Search results for: absolute roughness
832 Plasma Spray Deposition of Bio-Active Coating on Titanium Alloy (Ti-6Al-4V) Substrate
Authors: Renu Kumari, Jyotsna Dutta Majumdar
Abstract:
In the present study, composite coating consisting of hydroxyapatite (HA) + 50 wt% TiO2 has been developed on Ti-6Al-4V substrate by plasma spray deposition technique. Followed by plasma spray deposition, detailed surface roughness and microstructural characterization were carried out by using optical profilometer and scanning electron microscopy (SEM), respectively. The composition and phase analysis were carried out by energy-dispersive X-ray spectroscopy analysis, and X-ray diffraction (XRD) technique, respectively. The bio-activity behavior of the uncoated and coated samples was also compared by dipping test in Hank’s solution. The average surface roughness of the coating was 10 µm (as compared to 0.5 µm of as-received Ti-6Al-4V substrate) with the presence of porosities. The microstructure of the coating was found to be continuous with the presence of solidified splats. A detailed XRD analysis shows phase transformation of TiO2 from anatase to rutile, decomposition of hydroxyapatite, and formation of CaTiO3 phase. Standard dipping test confirmed a faster kinetics of deposition of calcium phosphate in the coated HA+50% wt.% TiO2 surface as compared to the as-received substrate.Keywords: titanium, plasma spraying, microstructure, bio-activity, TiO2, hydroxyapatite
Procedia PDF Downloads 322831 Aerodynamic Performance of a Pitching Bio-Inspired Corrugated Airfoil
Authors: Hadi Zarafshani, Shidvash Vakilipour, Shahin Teimori, Sara Barati
Abstract:
In the present study, the aerodynamic performance of a rigid two-dimensional pitching bio-inspired corrugate airfoil was numerically investigated at Reynolds number of 14000. The Open Field Operations And Manipulations (OpenFOAM) computational fluid dynamic tool is used to solve flow governing equations numerically. The k-ω SST turbulence model with low Reynolds correction (k-ω SST LRC) and the pimpleDyMFOAM solver are utilized to simulate the flow field around pitching bio-airfoil. The lift and drag coefficients of the airfoil are calculated at reduced frequencies k=1.24-4.96 and the angular amplitude of A=5°-20°. Results show that in a fixed reduced frequency, the absolute value of the sectional lift and drag coefficients increase with increasing pitching amplitude. In a fixed angular amplitude, the absolute value of the lift and drag coefficients increase as the pitching reduced frequency increases.Keywords: bio-inspired pitching airfoils, OpenFOAM, low Reynolds k-ω SST model, lift and drag coefficients
Procedia PDF Downloads 192830 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studiesKeywords: crop yield, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 411829 Quasi–Periodicity of Tonic Intervals in Octave and Innovation of Themes in Music Compositions
Authors: R. C. Tyagi
Abstract:
Quasi-periodicity of frequency intervals observed in Shruti based Absolute Scale of Music has been used to graphically identify the Anchor notes ‘Vadi’ and ‘Samvadi’ which are nodal points for expansion, elaboration and iteration of the emotional theme represented by the characteristic tonic arrangement in Raga compositions. This analysis leads to defining the Tonic parameters in the octave including the key-note frequency, tonic intervals’ anchor notes and the on-set and range of quasi-periodicities as exponents of 2. Such uniformity of representation of characteristic data would facilitate computational analysis and synthesis of music compositions and also help develop noise suppression techniques. Criteria for tuning of strings for compatibility with placement of frets on finger boards is discussed. Natural Rhythmic cycles in music compositions are analytically shown to lie between 3 and 126 beats.Keywords: absolute scale, anchor notes, computational analysis, frets, innovation, noise suppression, Quasi-periodicity, rhythmic cycle, tonic interval, Shruti
Procedia PDF Downloads 305828 Multiscale Modelization of Multilayered Bi-Dimensional Soils
Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur
Abstract:
Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.Keywords: multiscale, bidimensional, wavelets, backscattering, multilayer, SPM, air pockets
Procedia PDF Downloads 125827 Chemical Modification of Jute Fibers with Oxidative Agents for Usability as Reinforcement in Polymeric Composites
Authors: Yasemin Seki, Aysun Akşit
Abstract:
The goal of this research is to modify the surface characterization of jute yarns with different chemical agents to improve the compatibility with a non-polar polymer, polypropylene, when used as reinforcement. A literature review provided no knowledge on surface treatment of jute fibers with sodium perborate trihydrate. This study also aims to compare the efficiency of sodium perborate trihydrate on jute fiber treatment with other commonly used chemical agents. Accordingly, jute yarns were treated with 0.02% potassium dichromate (PD), potassium permanganate (PM) and sodium perborate trihydrate (SP) aqueous solutions in order to enhance interfacial compatibility with polypropylene in this study. The effect of treatments on surface topography, surface chemistry and interfacial shear strength of jute yarns with polypropylene were investigated. XPS results revealed that surface treatments enhanced surface hydrophobicity by increasing C/O ratios of fiber surface. Surface roughness values increased with the treatments. The highest interfacial adhesion with polypropylene was achieved after SP treatment by providing the highest surface roughness values and hydrophobic character of jute fiber.Keywords: jute, chemical modification, sodium perborate, polypropylene
Procedia PDF Downloads 509826 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies.Keywords: runoff, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 378825 Developing an Intelligent Table Tennis Ball Machine with Human Play Simulation for Technical Training
