Search results for: uncertainty simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5834

Search results for: uncertainty simulation

3494 Minimization of the Abrasion Effect of Fiber Reinforced Polymer Matrix on Stainless Steel Injection Nozzle through the Application of Laser Hardening Technique

Authors: Amessalu Atenafu Gelaw, Nele Rath

Abstract:

Currently, laser hardening process is becoming among the most efficient and effective hardening technique due to its significant advantages. The source where heat is generated, the absence of cooling media, self-quenching property, less distortion nature due to localized heat input, environmental friendly behavior and less time to finish the operation are among the main benefits to adopt this technology. This day, a variety of injection machines are used in plastic, textile, electrical and mechanical industries. Due to the fast growing of composite technology, fiber reinforced polymer matrix becoming optional solution to use in these industries. Due, to the abrasion nature of fiber reinforced polymer matrix composite on the injection components, many parts are outdated before the design period. Niko, a company specialized in injection molded products, suffers from the short lifetime of the injection nozzles of the molds, due to the use of fiber reinforced and, therefore, more abrasive polymer matrix. To prolong the lifetime of these molds, hardening the susceptible component like the injecting nozzles was a must. In this paper, the laser hardening process is investigated on Unimax, a type of stainless steel. The investigation to get optimal results for the nozzle-case was performed in three steps. First, the optimal parameters for maximum possible hardenability for the investigated nozzle material is investigated on a flat sample, using experimental testing as well as thermal simulation. Next, the effect of an inclination on the maximum temperature is analyzed both by experimental testing and validation through simulation. Finally, the data combined and applied for the nozzle. This paper describes possible strategies and methods for laser hardening of the nozzle to reach hardness of at least 720 HV for the material investigated. It has been proven, that the nozzle can be laser hardened to over 900 HV with the option of even higher results when more precise positioning of the laser can be assured.

Keywords: absorptivity, fiber reinforced matrix, laser hardening, Nd:YAG laser

Procedia PDF Downloads 156
3493 An Adaptable Semi-Numerical Anisotropic Hyperelastic Model for the Simulation of High Pressure Forming

Authors: Daniel Tscharnuter, Eliza Truszkiewicz, Gerald Pinter

Abstract:

High-quality surfaces of plastic parts can be achieved in a very cost-effective manner using in-mold processes, where e.g. scratch resistant or high gloss polymer films are pre-formed and subsequently receive their support structure by injection molding. The pre-forming may be done by high-pressure forming. In this process, a polymer sheet is heated and subsequently formed into the mold by pressurized air. Due to the heat transfer to the cooled mold the polymer temperature drops below its glass transition temperature. This ensures that the deformed microstructure is retained after depressurizing, giving the sheet its final formed shape. The development of a forming process relies heavily on the experience of engineers and trial-and-error procedures. Repeated mold design and testing cycles are however both time- and cost-intensive. It is, therefore, desirable to study the process using reliable computer simulations. Through simulations, the construction of the mold and the effect of various process parameters, e.g. temperature levels, non-uniform heating or timing and magnitude of pressure, on the deformation of the polymer sheet can be analyzed. Detailed knowledge of the deformation is particularly important in the forming of polymer films with integrated electro-optical functions. Care must be taken in the placement of devices, sensors and electrical and optical paths, which are far more sensitive to deformation than the polymers. Reliable numerical prediction of the deformation of the polymer sheets requires sophisticated material models. Polymer films are often either transversely isotropic or orthotropic due to molecular orientations induced during manufacturing. The anisotropic behavior affects the resulting strain field in the deformed film. For example, parts of the same shape but different strain fields may be created by varying the orientation of the film with respect to the mold. The numerical simulation of the high-pressure forming of such films thus requires material models that can capture the nonlinear anisotropic mechanical behavior. There are numerous commercial polymer grades for the engineers to choose from when developing a new part. The effort required for comprehensive material characterization may be prohibitive, especially when several materials are candidates for a specific application. We, therefore, propose a class of models for compressible hyperelasticity, which may be determined from basic experimental data and which can capture key features of the mechanical response. Invariant-based hyperelastic models with a reduced number of invariants are formulated in a semi-numerical way, such that the models are determined from a single uniaxial tensile tests for isotropic materials, or two tensile tests in the principal directions for transversely isotropic or orthotropic materials. The simulation of the high pressure forming of an orthotropic polymer film is finally done using an orthotropic formulation of the hyperelastic model.

Keywords: hyperelastic, anisotropic, polymer film, thermoforming

Procedia PDF Downloads 617
3492 The Effect of Manure Loaded Biochar on Soil Microbial Communities

Authors: T. Weber, D. MacKenzie

Abstract:

The script in this paper describes the use of advanced simulation environment using electronic systems (microcontroller, operational amplifiers, and FPGA). The simulation was used for non-linear dynamic systems behaviour with required observer structure working with parallel real-time simulation based on state-space representation. The proposed deposited model was used for electrodynamic effects including ionising effects and eddy current distribution also. With the script and proposed method, it is possible to calculate the spatial distribution of the electromagnetic fields in real-time and such systems. For further purpose, the spatial temperature distribution may also be used. With upon system, the uncertainties and disturbances may be determined. This provides the estimation of the more precise system states for the required system and additionally the estimation of the ionising disturbances that arise due to radiation effects in space systems. The results have also shown that a system can be developed specifically with the real-time calculation (estimation) of the radiation effects only. Electronic systems can take damage caused by impacts with charged particle flux in space or radiation environment. TID (Total Ionising Dose) of 1 Gy and Single Effect Transient (SET) free operation up to 50 MeVcm²/mg may assure certain functions. Single-Event Latch-up (SEL) results on the placement of several transistors in the shared substrate of an integrated circuit; ionising radiation can activate an additional parasitic thyristor. This short circuit between semiconductor-elements can destroy the device without protection and measurements. Single-Event Burnout (SEB) on the other hand, increases current between drain and source of a MOSFET and destroys the component in a short time. A Single-Event Gate Rupture (SEGR) can destroy a dielectric of semiconductor also. In order to be able to react to these processes, it must be calculated within a shorter time that ionizing radiation and dose is present. For this purpose, sensors may be used for the realistic evaluation of the diffusion and ionizing effects of the test system. For this purpose, the Peltier element is used for the evaluation of the dynamic temperature increases (dT/dt), from which a measure of the ionization processes and thus radiation will be detected. In addition, the piezo element may be used to record highly dynamic vibrations and oscillations to absorb impacts of charged particle flux. All available sensors shall be used to calibrate the spatial distributions also. By measured value of size and known location of the sensors, the entire distribution in space can be calculated retroactively or more accurately. With the formation, the type of ionisation and the direct effect to the systems and thus possible prevent processes can be activated up to the shutdown. The results show possibilities to perform more qualitative and faster simulations independent of space-systems and radiation environment also. The paper gives additionally an overview of the diffusion effects and their mechanisms.

