Search results for: stochastic dynamic programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5140

Search results for: stochastic dynamic programming

2800 Comprehensive Study of Data Science

Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly

Abstract:

Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.

Keywords: data science, machine learning, data analytics, artificial intelligence

Procedia PDF Downloads 82
2799 Dry Friction Fluctuations in Plain Journal Bearings

Authors: James Moran, Anusarn Permsuwan

Abstract:

This paper compares oscillations in the dry friction coefficient in different journal bearings. Measurements are made of the average and standard deviation in the coefficient of friction as a function of sliding velocity. The standard deviation of the friction coefficient changed dramatically with sliding velocity. The magnitude and frequency of the oscillations were a function of the velocity. A numerical model was developed for the frictional oscillations. There was good agreement between the model and results. Five different materials were used as the sliding surfaces in the experiments, Aluminum, Bronze, Mild Steel, Stainless Steel, and Nylon.

Keywords: Coulomb friction, dynamic friction, non-lubricated bearings, frictional oscillations

Procedia PDF Downloads 365
2798 Student Project on Using a Spreadsheet for Solving Differential Equations by Euler's Method

Authors: Andriy Didenko, Zanin Kavazovic

Abstract:

Engineering students often have certain difficulties in mastering major theoretical concepts in mathematical courses such as differential equations. Student projects were proposed to motivate students’ learning and can be used as a tool to promote students’ interest in the material. Authors propose a student project that includes the use of Microsoft Excel. This instructional tool is often overlooked by both educators and students. An integral component of the experimental part of such a project is the exploration of an interactive spreadsheet. The aim is to assist engineering students in better understanding of Euler’s method. This method is employed to numerically solve first order differential equations. At first, students are invited to select classic equations from a list presented in a form of a drop-down menu. For each of these equations, students can select and modify certain key parameters and observe the influence of initial condition on the solution. This will give students an insight into the behavior of the method in different configurations as solutions to equations are given in numerical and graphical forms. Further, students could also create their own equations by providing functions of their own choice and a variety of initial conditions. Moreover, they can visualize and explore the impact of the length of the time step on the convergence of a sequence of numerical solutions to the exact solution of the equation. As a final stage of the project, students are encouraged to develop their own spreadsheets for other numerical methods and other types of equations. Such projects promote students’ interest in mathematical applications and further improve their mathematical and programming skills.

Keywords: student project, Euler's method, spreadsheet, engineering education

Procedia PDF Downloads 135
2797 Geovisualization of Human Mobility Patterns in Los Angeles Using Twitter Data

Authors: Linna Li

Abstract:

The capability to move around places is doubtless very important for individuals to maintain good health and social functions. People’s activities in space and time have long been a research topic in behavioral and socio-economic studies, particularly focusing on the highly dynamic urban environment. By analyzing groups of people who share similar activity patterns, many socio-economic and socio-demographic problems and their relationships with individual behavior preferences can be revealed. Los Angeles, known for its large population, ethnic diversity, cultural mixing, and entertainment industry, faces great transportation challenges such as traffic congestion, parking difficulties, and long commuting. Understanding people’s travel behavior and movement patterns in this metropolis sheds light on potential solutions to complex problems regarding urban mobility. This project visualizes people’s trajectories in Greater Los Angeles (L.A.) Area over a period of two months using Twitter data. A Python script was used to collect georeferenced tweets within the Greater L.A. Area including Ventura, San Bernardino, Riverside, Los Angeles, and Orange counties. Information associated with tweets includes text, time, location, and user ID. Information associated with users includes name, the number of followers, etc. Both aggregated and individual activity patterns are demonstrated using various geovisualization techniques. Locations of individual Twitter users were aggregated to create a surface of activity hot spots at different time instants using kernel density estimation, which shows the dynamic flow of people’s movement throughout the metropolis in a twenty-four-hour cycle. In the 3D geovisualization interface, the z-axis indicates time that covers 24 hours, and the x-y plane shows the geographic space of the city. Any two points on the z axis can be selected for displaying activity density surface within a particular time period. In addition, daily trajectories of Twitter users were created using space-time paths that show the continuous movement of individuals throughout the day. When a personal trajectory is overlaid on top of ancillary layers including land use and road networks in 3D visualization, the vivid representation of a realistic view of the urban environment boosts situational awareness of the map reader. A comparison of the same individual’s paths on different days shows some regular patterns on weekdays for some Twitter users, but for some other users, their daily trajectories are more irregular and sporadic. This research makes contributions in two major areas: geovisualization of spatial footprints to understand travel behavior using the big data approach and dynamic representation of activity space in the Greater Los Angeles Area. Unlike traditional travel surveys, social media (e.g., Twitter) provides an inexpensive way of data collection on spatio-temporal footprints. The visualization techniques used in this project are also valuable for analyzing other spatio-temporal data in the exploratory stage, thus leading to informed decisions about generating and testing hypotheses for further investigation. The next step of this research is to separate users into different groups based on gender/ethnic origin and compare their daily trajectory patterns.