Authors: Chen-Chi An, Jun-Yi He, Cheng-Han Hsieh, Chen-Ching Ting
Abstract:
This research has successfully developed an intelligent table tennis ball machine with human play simulate all situations of human play to take the service. It is well known; an excellent ball machine can help the table tennis coach to provide more efficient teaching, also give players the good technical training and entertainment. An excellent ball machine should be able to service all balls based on human play simulation due to the conventional competitions are today all taken place for people. In this work, two counter-rotating wheels are used to service the balls, where changing the absolute rotating speeds of the two wheels and the differences of rotating speeds between the two wheels can adjust the struck forces and the rotating speeds of the ball. The relationships between the absolute rotating speed of the two wheels and the struck forces of the ball as well as the differences rotating speeds between the two wheels and the rotating speeds of the ball are experimentally determined for technical development. The outlet speed, the ejected distance, and the rotating speed of the ball were measured by changing the absolute rotating speeds of the two wheels in terms of a series of differences in rotating speed between the two wheels for calibration of the ball machine; where the outlet speed and the ejected distance of the ball were further converted to the struck forces of the ball. In process, the balls serviced by the intelligent ball machine were based on the received calibration curves with help of the computer. Experiments technically used photosensitive devices to detect the outlet and rotating speed of the ball. Finally, this research developed some teaching programs for technical training using three ball machines and received more efficient training.Keywords: table tennis, ball machine, human play simulation, counter-rotating wheels
Procedia PDF Downloads 434824 An Approach from Fichte as a Response to the Kantian Dualism of Subject and Object: The Unity of the Subject and Object in Both Theoretical and Ethical Possibility
Authors: Mengjie Liu
Abstract:
This essay aims at responding to the Kant arguments on how to fit the self-caused subject into the deterministic object which follows the natural laws. This essay mainly adopts the approach abstracted from Fichte’s “Wissenshaftslehre” (Doctrine of Science) to picture a possible solution to the conciliation of Kantian dualism. The Fichte approach is based on the unity of the theoretical and practical reason, which can be understood as a philosophical abstraction from ordinary experience combining both subject and object. This essay will discuss the general Kantian dualism problem and Fichte’s unity approach in the first part. Then the essay will elaborate on the achievement of this unity of the subject and object through Fichte’s “the I posits itself” process in the second section. The following third section is related to the ethical unity of subject and object based on the Fichte approach. The essay will also discuss the limitation of Fichte’s approach from two perspectives: (1) the theoretical possibility of the existence of the pure I and (2) Schelling’s statement that the Absolute I is a result rather than the originating act. This essay demonstrates a possible approach to unifying the subject and object supported by Fichte’s “Absolute I” and ethical theories and also points out the limitations of Fichte’s theories.Keywords: Fichte, identity, Kantian dualism, Wissenshaftslehre
Procedia PDF Downloads 94823 Aesthetics, Freedom and State in Hegel’s Philosophy
Authors: Akbar Jamali
Abstract:
Many scholars consider Hegel’s philosophy of art as the greatest theory of aesthetics since Aristotle’s Poetics. ‘Freedom’ distinguishes modern, especially German Idealism with Greek philosophy. Therefore, introducing and contemplating on Hegel’s Aesthetics as a whole, freedom as the essence of art, Hegel’s controversial claim on the end of art, and the relation of art and state is the main theme of this study. Hegel’s aesthetics is to be understood in his whole system. According to Hegel’s speculative philosophy, being is to be understood as self-determining Reason or Idea. The self-determining Reason actualizes and realizes himself in the course of history. Idea in the process of self-actualization becomes more and more rational. It first actualizes itself in matter, then in non-conscious life, finally in conscious and self-conscious life. Self-conscious life is the most rational stage of development of Idea in which the subject can think and imagine, use language and exercise freedom. Hegel calls this self-conscious life Spirit (Geist). Therefore, emergence of human being is an essential moment in the process of self-determination of Reason. It is not accidental rather a necessity. The essence of spirit is freedom. Since the history is the process of the self-actualization if spirit, humankind becomes more and more, free. Spirit in its ‘Absolute’ form manifests itself into three forms; Art, Religion and philosophy. Art is the first stage in which Spirit understands itself. In fact, Art is the expression of human spirit, which is comprehended by our senses. Beauty is defined as the sensuous expression of free Spirit. The purpose of art is, therefore, to express, enjoy and contemplate on our freedom. State belongs to the realm of Objective spirit, while Art along with Religion and philosophy belong to the realm of Absolute Spirit. Absolute spirit is superior to Objective Spirit; therefore, state must not interfere in the realm of art. Limitation on art by state directly violates freedom and prevents development of national spirit. Genuine art leads us to freedom and richness of (national) Spirit. Using Hegel’s philosophy of art, we can comprehend why totalitarian states try to limit art and, why artists are the enemy of totalitarian states. In this philosophical system, we contemplate on art as a way to freedom and emancipation.Keywords: aesthetics, freedom, spirit, state