Keywords: cattle, biochar, manure, microbial activity

Procedia PDF Downloads 103
3491 CFD Simulation of a Large Scale Unconfined Hydrogen Deflagration

Authors: I. C. Tolias, A. G. Venetsanos, N. Markatos

Abstract:

In the present work, CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen-air mixture occupies a 20 m hemisphere. Two combustion models are compared and are evaluated against the experiment. The Eddy Dissipation Model and a Multi-physics combustion model which is based on Yakhot’s equation for the turbulent flame speed. The values of models’ critical parameters are investigated. The effect of the turbulence model is also examined. k-ε model and LES approach were tested.

Keywords: CFD, deflagration, hydrogen, combustion model

Procedia PDF Downloads 502
3490 'Antibody Exception' under Dispute and Waning Usage: Potential Influence on Patenting Antibodies

Authors: Xiangjun Kong, Dongning Yao, Yuanjia Hu

Abstract:

Therapeutic antibodies have become the most valuable and successful class of biopharmaceutical drugs, with a huge market potential and therapeutic advantages. Antibody patents are, accordingly, extremely important. As the technological limitation of the early stage of this field, the U. S. Patent and Trademark Offices (USPTO) have issued guidelines that suggest an exception for patents claiming a genus of antibodies that bind to a novel antigen, even in the absence of any experimental antibody production. This 'antibody exception' allowed for a broad scope on antibody claims, and led a global trend to patent antibodies without antibodies. Disputes around the pertinent patentability and written description issues remain particularly intense. Yet the validity of such patents had not been overtly challenged until Centocor v. Abbott, which restricted the broad scope of antibody patents and hit the brakes on the 'antibody exception'. The courts tend to uphold the requirement for adequate description of antibodies in the patent specifications, to avoid overreaching antibody claims. Patents following the 'antibody exception' are at risk of being found invalid for inadequately describing what they have claimed. However, the relation between the court and USPTO guidelines remains obscure, and the waning of the 'antibody exception' has led to further disputes around antibody patents. This uncertainty clearly affects patent applications, antibody innovations, and even relevant business performance. This study will give an overview of the emergence, debate, and waning usage of the 'antibody exception' in a number of enlightening cases, attempting to understand the specific concerns and the potential influence of antibody patents. We will then provide some possible strategies for antibody patenting, under the current considerations on the 'antibody exception'.

Keywords: antibody exception, antibody patent, USPTO (U. S. Patent and Trademark Offices) guidelines, written description requirement

Procedia PDF Downloads 158
3489 The application of Gel Dosimeters and Comparison with other Dosimeters in Radiotherapy: A Literature Review

Authors: Sujan Mahamud

Abstract:

Purpose: A major challenge in radiotherapy treatment is to deliver precise dose of radiation to the tumor with minimum dose to the healthy normal tissues. Recently, gel dosimetry has emerged as a powerful tool to measure three-dimensional (3D) dose distribution for complex delivery verification and quality assurance. These dosimeters act both as a phantom and detector, thus confirming the versatility of dosimetry technique. The aim of the study is to know the application of Gel Dosimeters in Radiotherapy and find out the comparison with 1D and 2D dimensional dosimeters. Methods and Materials: The study is carried out from Gel Dosimeter literatures. Secondary data and images have been collected from different sources such as different guidelines, books, and internet, etc. Result: Analyzing, verifying, and comparing data from treatment planning system (TPS) is determined that gel dosimeter is a very excellent powerful tool to measure three-dimensional (3D) dose distribution. The TPS calculated data were in very good agreement with the dose distribution measured by the ferrous gel. The overall uncertainty in the ferrous-gel dose determination was considerably reduced using an optimized MRI acquisition protocol and a new MRI scanner. The method developed for comparing measuring gel data with calculated treatment plans, the gel dosimetry method, was proven to be a useful for radiation treatment planning verification. In 1D and 2D Film, the depth dose and lateral for RMSD are 1.8% and 2%, and max (Di-Dj) are 2.5% and 8%. Other side 2D+ ( 3D) Film Gel and Plan Gel for RMSDstruct and RMSDstoch are 2.3% & 3.6% and 1% & 1% and system deviation are -0.6% and 2.5%. The study is investigated that the result fined 2D+ (3D) Film Dosimeter is better than the 1D and 2D Dosimeter. Discussion: Gel Dosimeters is quality control and quality assurance tool which will used the future clinical application.

Keywords: gel dosimeters, phantom, rmsd, QC, detector

Procedia PDF Downloads 151
3488 Modeling of Sediment Yield and Streamflow of Watershed Basin in the Philippines Using the Soil Water Assessment Tool Model for Watershed Sustainability

Authors: Warda L. Panondi, Norihiro Izumi

Abstract:

Sedimentation is a significant threat to the sustainability of reservoirs and their watershed. In the Philippines, the Pulangi watershed experienced a high sediment loss mainly due to land conversions and plantations that showed critical erosion rates beyond the tolerable limit of -10 ton/ha/yr in all of its sub-basin. From this event, the prediction of runoff volume and sediment yield is essential to examine using the country's soil conservation techniques realistically. In this research, the Pulangi watershed was modeled using the soil water assessment tool (SWAT) to predict its watershed basin's annual runoff and sediment yield. For the calibration and validation of the model, the SWAT-CUP was utilized. The model was calibrated with monthly discharge data for 1990-1993 and validated for 1994-1997. Simultaneously, the sediment yield was calibrated in 2014 and validated in 2015 because of limited observed datasets. Uncertainty analysis and calculation of efficiency indexes were accomplished through the SUFI-2 algorithm. According to the coefficient of determination (R2), Nash Sutcliffe efficiency (NSE), King-Gupta efficiency (KGE), and PBIAS, the calculation of streamflow indicates a good performance for both calibration and validation periods while the sediment yield resulted in a satisfactory performance for both calibration and validation. Therefore, this study was able to identify the most critical sub-basin and severe needs of soil conservation. Furthermore, this study will provide baseline information to prevent floods and landslides and serve as a useful reference for land-use policies and watershed management and sustainability in the Pulangi watershed.