Keywords: geovisualization, human mobility pattern, Los Angeles, social media

Procedia PDF Downloads 118
2796 Bifurcation and Chaos of the Memristor Circuit

Authors: Wang Zhulin, Min Fuhong, Peng Guangya, Wang Yaoda, Cao Yi

Abstract:

In this paper, a magnetron memristor model based on hyperbolic sine function is presented and the correctness proved by studying the trajectory of its voltage and current phase, and then a memristor chaotic system with the memristor model is presented. The phase trajectories and the bifurcation diagrams and Lyapunov exponent spectrum of the magnetron memristor system are plotted by numerical simulation, and the chaotic evolution with changing the parameters of the system is also given. The paper includes numerical simulations and mathematical model, which confirming that the system, has a wealth of dynamic behavior.

Keywords: memristor, chaotic circuit, dynamical behavior, chaotic system

Procedia PDF Downloads 503
2795 Dynamic Changes of Shifting Cultivation: Past, Present and Future Perspective of an Agroforestry System from Sri Lanka

Authors: Thavananthan Sivananthawerl

Abstract:

Shifting cultivation (Chena, Slash & Burn) is a cultivation method of raising, primarily, food crops (mainly annual) where an area of land is cleared off for its vegetation and cultivated for a period, and the abandoned (fallow) for its fertility to be naturally restored. Although this is the oldest (more than 5000 years) farming system, it is still practiced by indigenous communities of several countries such as Sri Lanka, India, Indonesia, Malaysia, Myanmar, West & Central Africa, and Amazon rainforest area. In Sri Lanka, shifting cultivation is mainly practiced during the North-East monsoon (called as Maha season, from Sept. to Dec.) with no irrigation. The traditional system allows farmers to cultivate for a short period of cultivation and a long period fallow period. This was facilitated mainly by the availability of land with less population. In addition, in the old system, cultivation practices were mostly related to religious and spiritual practices (Astrology, dynamic farming, etc.). At present, the majority of the shifting cultivators (SC’s) are cultivating in government lands, and most of them are adopting new technology (seeds, agrochemicals, machineries). Due to the local demand, almost 70% of the SC’s growing maize is mono-crop, and the rest with mixed-crop, such as groundnut, cowpea, millet, and vegetables. To ensure continuous cultivation and reduce moisture stress, they established ‘dug wells’ and used pumps to lift water from nearby sources. Due to this, the fallow period has been reduced drastically to 1- 2 years. To have the future prosperous of system, farmers should be educated so that they can understand the harmful effects of shifting cultivation and require new policies and a framework for converting the land use pattern towards high economic returns (new crop varieties, maintaining soil fertility, reducing soil erosion) while protecting the natural forests. The practice of agroforestry should be encouraged in which both the crops and the tall trees are cared for by farmers simultaneously. To facilitate the continuous cultivation, the system needs to develop water harvesting, water-conserving technologies, and scientific water management for the limited rainy season. Even though several options are available, all the solutions vary from region to region. Therefore, it is only the government and cultivators together who can find solutions to the problems of the specific areas.