Procedia PDF Downloads 292822 Models Comparison for Solar Radiation
Authors: Djelloul Benatiallah
Abstract:
Due to the current high consumption and recent industry growth, the depletion of fossil and natural energy supplies like oil, gas, and uranium is declining. Due to pollution and climate change, there needs to be a swift switch to renewable energy sources. Research on renewable energy is being done to meet energy needs. Solar energy is one of the renewable resources that can currently meet all of the world's energy needs. In most parts of the world, solar energy is a free and unlimited resource that can be used in a variety of ways, including photovoltaic systems for the generation of electricity and thermal systems for the generation of heatfor the residential sector's production of hot water. In this article, we'll conduct a comparison. The first step entails identifying the two empirical models that will enable us to estimate the daily irradiations on a horizontal plane. On the other hand, we compare it using the data obtained from measurements made at the Adrar site over the four distinct seasons. The model 2 provides a better estimate of the global solar components, with an absolute mean error of less than 7% and a correlation coefficient of more than 0.95, as well as a relative coefficient of the bias error that is less than 6% in absolute value and a relative RMSE that is less than 10%, according to a comparison of the results obtained by simulating the two models.Keywords: solar radiation, renewable energy, fossil, photovoltaic systems
Procedia PDF Downloads 79821 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718
Authors: Pushpendra S. Bharti, S. Maheshwari
Abstract:
Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.Keywords: electric discharge machining, material removal rate, surface roughness, too wear rate, multi-response signal-to-noise ratio, multi response signal-to-noise ratio, optimization
Procedia PDF Downloads 355820 Efficient Sampling of Probabilistic Program for Biological Systems
Authors: Keerthi S. Shetty, Annappa Basava
Abstract:
In recent years, modelling of biological systems represented by biochemical reactions has become increasingly important in Systems Biology. Biological systems represented by biochemical reactions are highly stochastic in nature. Probabilistic model is often used to describe such systems. One of the main challenges in Systems biology is to combine absolute experimental data into probabilistic model. This challenge arises because (1) some molecules may be present in relatively small quantities, (2) there is a switching between individual elements present in the system, and (3) the process is inherently stochastic on the level at which observations are made. In this paper, we describe a novel idea of combining absolute experimental data into probabilistic model using tool R2. Through a case study of the Transcription Process in Prokaryotes we explain how biological systems can be written as probabilistic program to combine experimental data into the model. The model developed is then analysed in terms of intrinsic noise and exact sampling of switching times between individual elements in the system. We have mainly concentrated on inferring number of genes in ON and OFF states from experimental data.Keywords: systems biology, probabilistic model, inference, biology, model
Procedia PDF Downloads 349819 Comparison of Different Intraocular Lens Power Calculation Formulas in People With Very High Myopia
Authors: Xia Chen, Yulan Wang
Abstract:
purpose: To compare the accuracy of Haigis, SRK/T, T2, Holladay 1, Hoffer Q, Barrett Universal II, Emmetropia Verifying Optical (EVO) and Kane for intraocular lens power calculation in patients with axial length (AL) ≥ 28 mm. Methods: In this retrospective single-center study, 50 eyes of 41 patients with AL ≥ 28 mm that underwent uneventful cataract surgery were enrolled. The actual postoperative refractive results were compared to the predicted refraction calculated with different formulas (Haigis, SRK/T, T2, Holladay 1, Hoffer Q, Barrett Universal II, EVO and Kane). The mean absolute prediction errors (MAE) 1 month postoperatively were compared. Results: The MAE of different formulas were as follows: Haigis (0.509), SRK/T (0.705), T2 (0.999), Holladay 1 (0.714), Hoffer Q (0.583), Barrett Universal II (0.552), EVO (0.463) and Kane (0.441). No significant difference was found among the different formulas (P = .122). The Kane and EVO formulas achieved the lowest level of mean prediction error (PE) and median absolute error (MedAE) (p < 0.05). Conclusion: The Kane and EVO formulas had a better success rate than others in predicting IOL power in high myopic eyes with AL longer than 28 mm in this study.Keywords: cataract, power calculation formulas, intraocular lens, long axial length
Procedia PDF Downloads 87818 Multiscale Simulation of Absolute Permeability in Carbonate Samples Using 3D X-Ray Micro Computed Tomography Images Textures
Authors: M. S. Jouini, A. Al-Sumaiti, M. Tembely, K. Rahimov
Abstract:
Characterizing rock properties of carbonate reservoirs is highly challenging because of rock heterogeneities revealed at several length scales. In the last two decades, the Digital Rock Physics (DRP) approach was implemented successfully in sandstone rocks reservoirs in order to understand rock properties behaviour at the pore scale. This approach uses 3D X-ray Microtomography images to characterize pore network and also simulate rock properties from these images. Even though, DRP is able to predict realistic rock properties results in sandstone reservoirs it is still suffering from a lack of clear workflow in carbonate rocks. The main challenge is the integration of properties simulated at different scales in order to obtain the effective rock property of core plugs. In this paper, we propose several approaches to characterize absolute permeability in some carbonate core plugs samples using multi-scale numerical simulation workflow. In this study, we propose a procedure to simulate porosity and absolute permeability of a carbonate rock sample using textures of Micro-Computed Tomography images. First, we discretize X-Ray Micro-CT image into a regular grid. Then, we use a textural parametric model to classify each cell of the grid using supervised classification. The main parameters are first and second order statistics such as mean, variance, range and autocorrelations computed from sub-bands obtained after wavelet decomposition. Furthermore, we fill permeability property in each cell using two strategies based on numerical simulation values obtained locally on subsets. Finally, we simulate numerically the effective permeability using Darcy’s law simulator. Results obtained for studied carbonate sample shows good agreement with the experimental property.Keywords: multiscale modeling, permeability, texture, micro-tomography images
Procedia PDF Downloads 183817 Bounds on the Laplacian Vertex PI Energy
Authors: Ezgi Kaya, A. Dilek Maden
Abstract:
A topological index is a number related to graph which is invariant under graph isomorphism. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. Let G be a graph with n vertices and m edges. For a given edge uv, the quantity nu(e) denotes the number of vertices closer to u than v, the quantity nv(e) is defined analogously. The vertex PI index defined as the sum of the nu(e) and nv(e). Here the sum is taken over all edges of G. The energy of a graph is defined as the sum of the eigenvalues of adjacency matrix of G and the Laplacian energy of a graph is defined as the sum of the absolute value of difference of laplacian eigenvalues and average degree of G. In theoretical chemistry, the π-electron energy of a conjugated carbon molecule, computed using the Hückel theory, coincides with the energy. Hence results on graph energy assume special significance. The Laplacian matrix of a graph G weighted by the vertex PI weighting is the Laplacian vertex PI matrix and the Laplacian vertex PI eigenvalues of a connected graph G are the eigenvalues of its Laplacian vertex PI matrix. In this study, Laplacian vertex PI energy of a graph is defined of G. We also give some bounds for the Laplacian vertex PI energy of graphs in terms of vertex PI index, the sum of the squares of entries in the Laplacian vertex PI matrix and the absolute value of the determinant of the Laplacian vertex PI matrix.Keywords: energy, Laplacian energy, laplacian vertex PI eigenvalues, Laplacian vertex PI energy, vertex PI index
Procedia PDF Downloads 246816 Age Estimation from Teeth among North Indian Population: Comparison and Reliability of Qualitative and Quantitative Methods
Authors: Jasbir Arora, Indu Talwar, Daisy Sahni, Vidya Rattan
Abstract:
Introduction: Age estimation is a crucial step to build the identity of a person, both in case of deceased and alive. In adults, age can be estimated on the basis of six regressive (Attrition, Secondary dentine, Dentine transparency, Root resorption, Cementum apposition and Periodontal Disease) changes in teeth qualitatively using scoring system and quantitatively by micrometric method. The present research was designed to establish the reliability of qualitative (method 1) and quantitative (method 2) of age estimation among North Indians and to compare the efficacy of these two methods. Method: 250 single-rooted extracted teeth (18-75 yrs.) were collected from Department of Oral Health Sciences, PGIMER, Chandigarh. Before extraction, periodontal score of each tooth was noted. Labiolingual sections were prepared and examined under light microscope for regressive changes. Each parameter was scored using Gustafson’s 0-3 point score system (qualitative), and total score was calculated. For quantitative method, each regressive change was measured quantitatively in form of 18 micrometric parameters under microscope with the help of measuring eyepiece. Age was estimated using linear and multiple regression analysis in Gustafson’s method and Kedici’s method respectively. Estimated age was compared with actual age on the basis of absolute mean error. Results: In pooled data, by Gustafson’s method, significant correlation (r= 0.8) was observed between total score and actual age. Total score generated an absolute mean error of ±7.8 years. Whereas, for Kedici’s method, a value of correlation coefficient of r=0.5 (p<0.01) was observed between all the eighteen micrometric parameters and known age. Using multiple regression equation, age was estimated, and an absolute mean error of age was found to be ±12.18 years. Conclusion: Gustafson’s (qualitative) method was found to be a better predictor for age estimation among North Indians.Keywords: forensic odontology, age estimation, North India, teeth
Procedia PDF Downloads 242815 Surface Coatings of Boards Made from Alternative Materials
Authors: Stepan Hysek, Petra Gajdacova
Abstract:
In recent years, alternative materials, such as annual plants or recycled and waste materials are becoming more and more popular input material for the production of composite materials. They can be used for the production of insulation boards, construction boards or furniture boards. Surface finishing of those boards is essential for utilization in furniture. However, some difficulties could occur during coating of boards from alternative materials; physical and chemical differences from conventional particleboards need to be considered. From the physical aspects, surface soundness and surface roughness mainly determine the quality of the surface. Since surface layers of boards from alternative materials have often lower density, these characteristics could be deteriorated and thus the production process needs to be optimized. Also, chemical reactions of board’s material with coating could be undesirable. The objective of this study is to evaluate the parameters affecting the surface quality of boards made form alternative materials and to find possibilities of the coating of these boards. In this study, boards of particles from rapeseed stems were produced using a laboratory press. Surface soundness, as representatives of mechanical properties and surface roughness, as representative of physical properties, were measured on boards from rapeseed stems. Results clearly indicated that produced boards had lower surface quality than commercially produced particle boards from wood. Therefore, higher thickness of surface coating on rapeseed based boards is needed.Keywords: coating, surface, annual plant, composites, particleboard