Keywords: Pulangi watershed, sediment yield, streamflow, SWAT model

Procedia PDF Downloads 209
3487 Electronics Thermal Management Driven Design of an IP65-Rated Motor Inverter

Authors: Sachin Kamble, Raghothama Anekal, Shivakumar Bhavi

Abstract:

Thermal management of electronic components packaged inside an IP65 rated enclosure is of prime importance in industrial applications. Electrical enclosure protects the multiple board configurations such as inverter, power, controller board components, busbars, and various power dissipating components from harsh environments. Industrial environments often experience relatively warm ambient conditions, and the electronic components housed in the enclosure dissipate heat, due to which the enclosures and the components require thermal management as well as reduction of internal ambient temperatures. Design of Experiments based thermal simulation approach with MOSFET arrangement, Heat sink design, Enclosure Volume, Copper and Aluminum Spreader, Power density, and Printed Circuit Board (PCB) type were considered to optimize air temperature inside the IP65 enclosure to ensure conducive operating temperature for controller board and electronic components through the different modes of heat transfer viz. conduction, natural convection and radiation using Ansys ICEPAK. MOSFET’s with the parallel arrangement, IP65 enclosure molded heat sink with rectangular fins on both enclosures, specific enclosure volume to satisfy the power density, Copper spreader to conduct heat to the enclosure, optimized power density value and selecting Aluminum clad PCB which improves the heat transfer were the contributors towards achieving a conducive operating temperature inside the IP-65 rated Motor Inverter enclosure. A reduction of 52 ℃ was achieved in internal ambient temperature inside the IP65 enclosure between baseline and final design parameters, which met the operative temperature requirements of the electronic components inside the IP-65 rated Motor Inverter.

Keywords: Ansys ICEPAK, aluminium clad PCB, IP 65 enclosure, motor inverter, thermal simulation

Procedia PDF Downloads 122
3486 The Domino Principle of Dobbs v Jackson Women’s Health Organization: The Gays Are Next!

Authors: Alan Berman, Mark Brady

Abstract:

The phenomenon of homophobia and transphobia in the United States detrimentally impacts the health, wellbeing, and dignity of school students who identify with the LGBTQ+ community. These negative impacts also compromise the participation of LGBTQ+ individuals in the wider life of educational domains and endanger the potential economic, social and cultural contribution this community can make to American society. The recent 6:3 majority decision of the US Supreme Court in Dobbs v Jackson Women’s Health Organization expressly overruled the 1973 decision in Roe v Wade and the 1992 Planned Parenthood v Casey decision. This study will canvass the bases upon which the court in Dobbs overruled longstanding precedent established in Roe and Casey. It will examine the potential implications for the LGBTQ community of the result in Dobbs. The potential far-reaching consequences of this case are foreshadowed in a concurring opinion by Justice Clarence Thomas, suggesting the Court should revisit all substantive due process cases. This includes notably the Lawrence v Texas case (invalidating sodomy laws criminalizing same-sex relations) and the Obergefellcase (upholding same-sex marriage). Finally, the study will examine the likely impact of the uncertainty brought about by the decision in Doddsfor LGBTQ students in US educational institutions. The actions of several states post-Dobbs, reflects and exacerbates the problems facing LGBTQ+ students and uncovers and highlights societal homophobia and transphobia.

Keywords: human rights, LGBT rights, right to personal dignity and autonomy, substantive due process rights

Procedia PDF Downloads 104
3485 Window Opening Behavior in High-Density Housing Development in Subtropical Climate

Authors: Minjung Maing, Sibei Liu

Abstract:

This research discusses the results of a study of window opening behavior of large housing developments in the high-density megacity of Hong Kong. The methods used for the study involved field observations using photo documentation of the four cardinal elevations (north, south-east, and west) of two large housing developments in a very dense urban area of approx. 46,000 persons per square meter within the city of Hong Kong. The targeted housing developments (A and B) are large public housing with a population of about 13,000 in each development of lower income. However, the mean income level in development A is about 40% higher than development B and home ownership is 60% in development A and 0% in development B. Mapping of the surrounding amenities and layout of the developments were also studied to understand the available activities to the residents. The photo documentation of the elevations was taken from November 2016 to February 2018 to gather a full spectrum of different seasons and both in the morning and afternoon (am/pm) times. From the photograph, the window opening behavior was measured by counting the amount of windows opened as a percentage of all the windows on that façade. For each date of survey data collected, weather data was recorded from weather stations located in the same region to collect temperature, humidity and wind speed. To further understand the behavior, simulation studies of microclimate conditions of the housing development was conducted using the software ENVI-met, a widely used simulation tool by researchers studying urban climate. Four major conclusions can be drawn from the data analysis and simulation results. Firstly, there is little change in the amount of window opening during the different seasons within a temperature range of 10 to 35 degrees Celsius. This means that people who tend to open their windows have consistent window opening behavior throughout the year and high tolerance of indoor thermal conditions. Secondly, for all four elevations the lower-income development B opened more windows (almost two times more units) than higher-income development A meaning window opening behavior had strong correlations with income level. Thirdly, there is a lack of correlation between outdoor horizontal wind speed and window opening behavior, as the changes of wind speed do not seem to affect the action of opening windows in most conditions. Similar to the low correlation between horizontal wind speed and window opening percentage, it is found that vertical wind speed also cannot explain the window opening behavior of occupants. Fourthly, there is a slightly higher average of window opening on the south elevation than the north elevation, which may be due to the south elevation being well shaded from high angle sun during the summer and allowing heat into units from lower angle sun during the winter season. These findings are important to providing insight into how to better design urban environments and indoor thermal environments for a liveable high density city.