Keywords: shifting cultivation, agroforestry, fallow, economic returns, government, Sri Lanka

Procedia PDF Downloads 94
2794 An Optimal and Efficient Family of Fourth-Order Methods for Nonlinear Equations

Authors: Parshanth Maroju, Ramandeep Behl, Sandile S. Motsa

Abstract:

In this study, we proposed a simple and interesting family of fourth-order multi-point methods without memory for obtaining simple roots. This family requires only three functional evaluations (viz. two of functions f(xn), f(yn) and third one of its first-order derivative f'(xn)) per iteration. Moreover, the accuracy and validity of new schemes is tested by a number of numerical examples are also proposed to illustrate their accuracy by comparing them with the new existing optimal fourth-order methods available in the literature. It is found that they are very useful in high precision computations. Further, the dynamic study of these methods also supports the theoretical aspect.

Keywords: basins of attraction, nonlinear equations, simple roots, Newton's method

Procedia PDF Downloads 312
2793 Research on Pilot Sequence Design Method of Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing System Based on High Power Joint Criterion

Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang

Abstract:

For the pilot design of the sparse channel estimation model in Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems, the observation matrix constructed according to the matrix cross-correlation criterion, total correlation criterion and other optimization criteria are not optimal, resulting in inaccurate channel estimation and high bit error rate at the receiver. This paper proposes a pilot design method combining high-power sum and high-power variance criteria, which can more accurately estimate the channel. First, the pilot insertion position is designed according to the high-power variance criterion under the condition of equal power. Then, according to the high power sum criterion, the pilot power allocation is converted into a cone programming problem, and the power allocation is carried out. Finally, the optimal pilot is determined by calculating the weighted sum of the high power sum and the high power variance. Compared with the traditional pilot frequency, under the same conditions, the constructed MIMO-OFDM system uses the optimal pilot frequency for channel estimation, and the communication bit error rate performance obtains a gain of 6~7dB.

Keywords: MIMO-OFDM, pilot optimization, compressed sensing, channel estimation

Procedia PDF Downloads 149
2792 Inhibiting Effects of Zwitterionic Surfactant on the Erosion-Corrosion of API X52 Steel in Oil Sands Slurry

Authors: M. A. Deyab

Abstract:

The effect of zwitterionic surfactant (ZS) on erosion-corrosion of API X52 steel in oil sands slurry was studied using Tafel polarization and anodic polarization measurements. The surface morphology of API X52 steel was examined with scanning electron microscopy (SEM) and atomic force microscopy (AFM). ZS inhibited the erosion-corrosion of API X52 steel in oil sands' slurry, and the inhibition efficiency increased with increasing ZS concentration but decreased with increasing temperature. Polarization curves indicate that ZS act as a mixed type of inhibitor. Inhibition efficiencies of ZS in the dynamic condition are not as effective as that obtained in the static condition.

Keywords: corrosion, surfactant, oil sands slurry, erosion-corrosion

Procedia PDF Downloads 166
2791 Analysis of Wheel Lock up Effects on Skidding Distance for Heavy Vehicles

Authors: Mahdieh Zamzamzadeh, Ahmad Abdullah Saifizul, Rahizar Ramli

Abstract:

The road accidents involving heavy vehicles have been showing worrying trends and, year after year, have increased the concern and awareness levels on safety of roads and transportations especially in developing countries like Malaysia. Statistics of road crashes continue to show that there are many contributing factors on the capability of a heavy vehicle to stop on safe distance and ultimately prevent traffic crashes. However, changes in the road condition due to weather variations and the vehicle dynamic specifications such as loading conditions and speed are the main risk factors because they will affect a heavy vehicle’s braking performance due to losing control and not being able to stop the vehicle, and in many cases will cause wheel lock up and accordingly skidding. Predicting heavy vehicle skidding distance is crucial for accident reconstruction and roadside safety engineers. Despite this, formal tools to study heavy vehicle skidding distance before stopping completely are totally limited, and most researchers have only considered braking distance in their studies. As a possible new tool, this work presents the iterative use of vehicle dynamic simulations to study heavy vehicle-roadway interaction in order to predict wheel lock up effects on skidding distance and safety. This research addresses the influence of the vehicle and road conditions on skidding distance after wheel lock up and presents a precise analysis of skidding phenomenon. The vehicle speed, vehicle loading condition and road friction parameters were all varied in a simulation-based analysis. In order to simulate the wheel lock up situation, a heavy vehicle model was constructed and simulated using multibody vehicle dynamics simulation software, and careful analysis was made on the conditions which caused the skidding distance to increase or decrease through a method using to predict skidding distance as part of braking distance. By applying many simulations, the results were quite revealing relation between the heavy vehicles loading condition, various sets of speed and road coefficient of friction and their interaction effect on the skidding distance. A number of results are presented which illustrate how the heavy vehicle overloading can seriously affect the skidding distance. Moreover, the results of simulation give the skid mark length, which is a necessary input data during accident reconstruction involving emergency braking.