Procedia PDF Downloads 270814 Non-Linear Velocity Fields in Turbulent Wave Boundary Layer
Authors: Shamsul Chowdhury
Abstract:
The objective of this paper is to present the detailed analysis of the turbulent wave boundary layer produced by progressive finite-amplitude waves theory. Most of the works have done for the mass transport in the turbulent boundary layer assuming the eddy viscosity is not time varying, where the sediment movement is induced by the mean velocity. Near the ocean bottom, the waves produce a thin turbulent boundary layer, where the flow is highly rotational, and shear stress associated with the fluid motion cannot be neglected. The magnitude and the predominant direction of the sediment transport near the bottom are known to be closely related to the flow in the wave induced boundary layer. The magnitude of water particle velocity at the Crest phase differs from the one of the Trough phases due to the non-linearity of the waves, which plays an important role to determine the sediment movement. The non-linearity of the waves become predominant in the surf zone area, where the sediment movement occurs vigorously. Therefore, in order to describe the flow near the bottom and relationship between the flow and the movement of the sediment, the analysis was done using the non-linear boundary layer equation and the finite amplitude wave theory was applied to represent the velocity fields in the turbulent wave boundary layer. At first, the calculation was done for turbulent wave boundary layer by two-dimensional model where throughout the calculation is non-linear. But Stokes second order wave profile is adopted at the upper boundary. The calculated profile was compared with the experimental data. Finally, the calculation is done based on various modes of the velocity and turbulent energy. The mean velocity is found to differ from condition of the relative depth and the roughness. It is also found that due to non-linearity, the absolute value for velocity and turbulent energy as well as Reynolds stress are asymmetric. The mean velocity of the laminar boundary layer is always positive but in the turbulent boundary layer plays a very complicated role.Keywords: wave boundary, mass transport, mean velocity, shear stress
Procedia PDF Downloads 262813 ED Machining of Particulate Reinforced Metal Matrix Composites
Authors: Sarabjeet Singh Sidhu, Ajay Batish, Sanjeev Kumar
Abstract:
This paper reports the optimal process conditions for machining of three different types of metal matrix composites (MMCs): 65vol%SiC/A356.2; 10vol%SiC-5vol%quartz/Al and 30vol%SiC/A359 using PMEDM process. Metal removal rate (MRR), tool wear rate (TWR), surface roughness (SR) and surface integrity (SI) were evaluated after each trial and contributing process parameters were identified. The four responses were then collectively optimized using the technique for order preference by similarity to ideal solution (TOPSIS) and optimal process conditions were identified for each type of MMCS. The density of reinforced particles shields the matrix material from spark energy hence the high MRR and SR was observed with lowest reinforced particle. TWR was highest with Cu-Gr electrode due to disintegration of the weakly bonded particles in the composite electrode. Each workpiece was examined for surface integrity and ranked as per severity of surface defects observed and their rankings were used for arriving at the most optimal process settings for each workpiece.Keywords: metal matrix composites (MMCS), metal removal rate (MRR), surface roughness (SR), surface integrity (SI), tool wear rate (TWR), technique for order preference by similarity to ideal solution (TOPSIS)
Procedia PDF Downloads 291812 Evaluation of the Anti Ulcer Activity of Ethyl Acetate Fraction of Methanol Leaf Extract of Clerodendrum Capitatum
Authors: M. N. Ofokansi, Onyemelukwe Chisom, Amauche Chukwuemeka, Ezema Onyinye
Abstract:
The leaves of Clerodendrumcapitatum(Lamiaceae) is mostly used in the treatment of gastric ulcer in Nigerian folk medicine. The aim of this study was to evaluate the antiulcer activity of its crude methanol leaf extract and its ethyl acetate fraction in white albino rats. The effect of crude methanol leaf extract and its ethyl acetate fraction(250mg/kg, 500mg/kg) was evaluated using an absolute ethanol induced ulcer model. Crude methanol leaf extract and the ethyl acetate fraction was treated with distilled water and 6% Tween 80, respectively. crude methanol leaf extract was further investigated using a pylorus ligation induced ulcer model. Omeprazole was used as the standard treatment. Four groups of five albino rats of either sex were used. Parameters such as mean ulcer index and percentage ulcer protection were assessed in the ethanol-induced ulcer model, while the gastric volume, pH, and total acidity were assessed in the pyloric ligation induced ulcer model. Crude methanol leaf extract of Clerodendrumcapitatum(500mg/kg) showed a very highly significant reduction in mean ulcer index(p<0.001) in the absolute ethanol-induced model. ethyl acetate fraction of crude methanol leaf extract of Clerodendrumcapitatum(250mg/kg,500mg/kg) showed a very highly significant dose-dependent reduction in mean ulcer indices (p<0.001) in the absolute ethanol-induced model. The mean ulcer indices (1.6,2.2) with dose concentration (250mg/kg, 500mg/kg) of ethyl acetate fraction increased with