Keywords: high-density housing, subtropical climate, urban behavior, window opening

Procedia PDF Downloads 125
3484 Modeling of Cf-252 and PuBe Neutron Sources by Monte Carlo Method in Order to Develop Innovative BNCT Therapy

Authors: Marta Błażkiewicz, Adam Konefał

Abstract:

Currently, boron-neutron therapy is carried out mainly with the use of a neutron beam generated in research nuclear reactors. This fact limits the possibility of realization of a BNCT in centers distant from the above-mentioned reactors. Moreover, the number of active nuclear reactors in operation in the world is decreasing due to the limited lifetime of their operation and the lack of new installations. Therefore, the possibilities of carrying out boron-neutron therapy based on the neutron beam from the experimental reactor are shrinking. However, the use of nuclear power reactors for BNCT purposes is impossible due to the infrastructure not intended for radiotherapy. Therefore, a serious challenge is to find ways to perform boron-neutron therapy based on neutrons generated outside the research nuclear reactor. This work meets this challenge. Its goal is to develop a BNCT technique based on commonly available neutron sources such as Cf-252 and PuBe, which will enable the above-mentioned therapy in medical centers unrelated to nuclear research reactors. Advances in the field of neutron source fabrication make it possible to achieve strong neutron fluxes. The current stage of research focuses on the development of virtual models of the above-mentioned sources using the Monte Carlo simulation method. In this study, the GEANT4 tool was used, including the model for simulating neutron-matter interactions - High Precision Neutron. Models of neutron sources were developed on the basis of experimental verification based on the activation detectors method with the use of indium foil and the cadmium differentiation method allowing to separate the indium activation contribution from thermal and resonance neutrons. Due to the large number of factors affecting the result of the verification experiment, the 10% discrepancy between the simulation and experiment results was accepted.

Keywords: BNCT, virtual models, neutron sources, monte carlo, GEANT4, neutron activation detectors, gamma spectroscopy

Procedia PDF Downloads 184
3483 Feasibility Study of Plant Design with Biomass Direct Chemical Looping Combustion for Power Generation

Authors: Reza Tirsadi Librawan, Tara Vergita Rakhma

Abstract:

The increasing demand for energy and concern of global warming are intertwined issues of critical importance. With the pressing needs of clean, efficient and cost-effective energy conversion processes, an alternative clean energy source is needed. Biomass is one of the preferable options because it is clean and renewable. The efficiency for biomass conversion is constrained by the relatively low energy density and high moisture content from biomass. This study based on bio-based resources presents the Biomass Direct Chemical Looping Combustion Process (BDCLC), an alternative process that has a potential to convert biomass in thermal cracking to produce electricity and CO2. The BDCLC process using iron-based oxygen carriers has been developed as a biomass conversion process with in-situ CO2 capture. The BDCLC system cycles oxygen carriers between two reactor, a reducer reactor and combustor reactor in order to convert coal for electric power generation. The reducer reactor features a unique design: a gas-solid counter-current moving bed configuration to achieve the reduction of Fe2O3 particles to a mixture of Fe and FeO while converting the coal into CO2 and steam. The combustor reactor is a fluidized bed that oxidizes the reduced particles back to Fe2O3 with air. The oxidation of iron is an exothermic reaction and the heat can be recovered for electricity generation. The plant design’s objective is to obtain 5 MW of electricity with the design of the reactor in 900 °C, 2 ATM for the reducer and 1200 °C, 16 ATM for the combustor. We conduct process simulation and analysis to illustrate the individual reactor performance and the overall mass and energy management scheme of BDCLC process that developed by Aspen Plus software. Process simulation is then performed based on the reactor performance data obtained in multistage model.

Keywords: biomass, CO2 capture, direct chemical looping combustion, power generation

Procedia PDF Downloads 506
3482 A Predator-Prey Model with Competitive Interaction amongst the Preys

Authors: Titus G. Kassem, Izang A. Nyam

Abstract:

A mathematical model is constructed to study the effect of predation on two competing species in which one of the competing species is a prey to the predator whilst the other species are not under predation. Conditions for the existence and stability of equilibrium solutions were determined. Numerical simulation results indicate the possibility of a stable coexistence of the three interacting species in form of stable oscillations under certain parameter values. We also noticed that under some certain parameter values, species under predation go into extinction.

Keywords: competition, predator-prey, species, ecology

Procedia PDF Downloads 278
3481 Comprehensive Validation of High-Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD) for Quantitative Assessment of Caffeic Acid in Phenolic Extracts from Olive Mill Wastewater

Authors: Layla El Gaini, Majdouline Belaqziz, Meriem Outaki, Mariam Minhaj

Abstract:

In this study, it introduce and validate a high-performance liquid chromatography method with diode-array detection (HPLC-DAD) specifically designed for the accurate quantification of caffeic acid in phenolic extracts obtained from olive mill wastewater. The separation process of caffeic acid was effectively achieved through the use of an Acclaim Polar Advantage column (5µm, 250x4.6mm). A meticulous multi-step gradient mobile phase was employed, comprising water acidified with phosphoric acid (pH 2.3) and acetonitrile, to ensure optimal separation. The diode-array detection was adeptly conducted within the UV–VIS spectrum, spanning a range of 200–800 nm, which facilitated precise analytical results. The method underwent comprehensive validation, addressing several essential analytical parameters, including specificity, repeatability, linearity, as well as the limits of detection and quantification, alongside measurement uncertainty. The generated linear standard curves displayed high correlation coefficients, underscoring the method's efficacy and consistency. This validated approach is not only robust but also demonstrates exceptional reliability for the focused analysis of caffeic acid within the intricate matrices of wastewater, thus offering significant potential for applications in environmental and analytical chemistry.

Keywords: high-performance liquid chromatography (HPLC-DAD), caffeic acid analysis, olive mill wastewater phenolics, analytical method validation

Procedia PDF Downloads 70
3480 Contribution to Improving the DFIG Control Using a Multi-Level Inverter

Authors: Imane El Karaoui, Mohammed Maaroufi, Hamid Chaikhy

Abstract:

Doubly Fed Induction Generator (DFIG) is one of the most reliable wind generator. Major problem in wind power generation is to generate Sinusoidal signal with very low THD on variable speed caused by inverter two levels used. This paper presents a multi-level inverter whose objective is to reduce the THD and the dimensions of the output filter. This work proposes a three-level NPC-type inverter, the results simulation are presented demonstrating the efficiency of the proposed inverter.