Keywords: accident reconstruction, Braking, heavy vehicle, skidding distance, skid mark, wheel lock up

Procedia PDF Downloads 499
2790 Parallel Pipelined Conjugate Gradient Algorithm on Heterogeneous Platforms

Authors: Sergey Kopysov, Nikita Nedozhogin, Leonid Tonkov

Abstract:

The article presents a parallel iterative solver for large sparse linear systems which can be used on a heterogeneous platform. Traditionally, the problem of solving linear systems does not scale well on multi-CPU/multi-GPUs clusters. For example, most of the attempts to implement the classical conjugate gradient method were at best counted in the same amount of time as the problem was enlarged. The paper proposes the pipelined variant of the conjugate gradient method (PCG), a formulation that is potentially better suited for hybrid CPU/GPU computing since it requires only one synchronization point per one iteration instead of two for standard CG. The standard and pipelined CG methods need the vector entries generated by the current GPU and other GPUs for matrix-vector products. So the communication between GPUs becomes a major performance bottleneck on multi GPU cluster. The article presents an approach to minimize the communications between parallel parts of algorithms. Additionally, computation and communication can be overlapped to reduce the impact of data exchange. Using the pipelined version of the CG method with one synchronization point, the possibility of asynchronous calculations and communications, load balancing between the CPU and GPU for solving the large linear systems allows for scalability. The algorithm is implemented with the combined use of technologies: MPI, OpenMP, and CUDA. We show that almost optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU execution). The parallelized solver achieves a speedup of up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to one GPU.

Keywords: conjugate gradient, GPU, parallel programming, pipelined algorithm

Procedia PDF Downloads 165
2789 Planning Quality and Maintenance Activities in a Closed-Loop Serial Multi-Stage Manufacturing System under Constant Degradation

Authors: Amauri Josafat Gomez Aguilar, Jean Pierre Kenné

Abstract:

This research presents the development of a self-sustainable manufacturing system from a circular economy perspective, structured by a multi-stage serial production system consisting of a series of machines under deterioration in charge of producing a single product and a reverse remanufacturing system constituted by the same productive systems of the first scheme and different tooling, fed by-products collected at the end of their life cycle, and non-conforming elements of the first productive scheme. Since the advanced production manufacturing system is unable to satisfy the customer's quality expectations completely, we propose the development of a mixed integer linear mathematical model focused on the optimal search and assignment of quality stations and preventive maintenance operation to the machines over a time horizon, intending to segregate the correct number of non-conforming parts for reuse in the remanufacturing system and thereby minimizing production, quality, maintenance, and customer non-conformance penalties. Numerical experiments are performed to analyze the solutions found by the model under different scenarios. The results showed that the correct implementation of a closed manufacturing system and allocation of quality inspection and preventive maintenance operations generate better levels of customer satisfaction and an efficient manufacturing system.

Keywords: closed loop, mixed integer linear programming, preventive maintenance, quality inspection

Procedia PDF Downloads 86
2788 The “Bright Side” of COVID-19: Effects of Livestream Affordances on Consumer Purchase Willingness: Explicit IT Affordances Perspective

Authors: Isaac Owusu Asante, Yushi Jiang, Hailin Tao

Abstract:

Live streaming marketing, the new electronic commerce element, became an optional marketing channel following the COVID-19 pandemic. Many sellers have leveraged the features presented by live streaming to increase sales. Studies on live streaming have focused on gaming and consumers’ loyalty to brands through live streaming, using interview questionnaires. This study, however, was conducted to measure real-time observable interactions between consumers and sellers. Based on the affordance theory, this study conceptualized constructs representing the interactive features and examined how they drive consumers’ purchase willingness during live streaming sessions using 1238 datasets from Amazon Live, following the manual observation of transaction records. Using structural equation modeling, the ordinary least square regression suggests that live viewers, new followers, live chats, and likes positively affect purchase willingness. The Sobel and Monte Carlo tests show that new followers, live chats, and likes significantly mediate the relationship between live viewers and purchase willingness. The study introduces a new way of measuring interactions in live streaming commerce and proposes a way to manually gather data on consumer behaviors in live streaming platforms when the application programming interface (API) of such platforms does not support data mining algorithms.