ulcer protection (82.85%,76.42%) respectively when compared to the control group in the absolute ethanol-induced ulcer model. Crude methanol leaf extract of Clerodendrumcapitatum(250mg/kg, 500mg/kg) treated animals showed a highly significant dose-dependent reduction in mean ulcer index(p<0.01) with an increase in ulcer protection (56.77%,63.22%) respectively in pyloric ligated induced, ulcer model. Gastric parameters such as volume of gastric juice, pH, and total acidity were of no significance in the different doses of the crude methanol leaf extract when compared to the control group. The phytochemical investigation showed that the crude methanol leaf extracts Possess Saponins and Flavonoids while its ethyl acetate fraction possess only Flavonoids. The results of the study indicate that the crude methanol leaf extract and its ethyl acetate fraction is effective and has gastro protective and ulcer healing capacity. Ethyl acetate fraction is more potent than crude methanol leaf extract against ethanol-induced This result provides scientific evidence as a validation for its folkloric use in the treatment of gastric ulcer.Keywords: gastroprotective, herbal medicine, anti-ulcer, pharmacology
Procedia PDF Downloads 166811 Optimization of Machining Parameters of Wire Electric Discharge Machining (WEDM) of Inconel 625 Super Alloy
Authors: Amitesh Goswami, Vishal Gulati, Annu Yadav
Abstract:
In this paper, WEDM has been used to investigate the machining characteristics of Inconel-625 alloy. The machining characteristics namely material removal rate (MRR) and surface roughness (SR) have been investigated along with surface microstructure analysis using SEM and EDS of the machined surface. Taguchi’s L27 Orthogonal array design has been used by considering six varying input parameters viz. Pulse-on time (Ton), Pulse-off time (Toff), Spark Gap Set Voltage (SV), Peak Current (IP), Wire Feed (WF) and Wire Tension (WT) for the responses of interest. It has been found out that Pulse-on time (Ton) and Spark Gap Set Voltage (SV) are the most significant parameters affecting material removal rate (MRR) and surface roughness (SR) are. Microstructure analysis of workpiece was also done using Scanning Electron Microscope (SEM). It was observed that, variations in pulse-on time and pulse-off time causes varying discharge energy and as a result of which deep craters / micro cracks and large/ small number of debris were formed. These results were helpful in studying the effects of pulse-on time and pulse-off time on MRR and SR. Energy Dispersive Spectrometry (EDS) was also done to check the compositional analysis of the material and it was observed that Copper and Zinc which were initially not present in the Inconel 625, later migrated on the material surface from the brass wire electrode during machiningKeywords: MRR, SEM, SR, taguchi, Wire Electric Discharge Machining
Procedia PDF Downloads 353810 Towards an Eastern Philosophy of Religion: on the Contradictory Identity of Philosophy and Religion
Authors: Carlo Cogliati
Abstract:
The study of the relationship of philosophical reason with the religious domain has been very much a concern for many of the Western philosophical and theological traditions. In this essay, I will suggest a proposal for an Eastern philosophy of religion based on Nishida’s contradictory identity of the two: philosophy soku hi (is, and yes is not) religion. This will pose a challenge to the traditional Western contents and methods of the discipline. This paper aims to serve three purposes. First, I will critically assess Charlesworth’s typology of the relation between philosophy and religion in the West: philosophy as/for/against/about/after religion. I will also engage Harrison’s call for a global philosophy of religion(s) and argue that, although it expands the scope and the range of the questions to address, it is still Western in its method. Second, I will present Nishida’s logic of absolutely contradictory self-identity as the instrument to transcend the dichotomous pair of identity and contradiction: ‘A is A’ and ‘A is not A’. I will then explain how this ‘concrete’ logic of the East, as opposed to the ‘formal’ logic of the West, exhibits at best the bilateral dynamic relation between philosophy and religion. Even as Nishida argues for the non-separability of the two, he is also aware and committed to their mutual non-reducibility. Finally, I will outline the resulting new relation between God and creatures. Nishida in his philosophy soku hi religion replaces the traditional Western dualistic concept of God with the Eastern non-dualistic understanding of God as “neither transcendent nor immanent, and at the same time both transcendent and immanent.” God is therefore a self-identity of contradiction, nowhere and yet everywhere present in the world of creatures. God as absolute being is also absolute nothingness: the world of creatures is the expression of God’s absolute self-negation. The overreaching goal of this essay is to offer an alternative to traditional Western approaches to philosophy of religion based on Nishida’s logic of absolutely contradictory self-identity, as an example of philosophical and religious counter(influence). The resulting relationship between philosophy and religion calls for a revision of traditional concepts and methods. The outcome is not to reformulate the Eastern predilection to not sharply distinguish philosophical thought from religious enlightenment rather to bring together philosophy and religion in the place of identity and difference.Keywords: basho, Nishida Kitaro, shukyotetsugaku, soku hi, zettai mujunteki jikodoitsu no ronri
Procedia PDF Downloads 193809 Applying Genetic Algorithm in Exchange Rate Models Determination
Authors: Mehdi Rostamzadeh
Abstract:
