The point and interval maximum-likelihood estimations are obtained for distribution parameters and tampering coefficient. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.

Keywords: adoptive progressive hybrid censoring, competing risk, mukherjee-islam distribution, partially accelerated life testing, simulation study

Procedia PDF Downloads 347
5754 Optimization and Automation of Functional Testing with White-Box Testing Method

Authors: Reyhaneh Soltanshah, Hamid R. Zarandi

Abstract:

In order to be more efficient in industries that are related to computer systems, software testing is necessary despite spending time and money. In the embedded system software test, complete knowledge of the embedded system architecture is necessary to avoid significant costs and damages. Software tests increase the price of the final product. The aim of this article is to provide a method to reduce time and cost in tests based on program structure. First, a complete review of eleven white box test methods based on ISO/IEC/IEEE 29119 2015 and 2021 versions has been done. The proposed algorithm is designed using two versions of the 29119 standards, and some white-box testing methods that are expensive or have little coverage have been removed. On each of the functions, white box test methods were applied according to the 29119 standard and then the proposed algorithm was implemented on the functions. To speed up the implementation of the proposed method, the Unity framework has been used with some changes. Unity framework can be used in embedded software testing due to its open source and ability to implement white box test methods. The test items obtained from these two approaches were evaluated using a mathematical ratio, which in various software mining reduced between 50% and 80% of the test cost and reached the desired result with the minimum number of test items.

Keywords: embedded software, reduce costs, software testing, white-box testing

Procedia PDF Downloads 54
5753 A Study on Relationship of Lifestyle and Socio-Economic Status with Obesity in Indian Children

Authors: Sushma Ghildyal, Sanjay Kumar Singh

Abstract:

The present study was undertaken with the purpose to understand the relationship of lifestyle and Socio-Economic status with child obesity among 1000 boys aged from 16 to 18 years of Varanasi District of Uttar Pradesh State in India. The study was conducted in both urban and rural area of the District. Ten schools i.e. five from urban area and five from rural area were selected by using purposive sampling. Healthy boys of class 10th, 11th and 12th were taken as subjects for the study. Prior consent was obtained from school authority. Anthropometric measurements were taken from each subject. Anthropometric measurements were Standing Height, Weight, Biceps skin folds, Triceps skin folds, Sub-scapular skin folds and Supra-iliac skin folds taken by Lange’s skin fold caliper. Lifestyle and Socio-Economic Status were obtained by questionnaires. In order to assess the BMI, Body fat %, Lifestyle and Socio-Economic Status; descriptive analyses were done. To find out the significant association of obesity with lifestyle and Socio-Economic Status Chi-square test was used. To find out significant difference between obesity of Urban and Rural children t-test was applied. Level of significance was set at 0.05 level. The conclusions drawn were: (1) The result showed that in urban area Varanasi District of Uttar Pradesh 0.6% children were in very high level adaptive lifestyle, 6.2% were in high level adaptive lifestyle, 25.4% above average level adaptive lifestyle, 47.8% moderately adaptive lifestyle, 3.6% and 0.4% low and very low level adaptive lifestyle. (2) In rural area Varanasi District of Uttar Pradesh 0.00% children were in very high level adaptive lifestyle, 9.4% were in high level adaptive lifestyle, 24.8% average level adaptive lifestyle, 47.0% moderately adaptive lifestyle, 15.2% below average and 3.0% very low level adaptive lifestyle.(3) In urban area 12.8% were in upper class Socio-Economic Status, 56.6% in upper middle class Socio-Economic Status, 30.2% in middle class Socio-Economic Status and 0.2% in lower middle class Socio-Economic Status. (4) In rural area 1.4% were in upper class Socio-Economic Status, 15.2% in upper middle class Socio-Economic Status, 51.6% in middle class Socio-Economic Status and 0.8% in lower middle class Socio-Economic Status. (5) In urban area 21.2% children of 16-18 years were obese. (6) In rural area 0.2% children of 16-18 years were obese. (7) In overall Varanasi District of Uttar Pradesh 10.7% children of 16-18 years were obese. (8) There was no significant relationship of obesity with Lifestyle of urban area children of 16-18 years. (9) There was significant relationship of obesity with Socio-Economic Status of urban area children of 16-18 years (10) There was no significant relationship of obesity with Lifestyle of rural area children of 16-18 years of Varanasi District Uttar Pradesh. (11) There was significant relationship of obesity with Socio-Economic Status of rural area children of 16-18 years. (12) Results showed significant difference between urban and rural area children of 16-18 years in respect to obesity of Varanasi District of Uttar Pradesh.