Keywords: livestreaming marketing, live chats, live viewers, likes, new followers, purchase willingness

Procedia PDF Downloads 81
2787 Mining Diagnostic Investigation Process

Authors: Sohail Imran, Tariq Mahmood

Abstract:

In complex healthcare diagnostic investigation process, medical practitioners have to focus on ways to standardize their processes to perform high quality care and optimize the time and costs. Process mining techniques can be applied to extract process related knowledge from data without considering causal and dynamic dependencies in business domain and processes. The application of process mining is effective in diagnostic investigation. It is very helpful where a treatment gives no dispositive evidence favoring it. In this paper, we applied process mining to discover important process flow of diagnostic investigation for hepatitis patients. This approach has some benefits which can enhance the quality and efficiency of diagnostic investigation processes.

Keywords: process mining, healthcare, diagnostic investigation process, process flow

Procedia PDF Downloads 523
2786 A Survey of Some Technology Enhanced Teaching and Learning Techniques: Implication to Educational Development in Nigeria

Authors: Abdullahi Bn Umar

Abstract:

Over the years curriculum planners and researchers in education have continued to seek for ways to improve teaching and learning by way of varying approaches to curriculum and instruction in line with dynamic nature of knowledge. In this regards various innovative strategies to teaching and learning have been adopted to match with the technological advancement in education particularly in the aspect of instructional delivery through Information Communication Technology (ICT) as a tools. This paper reviews some innovative strategies and how they impact on learner’s achievement and educational development in Nigeria. The paper concludes by recommending innovative approach appropriate for use in Nigerian context.

Keywords: innovation, instructional delivery, virtual laboratory, educational design

Procedia PDF Downloads 483
2785 Influence of Boron Doping and Thermal Treatment on Internal Friction of Monocrystalline Si1-xGex(x≤0,02) Alloys

Authors: I. Kurashvili, G. Darsavelidze, G. Bokuchava, A. Sichinava, I. Tabatadze

Abstract:

The impact of boron doping on the internal friction (IF) and shear modulus temperature spectra of Si1-xGex(x≤0,02) monocrsytals has been investigated by reverse torsional pendulum oscillations characteristics testing. At room temperatures, microhardness and indentation modulus of the same specimens have been measured by dynamic ultra microhardness tester. It is shown that boron doping causes two kinds effect: At low boron concentration (~1015 cm-3) significant strengthening is revealed, while at the high boron concentration (~1019 cm-3) strengthening effect and activation characteristics of relaxation origin IF processes are reduced.

Keywords: boron, doping, internal friction, si-ge alloys, thermal treatment

Procedia PDF Downloads 458
2784 Commuters Trip Purpose Decision Tree Based Model of Makurdi Metropolis, Nigeria and Strategic Digital City Project

Authors: Emmanuel Okechukwu Nwafor, Folake Olubunmi Akintayo, Denis Alcides Rezende

Abstract:

Decision tree models are versatile and interpretable machine learning algorithms widely used for both classification and regression tasks, which can be related to cities, whether physical or digital. The aim of this research is to assess how well decision tree algorithms can predict trip purposes in Makurdi, Nigeria, while also exploring their connection to the strategic digital city initiative. The research methodology involves formalizing household demographic and trips information datasets obtained from extensive survey process. Modelling and Prediction were achieved using Python Programming Language and the evaluation metrics like R-squared and mean absolute error were used to assess the decision tree algorithm's performance. The results indicate that the model performed well, with accuracies of 84% and 68%, and low MAE values of 0.188 and 0.314, on training and validation data, respectively. This suggests the model can be relied upon for future prediction. The conclusion reiterates that This model will assist decision-makers, including urban planners, transportation engineers, government officials, and commuters, in making informed decisions on transportation planning and management within the framework of a strategic digital city. Its application will enhance the efficiency, sustainability, and overall quality of transportation services in Makurdi, Nigeria.