Genetic Algorithms (GAs) are an adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this study, we apply GAs for fundamental and technical models of exchange rate determination in exchange rate market. In this framework, we estimated absolute and relative purchasing power parity, Mundell-Fleming, sticky and flexible prices (monetary models), equilibrium exchange rate and portfolio balance model as fundamental models and Auto Regressive (AR), Moving Average (MA), Auto-Regressive with Moving Average (ARMA) and Mean Reversion (MR) as technical models for Iranian Rial against European Union’s Euro using monthly data from January 1992 to December 2014. Then, we put these models into the genetic algorithm system for measuring their optimal weight for each model. These optimal weights have been measured according to four criteria i.e. R-Squared (R2), mean square error (MSE), mean absolute percentage error (MAPE) and root mean square error (RMSE).Based on obtained Results, it seems that for explaining of Iranian Rial against EU Euro exchange rate behavior, fundamental models are better than technical models.Keywords: exchange rate, genetic algorithm, fundamental models, technical models
Procedia PDF Downloads 273808 Compensation of Bulk Charge Carriers in Bismuth Based Topological Insulators via Swift Heavy Ion Irradiation
Authors: Jyoti Yadav, Rini Singh, Anoop M.D, Nisha Yadav, N. Srinivasa Rao, Fouran Singh, Takayuki Ichikawa, Ankur Jain, Kamlendra Awasthi, Manoj Kumar
Abstract:
Nanocrystalline films exhibit defects and strain induced by its grain boundaries. Defects and strain affect the physical as well as topological insulating properties of the Bi2Te3 thin films by changing their electronic structure. In the present studies, the effect of Ni7+ ion irradiation on the physical and electrical properties of Bi2Te3 thin films was studied. The films were irradiated at five different fluences (5x1011, 1x1012, 3x1012, 5x1012, 1x1013 ions/cm2). Thin films synthesized using the e-beam technique possess a rhombohedral crystal structure with the R-3m space group. The average crystallite size, as determined by x-ray diffraction (XRD) peak broadening, was found to be 18.5 ± 5 (nm). It was also observed that irradiation increases the induced strain. Raman Spectra of the films demonstrate the splitting of A_1u^1 modes originating from the vibrations along the c-axis. This is by the variation in the lattice parameter ‘c,’ as observed through XRD. The atomic force microscopy study indicates the decrease in surface roughness up to the fluence of 3x1012 ions/cm2 and further increasing the fluence increases the roughness. The decrease in roughness may be due to the growth of smaller nano-crystallites on the surface of thin films due to irradiation-induced annealing. X-ray photoelectron spectroscopy studies reveal the composition to be in close agreement to the nominal values i.e. Bi2Te3. The resistivity v/s temperature measurements revealed an increase in resistivity up to the fluence 3x1012 ions/cm2 and a decrease on further increasing the fluence. The variation in electrical resistivity is corroborated with the change in the carrier concentration as studied through low-temperature Hall measurements. A crossover from the n-type to p-type carriers was achieved in the irradiated films. Interestingly, tuning of the Fermi level by compensating the bulk carriers using ion-irradiation could be achieved.Keywords: Annealing, Irradiation, Fermi level, Tuning
Procedia PDF Downloads 138807 Effect of Nitriding and Shot Peening on Corrosion Behavior and Surface Properties of Austenite Stainless Steel 316L
Authors: Khiaira S. Hassan, Abbas S. Alwan, Muna K. Abbass
Abstract:
This research aims to study the effect of the liquid nitriding and shot peening on the hardness, surface roughness, residual stress, microstructure and corrosion behavior of austenite stainless steel 316 L. Chemical surface heat treatment by liquid nitriding process was carried out at 500 °C for 1 h and followed by shot peening with using ball steel diameter of 1.25 mm in different exposure time of 10 and 20 min. Electrochemical corrosion test was applied in sea water (3.5% NaCl solution) by using potentostat instrument. The results showed that the nitride layer consists of a compound layer (white layer) and diffusion zone immediately below the alloy layer. It has been found that the mechanical treatment (shot peening) has led to the formation of compressive residual stresses in layer surface that increased the hardness of stainless steel surface. All surface treatment (nitriding and shot peening) processes have led to the formation of carbide of CrN in hard surface layer. It was shown that both processes caused an increase in surface hardness and roughness which increases with shot peening time. Also, the corrosion results showed that the liquid nitriding and shot peening processes increase the corrosion rate to values more than that of not treated stainless steel.Keywords: stainless steel 316L, shot peening, nitriding, corrosion, hardness
Procedia PDF Downloads 469806 Bubble Point Pressures of CO2+Ethyl Palmitate by a Cubic Equation of State and the Wong-Sandler Mixing Rule
Authors: M. A. Sedghamiz, S. Raeissi
Abstract:
This study presents three different approaches to estimate bubble point pressures for the binary system of CO2 and ethyl palmitate fatty acid ethyl ester. The first method involves the Peng-Robinson (PR) Equation of State (EoS) with the conventional mixing rule of Van der Waals. The second approach involves the PR EOS together with the Wong Sandler (WS) mixing rule, coupled with the Uniquac Ge model. In order to model the bubble point pressures with this approach, the volume and area parameter for ethyl palmitate were estimated by the Hansen group contribution method. The last method involved the Peng-Robinson, combined with the Wong-Sandler Method, but using NRTL as the GE model. Results using the Van der Waals mixing rule clearly indicated that this method has the largest errors among all three methods, with errors in the range of 3.96–6.22 %. The Pr-Ws-Uniquac method exhibited small errors, with average absolute deviations between 0.95 to 1.97 percent. The Pr-Ws-Nrtl method led to the least errors where average absolute deviations ranged between 0.65-1.7%.Keywords: bubble pressure, Gibbs excess energy model, mixing rule, CO2 solubility, ethyl palmitate