Keywords: DFIG, multilevel inverter, NPC inverter, THD, induction machine

Procedia PDF Downloads 249
3479 The Cost of Non-Communicable Diseases in the European Union: A Projection towards the Future

Authors: Desiree Vandenberghe, Johan Albrecht

Abstract:

Non-communicable diseases (NCDs) are responsible for the vast majority of deaths in the European Union (EU) and represent a large share of total health care spending. A future increase in this health and financial burden is likely to be driven by population ageing, lifestyle changes and technological advances in medicine. Without adequate prevention measures, this burden can severely threaten population health and economic development. To tackle this challenge, a correct assessment of the current burden of NCDs is required, as well as a projection of potential increases of this burden. The contribution of this paper is to offer perspective on the evolution of the NCD burden towards the future and to give an indication of the potential of prevention policy. A Non-Homogenous, Semi-Markov model for the EU was constructed, which allowed for a projection of the cost burden for the four main NCDs (cancer, cardiovascular disease, chronic respiratory disease and diabetes mellitus) towards 2030 and 2050. This simulation is done based on multiple baseline scenarios that vary in demand and supply factors such as health status, population structure, and technological advances. Finally, in order to assess the potential of preventive measures to curb the cost explosion of NCDs, a simulation is executed which includes increased efforts for preventive health care measures. According to the Markov model, by 2030 and 2050, total costs (direct and indirect costs) in the EU could increase by 30.1% and 44.1% respectively, compared to 2015 levels. An ambitious prevention policy framework for NCDs will be required if the EU wants to meet this challenge of rising costs. To conclude, significant cost increases due to Non-Communicable Diseases are likely to occur due to demographic and lifestyle changes. Nevertheless, an ambitious prevention program throughout the EU can aid in making this cost burden manageable for future generations.

Keywords: non-communicable diseases, preventive health care, health policy, Markov model, scenario analysis

Procedia PDF Downloads 140
3478 Multi-Stage Optimization of Local Environmental Quality by Comprehensive Computer Simulated Person as Sensor for Air Conditioning Control

Authors: Sung-Jun Yoo, Kazuhide Ito

Abstract:

In this study, a comprehensive computer simulated person (CSP) that integrates computational human model (virtual manikin) and respiratory tract model (virtual airway), was applied for estimation of indoor environmental quality. Moreover, an inclusive prediction method was established by integrating computational fluid dynamics (CFD) analysis with advanced CSP which is combined with physiologically-based pharmacokinetic (PBPK) model, unsteady thermoregulation model for analysis targeting micro-climate around human body and respiratory area with high accuracy. This comprehensive method can estimate not only the contaminant inhalation but also constant interaction in the contaminant transfer between indoor spaces, i.e., a target area for indoor air quality (IAQ) assessment, and respiratory zone for health risk assessment. This study focused on the usage of the CSP as an air/thermal quality sensor in indoors, which means the application of comprehensive model for assessment of IAQ and thermal environmental quality. Demonstrative analysis was performed in order to examine the applicability of the comprehensive model to the heating, ventilation, air conditioning (HVAC) control scheme. CSP was located at the center of the simple model room which has dimension of 3m×3m×3m. Formaldehyde which is generated from floor material was assumed as a target contaminant, and flow field, sensible/latent heat and contaminant transfer analysis in indoor space were conducted by using CFD simulation coupled with CSP. In this analysis, thermal comfort was evaluated by thermoregulatory analysis, and respiratory exposure risks represented by adsorption flux/concentration at airway wall surface were estimated by PBPK-CFD hybrid analysis. These Analysis results concerning IAQ and thermal comfort will be fed back to the HVAC control and could be used to find a suitable ventilation rate and energy requirement for air conditioning system.

Keywords: CFD simulation, computer simulated person, HVAC control, indoor environmental quality

Procedia PDF Downloads 361
3477 Efficiency Validation of Hybrid Geothermal and Radiant Cooling System Implementation in Hot and Humid Climate Houses of Saudi Arabia

Authors: Jamil Hijazi, Stirling Howieson

Abstract:

Over one-quarter of the Kingdom of Saudi Arabia’s total oil production (2.8 million barrels a day) is used for electricity generation. The built environment is estimated to consume 77% of the total energy production. Of this amount, air conditioning systems consume about 80%. Apart from considerations surrounding global warming and CO2 production it has to be recognised that oil is a finite resource and the KSA like many other oil rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground cooling pipes in combination with black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing carbon emissions while providing all year round thermal comfort in a typical Saudi Arabian urban housing block. At the outset air and soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (Design Builder) that utilised the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/ stack ventilation and radiant cooling pipes embed in floor).Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.

Keywords: energy efficiency, ground pipe, hybrid cooling, radiative cooling, thermal comfort

Procedia PDF Downloads 262
3476 Agrarian Distress and out Migration of Youths: Study of a Wet Land Village in Hirakud Command Area, Odisha

Authors: Kishor K. Podh

Abstract:

Agriculture in India treated as the backbone of its economy. It has been accommodated to more than 60 percent of its population as their economic base, directly or indirectly for their livelihood. Besides its significant role, the sharp declines in public investment and development in agriculture have witnessed. After independence Hirakud Command Area (HCA) popularly known as the Rice Bowl of State, due to its fabulous production and provides food to a larger part of the state. After the great green revolution and then liberalization agrarian families become overburden with the loan. They started working as wage laborer in other’s field and non-farm sectors to overcome from the uninvited indebtedness. Although production increases at present, still the youths of this area migrating outsides for job Tamil Nadu, Andhra Pradesh, Maharashtra, Gujarat, etc. Because agriculture no longer remains a profitable occupation; increasing input costs, the uncertainty of crops, improper pricing, poor marketing, etc. compels the youths to choose the alternative occupations. They work in industries (under contractors), construction workers and other menial jobs due to lack of skills and degrees. Kharmunda a village within HCA selected as per the convenience and 100 youth migrants were interviewed purposively selected who were present during data collection. The study analyses the types of migration; its similarity/differentiations, its determining factors, in tow geographical areas of Western Odisha, i.e., single crop and double crops in relation to agricultural situations.