Keywords: decision tree algorithm, trip purpose, intelligent transport, strategic digital city, travel pattern, sustainable transport

Procedia PDF Downloads 20
2783 Performance of LTE Multicast Systems in the Presence of the Colored Noise Jamming

Authors: S. Malisuwan, J. Sivaraks, N. Madan, N. Suriyakrai

Abstract:

The ever going evolution of advanced wireless technologies makes it financially impossible for military operations to completely manufacture their own equipment. Therefore, Commercial-Off-The-Shelf (COTS) and Modified-Off-The-Shelf (MOTS) are being considered in military mission with low-cost modifications. In this paper, we focus on the LTE multicast systems for military communication systems under tactical environments with jamming condition. We examine the influence of the colored noise jamming on the performance of the LTE multicast systems in terms of the average throughput. The simulation results demonstrate the degradation of the average throughput for different dynamic ranges of the colored noise jamming versus average SNR.

Keywords: performance, LTE, multicast, jamming, throughput

Procedia PDF Downloads 418
2782 Effective Emergency Response and Disaster Prevention: A Decision Support System for Urban Critical Infrastructure Management

Authors: M. Shahab Uddin, Pennung Warnitchai

Abstract:

Currently more than half of the world’s populations are living in cities, and the number and sizes of cities are growing faster than ever. Cities rely on the effective functioning of complex and interdependent critical infrastructures networks to provide public services, enhance the quality of life, and save the community from hazards and disasters. In contrast, complex connectivity and interdependency among the urban critical infrastructures bring management challenges and make the urban system prone to the domino effect. Unplanned rapid growth, increased connectivity, and interdependency among the infrastructures, resource scarcity, and many other socio-political factors are affecting the typical state of an urban system and making it susceptible to numerous sorts of diversion. In addition to internal vulnerabilities, urban systems are consistently facing external threats from natural and manmade hazards. Cities are not just complex, interdependent system, but also makeup hubs of the economy, politics, culture, education, etc. For survival and sustainability, complex urban systems in the current world need to manage their vulnerabilities and hazardous incidents more wisely and more interactively. Coordinated management in such systems makes for huge potential when it comes to absorbing negative effects in case some of its components were to function improperly. On the other hand, ineffective management during a similar situation of overall disorder from hazards devastation may make the system more fragile and push the system to an ultimate collapse. Following the quantum, the current research hypothesizes that a hazardous event starts its journey as an emergency, and the system’s internal vulnerability and response capacity determine its destination. Connectivity and interdependency among the urban critical infrastructures during this stage may transform its vulnerabilities into dynamic damaging force. An emergency may turn into a disaster in the absence of effective management; similarly, mismanagement or lack of management may lead the situation towards a catastrophe. Situation awareness and factual decision-making is the key to win a battle. The current research proposed a contextual decision support system for an urban critical infrastructure system while integrating three different models: 1) Damage cascade model which demonstrates damage propagation among the infrastructures through their connectivity and interdependency, 2) Restoration model, a dynamic restoration process of individual infrastructure, which is based on facility damage state and overall disruptions in surrounding support environment, and 3) Optimization model that ensures optimized utilization and distribution of available resources in and among the facilities. All three models are tightly connected, mutually interdependent, and together can assess the situation and forecast the dynamic outputs of every input. Moreover, this integrated model will hold disaster managers and decision makers responsible when it comes to checking all the alternative decision before any implementation, and support to produce maximum possible outputs from the available limited inputs. This proposed model will not only support to reduce the extent of damage cascade but will ensure priority restoration and optimize resource utilization through adaptive and collaborative management. Complex systems predictably fail but in unpredictable ways. System understanding, situation awareness, and factual decisions may significantly help urban system to survive and sustain.