Procedia PDF Downloads 476805 A Novel Method to Manufacture Superhydrophobic and Insulating Polyester Nanofibers via a Meso-Porous Aerogel Powder
Authors: Z. Mazrouei-Sebdani, A. Khoddami, H. Hadadzadeh, M. Zarrebini
Abstract:
Silica aerogels are well-known meso-porous materials with high specific surface area (500–1000 m2/g), high porosity (80–99.8%), and low density (0.003–0.8 g/cm3). However, the silica aerogels generally are highly brittle due to their nanoporous nature. Physical and mechanical properties of the silica aerogels can be enhanced by compounding with the fibers. Although some reports presented incorporation of the fibers into the sol, followed by further modification and drying stages, no information regarding the aerogel powders as filler in the polymeric fibers is available. In this research, waterglass based aerogel powder was prepared in the following steps: sol–gel process to prepare a gel, followed by subsequent washing with propan-2-ol, n-Hexane, and TMCS, then ambient pressure drying, and ball milling. Inspired by limited dust releasing, aerogel powder was introduced to the PET electrospinning solution in an attempt to create required bulk and surface structure for the nano fibers to improve their hydrophobic and insulation properties. The samples evaluation was carried out by measuring density, porosity, contact angle, sliding angle, heat transfer, FTIR, BET and SEM. According to the results, porous silica aerogel powder was fabricated with mean pore diameter of 24 nm and contact angle of 145.9º. The results indicated the usefulness of the aerogel powder confined into nano fibers to control surface roughness for manipulating superhydrophobic nanowebs with sliding angle of 5˚ and water contact angle of 147º. It can be due to a multi-scale surface roughness which was created by nanowebs structure itself and nano fibers surface irregularity in presence of the aerogels while a laye of fluorocarbon created low surface energy. The wettability of a solid substrate is an important property that is controlled by both the chemical composition and geometry of the surface. Also, a decreasing trend in the heat transfer was observed from 22% for the nano fibers without any aerogel powder to 8% for the nano fibers with 4% aerogel powder. The development of thermal insulating materials has become increasingly more important than ever in view of the fossil energy depletion and global warming that call for more demanding energy-saving practices.Keywords: Superhydrophobicity, Insulation, Sol-gel, Surface energy, Roughness.
Procedia PDF Downloads 328804 Machining Responce of Austempered Ductile Iron with Varying Cutting Speed and Depth of Cut
Authors: Prashant Parhad, Vinayak Dakre, Ajay Likhite, Jatin Bhatt
Abstract:
This work mainly focuses on machinability studies of Austempered Ductile Iron (ADI). The Ductile Iron (DI) was austempered at 250 oC for different durations and the process window for austempering was established by studying the microstructure. The microstructural characterization of the material was done using optical microscopy, SEM and XRD. The samples austempered as per the process window were then subjected to turning using a TiAlN-coated tungsten carbide insert to study the effect of cutting parameters, namely the cutting speed and the depth of cut. The effect was investigated in terms of cutting forces required as well as the surface roughness obtained. The turning was conducted on a CNC turning machine and primary (Fx), radial (Fy) and feed (Fz) cutting forces were quantified with a three-component dynamometer. It was observed that the magnitude of radial force was more than that of primary cutting force for all cutting speed and for various depths of cut studied. It has also been seen that increasing the cutting speed improves the surface quality. The observed machinability behaviour was investigated in light of the microstructure of the material obtained under the given austempering conditions and a structure-property- co-relation was established between the two. For all cutting speed and depth of cut, the best machining response in terms of cutting forces and surface quality was obtained towards the centre of process window.Keywords: process window, cutting speed, depth of cut, surface roughness
Procedia PDF Downloads 368803 Optimization of Wire EDM Parameters for Fabrication of Micro Channels
Authors: Gurinder Singh Brar, Sarbjeet Singh, Harry Garg
Abstract:
Wire Electric Discharge Machining (WEDM) is thermal machining process capable of machining very hard electrically conductive material irrespective of their hardness. WEDM is being widely used to machine micro-scale parts with the high dimensional accuracy and surface finish. The objective of this paper is to optimize the process parameters of wire EDM to fabricate the microchannels and to calculate the surface finish and material removal rate of microchannels fabricated using wire EDM. The material used is aluminum 6061 alloy. The experiments were performed using CNC wire cut electric discharge machine. The effect of various parameters of WEDM like pulse on time (TON) with the levels (100, 150, 200), pulse off time (TOFF) with the levels (25, 35, 45) and current (IP) with the levels (105, 110, 115) were investigated to study the effect on output parameter i.e. Surface Roughness and Material Removal Rate (MRR). Each experiment was conducted under different conditions of a pulse on time, pulse off time and peak current. For material removal rate, TON and Ip were the most significant process parameter. MRR increases with the increase in TON and Ip and decreases with the increase in TOFF. For surface roughness, TON and Ip have the maximum effect and TOFF was found out to be less effective.Keywords: microchannels, Wire Electric Discharge Machining (WEDM), Metal Removal Rate (MRR), surface finish
Procedia PDF Downloads 499