Keywords: agrarian distress, double crops, Hirakud Command Area, indebtedness, out migration, Western Odisha

Procedia PDF Downloads 334
3475 Numerical Simulation of Hydraulic Fracture Propagation in Marine-continental Transitional Tight Sandstone Reservoirs by Boundary Element Method: A Case Study of Shanxi Formation in China

Authors: Jiujie Cai, Fengxia LI, Haibo Wang

Abstract:

After years of research, offshore oil and gas development now are shifted to unconventional reservoirs, where multi-stage hydraulic fracturing technology has been widely used. However, the simulation of complex hydraulic fractures in tight reservoirs is faced with geological and engineering difficulties, such as large burial depths, sand-shale interbeds, and complex stress barriers. The objective of this work is to simulate the hydraulic fracture propagation in the tight sandstone matrix of the marine-continental transitional reservoirs, where the Shanxi Formation in Tianhuan syncline of the Dongsheng gas field was used as the research target. The characteristic parameters of the vertical rock samples with rich beddings were clarified through rock mechanics experiments. The influence of rock mechanical parameters, vertical stress difference of pay-zone and bedding layer, and fracturing parameters (such as injection rates, fracturing fluid viscosity, and number of perforation clusters within single stage) on fracture initiation and propagation were investigated. In this paper, a 3-D fracture propagation model was built to investigate the complex fracture propagation morphology by boundary element method, considering the strength of bonding surface between layers, vertical stress difference and fracturing parameters (such as injection rates, fluid volume and viscosity). The research results indicate that on the condition of vertical stress difference (3 MPa), the fracture height can break through and enter the upper interlayer when the thickness of the overlying bedding layer is 6-9 m, considering effect of the weak bonding surface between layers. The fracture propagates within the pay zone when overlying interlayer is greater than 13 m. Difference in fluid volume distribution between clusters could be more than 20% when the stress difference of each cluster in the segment exceeds 2MPa. Fracture cluster in high stress zones cannot initiate when the stress difference in the segment exceeds 5MPa. The simulation results of fracture height are much higher if the effect of weak bonding surface between layers is not involved. By increasing the injection rates, increasing fracturing fluid viscosity, and reducing the number of clusters within single stage can promote the fracture height propagation through layers. Optimizing the perforation position and reducing the number of perforations can promote the uniform expansion of fractures. Typical curves of fracture height estimation were established for the tight sandstone of the Lower Permian Shanxi Formation. The model results have good consistency with micro-seismic monitoring results of hydraulic fracturing in Well 1HF.

Keywords: fracture propagation, boundary element method, fracture height, offshore oil and gas, marine-continental transitional reservoirs, rock mechanics experiment

Procedia PDF Downloads 127
3474 Disaster Response Training Simulator Based on Augmented Reality, Virtual Reality, and MPEG-DASH

Authors: Sunho Seo, Younghwan Shin, Jong-Hong Park, Sooeun Song, Junsung Kim, Jusik Yun, Yongkyun Kim, Jong-Moon Chung

Abstract:

In order to effectively cope with large and complex disasters, disaster response training is needed. Recently, disaster response training led by the ROK (Republic of Korea) government is being implemented through a 4 year R&D project, which has several similar functions as the HSEEP (Homeland Security Exercise and Evaluation Program) of the United States, but also has several different features as well. Due to the unpredictiveness and diversity of disasters, existing training methods have many limitations in providing experience in the efficient use of disaster incident response and recovery resources. Always, the challenge is to be as efficient and effective as possible using the limited human and material/physical resources available based on the given time and environmental circumstances. To enable repeated training under diverse scenarios, an AR (Augmented Reality) and VR (Virtual Reality) combined simulator is under development. Unlike existing disaster response training, simulator based training (that allows remote login simultaneous multi-user training) enables freedom from limitations in time and space constraints, and can be repeatedly trained with different combinations of functions and disaster situations. There are related systems such as ADMS (Advanced Disaster Management Simulator) developed by ETC simulation and HLS2 (Homeland Security Simulation System) developed by ELBIT system. However, the ROK government needs a simulator custom made to the country's environment and disaster types, and also combines the latest information and communication technologies, which include AR, VR, and MPEG-DASH (Moving Picture Experts Group - Dynamic Adaptive Streaming over HTTP) technology. In this paper, a new disaster response training simulator is proposed to overcome the limitation of existing training systems, and adapted to actual disaster situations in the ROK, where several technical features are described.

Keywords: augmented reality, emergency response training simulator, MPEG-DASH, virtual reality

Procedia PDF Downloads 301
3473 An Investigation of the Relationship between Organizational Culture and Innovation Type: A Mixed Method Study Using the OCAI in a Telecommunication Company in Saudi Arabia

Authors: A. Almubrad, R. Clouse, A. Aljlaoud

Abstract:

Organizational culture (OC) is recognized to have an influence on the propensity of organizations to innovate. It is also presumed that it may impede the innovation process from thriving within the organization. Investigating the role organizational culture plays in enabling or inhibiting innovation merits exploration to investigate organizational cultural attributes necessary to reach innovation goals. This study aims to investigate a preliminary matching heuristic of OC attributes to the type of innovation that has the potential to thrive within those attributes. A mixed methods research approach was adopted to achieve the research aims. Accordingly, participants from a national telecom company in Saudi Arabia took the Organizational Culture Assessment Instrument (OCAI). A further sample selected from the respondents’ pool holding the role of managing directors was interviewed in the qualitative phase. Our study findings reveal that the market culture type has a tendency to adopt radical innovations to disrupt the market and to preserve its market position. In contrast, we find that the adhocracy culture type tends to adopt the incremental innovation type and found this tends to be more convenient for employees due to its low levels of uncertainty. Our results are an encouraging indication that matching organizational culture attributes to the type of innovation aids in innovation management. This study carries limitations while drawing its findings from a limited sample of OC attributes that identify with the adhocracy and market culture types. An extended investigation is merited to explore other types of organizational cultures and their optimal innovation types.