Keywords: lifestyle, obesity, rural area, socio-economic status, urban area

Procedia PDF Downloads 480
5752 Tabu Random Algorithm for Guiding Mobile Robots

Authors: Kevin Worrall, Euan McGookin

Abstract:

The use of optimization algorithms is common across a large number of diverse fields. This work presents the use of a hybrid optimization algorithm applied to a mobile robot tasked with carrying out a search of an unknown environment. The algorithm is then applied to the multiple robots case, which results in a reduction in the time taken to carry out the search. The hybrid algorithm is a Random Search Algorithm fused with a Tabu mechanism. The work shows that the algorithm locates the desired points in a quicker time than a brute force search. The Tabu Random algorithm is shown to work within a simulated environment using a validated mathematical model. The simulation was run using three different environments with varying numbers of targets. As an algorithm, the Tabu Random is small, clear and can be implemented with minimal resources. The power of the algorithm is the speed at which it locates points of interest and the robustness to the number of robots involved. The number of robots can vary with no changes to the algorithm resulting in a flexible algorithm.

Keywords: algorithms, control, multi-agent, search and rescue

Procedia PDF Downloads 239
5751 Performance Analysis of Proprietary and Non-Proprietary Tools for Regression Testing Using Genetic Algorithm

Authors: K. Hema Shankari, R. Thirumalaiselvi, N. V. Balasubramanian

Abstract:

The present paper addresses to the research in the area of regression testing with emphasis on automated tools as well as prioritization of test cases. The uniqueness of regression testing and its cyclic nature is pointed out. The difference in approach between industry, with business model as basis, and academia, with focus on data mining, is highlighted. Test Metrics are discussed as a prelude to our formula for prioritization; a case study is further discussed to illustrate this methodology. An industrial case study is also described in the paper, where the number of test cases is so large that they have to be grouped as Test Suites. In such situations, a genetic algorithm proposed by us can be used to reconfigure these Test Suites in each cycle of regression testing. The comparison is made between a proprietary tool and an open source tool using the above-mentioned metrics. Our approach is clarified through several tables.

Keywords: APFD metric, genetic algorithm, regression testing, RFT tool, test case prioritization, selenium tool

Procedia PDF Downloads 436
5750 Probability Sampling in Matched Case-Control Study in Drug Abuse

Authors: Surya R. Niraula, Devendra B Chhetry, Girish K. Singh, S. Nagesh, Frederick A. Connell

Abstract:

Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling.

Keywords: drug abuse, matched case-control study, non-probability sampling, probability sampling

Procedia PDF Downloads 493
5749 Modeling and Control Design of a Centralized Adaptive Cruise Control System

Authors: Markus Mazzola, Gunther Schaaf

Abstract:

A vehicle driving with an Adaptive Cruise Control System (ACC) is usually controlled decentrally, based on the information of radar systems and in some publications based on C2X-Communication (CACC) to guarantee stable platoons. In this paper, we present a Model Predictive Control (MPC) design of a centralized, server-based ACC-System, whereby the vehicular platoon is modeled and controlled as a whole. It is then proven that the proposed MPC design guarantees asymptotic stability and hence string stability of the platoon. The Networked MPC design is chosen to be able to integrate system constraints optimally as well as to reduce the effects of communication delay and packet loss. The performance of the proposed controller is then simulated and analyzed in an LTE communication scenario using the LTE/EPC Network Simulator LENA, which is based on the ns-3 network simulator.

Keywords: adaptive cruise control, centralized server, networked model predictive control, string stability

Procedia PDF Downloads 514
5748 Programming with Grammars

Authors: Peter M. Maurer Maurer

Abstract:

DGL is a context free grammar-based tool for generating random data. Many types of simulator input data require some computation to be placed in the proper format. For example, it might be necessary to generate ordered triples in which the third element is the sum of the first two elements, or it might be necessary to generate random numbers in some sorted order. Although DGL is universal in computational power, generating these types of data is extremely difficult. To overcome this problem, we have enhanced DGL to include features that permit direct computation within the structure of a context free grammar. The features have been implemented as special types of productions, preserving the context free flavor of DGL specifications.

Keywords: DGL, Enhanced Context Free Grammars, Programming Constructs, Random Data Generation

Procedia PDF Downloads 147