Keywords: incremental innovation, radical innovation, organization culture, market culture, adhocracy culture, OACI

Procedia PDF Downloads 105
3472 Investigation of Oscillation Mechanism of a Large-scale Solar Photovoltaic and Wind Hybrid Power Plant

Authors: Ting Kai Chia, Ruifeng Yan, Feifei Bai, Tapan Saha

Abstract:

This research presents a real-world power system oscillation incident in 2022 originated by a hybrid solar photovoltaic (PV) and wind renewable energy farm with a rated capacity of approximately 300MW in Australia. The voltage and reactive power outputs recorded at the point of common coupling (PCC) oscillated at a sub-synchronous frequency region, which sustained for approximately five hours in the network. The reactive power oscillation gradually increased over time and reached a recorded maximum of approximately 250MVar peak-to-peak (from inductive to capacitive). The network service provider was not able to quickly identify the location of the oscillation source because the issue was widespread across the network. After the incident, the original equipment manufacturer (OEM) concluded that the oscillation problem was caused by the incorrect setting recovery of the hybrid power plant controller (HPPC) in the voltage and reactive power control loop after a loss of communication event. The voltage controller normally outputs a reactive (Q) reference value to the Q controller which controls the Q dispatch setpoint of PV and wind plants in the hybrid farm. Meanwhile, a feed-forward (FF) configuration is used to bypass the Q controller in case there is a loss of communication. Further study found that the FF control mode was still engaged when communication was re-established, which ultimately resulted in the oscillation event. However, there was no detailed explanation of why the FF control mode can cause instability in the hybrid farm. Also, there was no duplication of the event in the simulation to analyze the root cause of the oscillation. Therefore, this research aims to model and replicate the oscillation event in a simulation environment and investigate the underlying behavior of the HPPC and the consequent oscillation mechanism during the incident. The outcome of this research will provide significant benefits to the safe operation of large-scale renewable energy generators and power networks.

Keywords: PV, oscillation, modelling, wind

Procedia PDF Downloads 37
3471 Relevance of Technology on Education

Authors: Felicia K. Oluwalola

Abstract:

This paper examines the relevance of technology on education. It identified the concept of technology on education, bringing real-world learning to the classroom situation, examples of where technology can be used. This study established the fact that technology facilitates students learning compared with traditional method of teaching. It was recommended that the teachers should use technology to supplement, not replace, other instructional modes. It should be used in conjunction with hands-on labs and activities that also address the concepts targeted by the technology. Also, technology should be students centered and not teachers centered.

Keywords: computer, simulation, classroom teaching, education

Procedia PDF Downloads 451
3470 Effectiveness of Enhancing Positive Emotion Program of Patients with Lung Cancer

Authors: Pei-Fan Mu

Abstract:

Background: Lung cancer is the most common cancer with the highest mortality rate. Patients with lung cancer under chemotherapy treatment experience life-threatening uncertainty. This study was based on the broaden-and-build theory using intentionality reflection of the body and internalization of positive prioritization strategies to enhance positive emotions of patients with lung cancer. Purpose: The purpose of this study was to use a quasi-experimental research design to examine the effectiveness of the enhancing positive emotion program. Method: Data were collected from a medical center in Taiwan. Fifty-four participants with lung cancer were recruited. Thirty participants were in the experiential group receiving the two weeks program. The content of the program includes awareness and understanding of the symptom experience, co-existing with illness and establishing self-identity, cognitive-emotion adjustment and establishing a new body schema, and symptom management to reach spiritual well-being. Twenty-four participants were in the control group receiving regular nursing care. Baseline, one month later and two months later, programmed measurements of symptoms of distress, positive emotion, and psychological well-being. Results: These two weeks of enhancing the positive emotion program resulted in a significantly improved positive emotion score for the experimental group compared to the control group. The findings of this study indicated that the positive emotion had significant differences between the two groups. There were no differences in symptom distress between the two groups. Discussion: The findings indicated that the enhancing positive emotion program could help patients enhance their life-threatening facing conditions.

Keywords: positive emotion, lung cancer, experimental design, symptom distress

Procedia PDF Downloads 99
3469 Motion Planning and Simulation Design of a Redundant Robot for Sheet Metal Bending Processes

Authors: Chih-Jer Lin, Jian-Hong Hou

Abstract:

Industry 4.0 is a vision of integrated industry implemented by artificial intelligent computing, software, and Internet technologies. The main goal of industry 4.0 is to deal with the difficulty owing to competitive pressures in the marketplace. For today’s manufacturing factories, the type of production is changed from mass production (high quantity production with low product variety) to medium quantity-high variety production. To offer flexibility, better quality control, and improved productivity, robot manipulators are used to combine material processing, material handling, and part positioning systems into an integrated manufacturing system. To implement the automated system for sheet metal bending operations, motion planning of a 7-degrees of freedom (DOF) robot is studied in this paper. A virtual reality (VR) environment of a bending cell, which consists of the robot and a bending machine, is established using the virtual robot experimentation platform (V-REP) simulator. For sheet metal bending operations, the robot only needs six DOFs for the pick-and-place or tracking tasks. Therefore, this 7 DOF robot has more DOFs than the required to execute a specified task; it can be called a redundant robot. Therefore, this robot has kinematic redundancies to deal with the task-priority problems. For redundant robots, Pseudo-inverse of the Jacobian is the most popular motion planning method, but the pseudo-inverse methods usually lead to a kind of chaotic motion with unpredictable arm configurations as the Jacobian matrix lose ranks. To overcome the above problem, we proposed a method to formulate the motion planning problems as optimization problem. Moreover, a genetic algorithm (GA) based method is proposed to deal with motion planning of the redundant robot. Simulation results validate the proposed method feasible for motion planning of the redundant robot in an automated sheet-metal bending operations.

Keywords: redundant robot, motion planning, genetic algorithm, obstacle avoidance

Procedia PDF Downloads 146
3468 Accurate Binding Energy of Ytterbium Dimer from Ab Initio Calculations and Ultracold Photoassociation Spectroscopy

Authors: Giorgio Visentin, Alexei A. Buchachenko

Abstract:

Recent proposals to use Yb dimer as an optical clock and as a sensor for non-Newtonian gravity imply the knowledge of its interaction potential. Here, the ground-state Born-Oppenheimer Yb₂ potential energy curve is represented by a semi-analytical function, consisting of short- and long-range contributions. For the former, the systematic ab initio all-electron exact 2-component scalar-relativistic CCSD(T) calculations are carried out. Special care is taken to saturate diffuse basis set component with the atom- and bond-centered primitives and reach the complete basis set limit through n = D, T, Q sequence of the correlation-consistent polarized n-zeta basis sets. Similar approaches are used to the long-range dipole and quadrupole dispersion terms by implementing the CCSD(3) polarization propagator method for dynamic polarizabilities. Dispersion coefficients are then computed through Casimir-Polder integration. The semiclassical constraint on the number of the bound vibrational levels known for the ¹⁷⁴Yb isotope is used to scale the potential function. The scaling, based on the most accurate ab initio results, bounds the interaction energy of two Yb atoms within the narrow 734 ± 4 cm⁻¹ range, in reasonable agreement with the previous ab initio-based estimations. The resulting potentials can be used as the reference for more sophisticated models that go beyond the Born-Oppenheimer approximation and provide the means of their uncertainty estimations. The work is supported by Russian Science Foundation grant # 17-13-01466.

Keywords: ab initio coupled cluster methods, interaction potential, semi-analytical function, ytterbium dimer

Procedia PDF Downloads 153
3467 Simulation of Turbulent Flow in Channel Using Generalized Hydrodynamic Equations

Authors: Alex Fedoseyev

Abstract:

This study explores Generalized Hydrodynamic Equations (GHE) for the simulation of turbulent flows. The GHE was derived from the Generalized Boltzmann Equation (GBE) by Alexeev (1994). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considered particles of finite dimensions, Alexeev (1994). The GHE has new terms, temporal and spatial fluctuations compared to the Navier-Stokes equations (NSE). These new terms have a timescale multiplier τ, and the GHE becomes the NSE when τ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The turbulence phenomenon is not well understood and is not described by NSE. An additional one or two equations are required for the turbulence model, which may have to be tuned for specific problems. We show that, in the case of the GHE, no additional turbulence model is needed, and the turbulent velocity profile is obtained from the GHE. The 2D turbulent channel and circular pipe flows were investigated using a numerical solution of the GHE for several cases. The solutions are compared with the experimental data in the circular pipes and 2D channels by Nicuradse (1932, Prandtl Lab), Hussain and Reynolds (1975), Wei and Willmarth (1989), Van Doorne (2007), theory by Wosnik, Castillo and George (2000), and the relevant experiments on Superpipe setup at Princeton, data by Zagarola (1996) and Zagarola and Smits (1998), the Reynolds number is from Re=7200 to Re=960000. The numerical solution data compared well with the experimental data, as well as with the approximate analytical solution for turbulent flow in channel Fedoseyev (2023). The obtained results confirm that the Alexeev generalized hydrodynamic theory (GHE) is in good agreement with the experiments for turbulent flows. The proposed approach is limited to 2D and 3D axisymmetric channel geometries. Further work will extend this approach by including channels with square and rectangular cross-sections.

Keywords: comparison with experimental data. generalized hydrodynamic equations, numerical solution, turbulent boundary layer, turbulent flow in channel

Procedia PDF Downloads 65
3466 Life Locked Up in Immigration Detention: An Exploratory Study of Education in Australian Refugee Prisons

Authors: Carly Hawkins

Abstract:

Forced migration is at unprecedented levels globally, and many countries have implemented harsh policies regarding people seeking asylum. Australia legislates one of the harshest and most controversial responses in the world, sending any asylum seeker arriving by boat to indefinite offshore immigration detention. This includes children, families and unaccompanied minors. Asylum seekers and refugees are detained indefinitely by the Australian government in the Pacific Island countries of Papua New Guinea and Nauru. Global research on the impact of immigration detention has primarily focused on mental health and psychological concerns for both adults and children. Research into Australian immigration detention has largely overlooked the schooling and education of children detained in Nauru, despite refugee children spending more than five years in detention, a significant portion of a child’s life. This research focused on the experience of education for children detained offshore in Nauru from 2013-2019. 21 qualitative interviews were conducted with children, parents and service providers between 2021-2022. Interviews explored experiences of schooling, power structures, and barriers and support to education. Findings show that a lack of belonging and lack of agency negatively affected school engagement. A sense of hopelessness and uncertainty also affected their motivation to attend school, with many children missing school for months and years. The research indicates that Australia’s current policy of offshore detention has been detrimental to children’s educational experiences.

Keywords: asylum seeker, children, education, immigration detention, policy, refugee, school

Procedia PDF Downloads 76
3465 Parametric Study on the Development of Earth Pressures Behind Integral Bridge Abutments Under Cyclic Translational Movements

Authors: Lila D. Sigdel, Chin J. Leo, Samanthika Liyanapathirana, Pan Hu, Minghao Lu

Abstract:

Integral bridges are a class of bridges with integral or semi-integral abutments, designed without expansion joints in the bridge deck of the superstructure. Integral bridges are economical alternatives to conventional jointed bridges with lower maintenance costs and greater durability, thereby improving social and economic stability for the community. Integral bridges have also been proven to be effective in lowering the overall construction cost compared to the conventional type of bridges. However, there is significant uncertainty related to the design and analysis of integral bridges in response to cyclic thermal movements induced due to deck expansion and contraction. The cyclic thermal movements of the abutments increase the lateral earth pressures on the abutment and its foundation, leading to soil settlement and heaving of the backfill soil. Thus, the primary objective of this paper is to investigate the soil-abutment interaction under the cyclic translational movement of the abutment. Results from five experiments conducted to simulate different magnitudes of cyclic translational movements of abutments induced by thermal changes are presented, focusing on lateral earth pressure development at the abutment-soil interface. Test results show that the cycle number and magnitude of cyclic translational movements have significant effects on the escalation of lateral earth pressures. Experimentally observed earth pressure distributions behind the integral abutment were compared with the current design approaches, which shows that the most of the practices has under predicted the lateral earth pressure.

Keywords: integral bridge, cyclic thermal movement, lateral earth pressure, soil-structure interaction

Procedia PDF Downloads 114