Keywords: disaster prevention, decision support system, emergency response, urban critical infrastructure system

Procedia PDF Downloads 227
2781 Conjunctive Management of Surface and Groundwater Resources under Uncertainty: A Retrospective Optimization Approach

Authors: Julius M. Ndambuki, Gislar E. Kifanyi, Samuel N. Odai, Charles Gyamfi

Abstract:

Conjunctive management of surface and groundwater resources is a challenging task due to the spatial and temporal variability nature of hydrology as well as hydrogeology of the water storage systems. Surface water-groundwater hydrogeology is highly uncertain; thus it is imperative that this uncertainty is explicitly accounted for, when managing water resources. Various methodologies have been developed and applied by researchers in an attempt to account for the uncertainty. For example, simulation-optimization models are often used for conjunctive water resources management. However, direct application of such an approach in which all realizations are considered at each iteration of the optimization process leads to a very expensive optimization in terms of computational time, particularly when the number of realizations is large. The aim of this paper, therefore, is to introduce and apply an efficient approach referred to as Retrospective Optimization Approximation (ROA) that can be used for optimizing conjunctive use of surface water and groundwater over a multiple hydrogeological model simulations. This work is based on stochastic simulation-optimization framework using a recently emerged technique of sample average approximation (SAA) which is a sampling based method implemented within the Retrospective Optimization Approximation (ROA) approach. The ROA approach solves and evaluates a sequence of generated optimization sub-problems in an increasing number of realizations (sample size). Response matrix technique was used for linking simulation model with optimization procedure. The k-means clustering sampling technique was used to map the realizations. The methodology is demonstrated through the application to a hypothetical example. In the example, the optimization sub-problems generated were solved and analysed using “Active-Set” core optimizer implemented under MATLAB 2014a environment. Through k-means clustering sampling technique, the ROA – Active Set procedure was able to arrive at a (nearly) converged maximum expected total optimal conjunctive water use withdrawal rate within a relatively few number of iterations (6 to 7 iterations). Results indicate that the ROA approach is a promising technique for optimizing conjunctive water use of surface water and groundwater withdrawal rates under hydrogeological uncertainty.

Keywords: conjunctive water management, retrospective optimization approximation approach, sample average approximation, uncertainty

Procedia PDF Downloads 231
2780 Regional Pole Placement by Saturated Power System Stabilizers

Authors: Hisham M. Soliman, Hassan Yousef

Abstract:

This manuscript presents new results on design saturated power system stabilizers (PSS) to assign system poles within a desired region for achieving good dynamic performance. The regional pole placement is accomplished against model uncertainties caused by different load conditions. The design is based on a sufficient condition in the form of linear matrix inequalities (LMI) which forces the saturated nonlinear controller to lie within the linear zone. The controller effectiveness is demonstrated on a single machine infinite bus system.

Keywords: power system stabilizer, saturated control, robust control, regional pole placement, linear matrix inequality (LMI)

Procedia PDF Downloads 564
2779 Simulation of Direct Solar Dryer with ANSYS

Authors: Boukhris Lahouari

Abstract:

Simulation of solar dryers with ANSYS has revolutionized the way in which drying processes are optimized and analyzed in various industries. This advanced software allows engineers and researchers to simulate the behavior of a solar dryer under different conditions, helping to improve efficiency and reduce energy consumption. This work presents a numerical study of a direct solar dryer, which uses radiation and natural convection to dry agricultural products. The simulations were made in order to determine the dynamic and thermal fields under the influence of the variation in the size of the inlet and outlet opening. The conservation equations based on the standard k-ε turbulence model are solved by the finite volume method using the ANSYS-Fluent commercial code.

Keywords: solar dryer, CFD, solar radiation, natural convection, turbulent flow

Procedia PDF Downloads 23
2778 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels

Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge

Abstract:

An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally, it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore, it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three-dimensional finite element models in assessing debonding damage in composite sandwich panels

Keywords: debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling

Procedia PDF Downloads 315
2777 The Role of Management Information Systems in the Strategic Management of Institutions of Higher Education

Authors: Szilvia Vincze, Zoltán Bács

Abstract:

It has become increasingly important for institutions of higher education as well to use available resources as effectively as possible for the implementation of the institution’s strategic plans and, at the same time, to ensure a stable future. This is the responsibility of the management and administration of the institution. Having access to complete and comprehensive information is indispensable for making dynamic and well-founded decisions that consider the realization of objectives to be primary and that manage possibly emerging risks, etc. The present paper introduces the role of Management Information Systems (MIS) at the University of Debrecen, one of the largest institutions of higher education in Hungary, and also discusses the utilization of this and associated information systems in management functions.

Keywords: management information system (MIS), higher education, Hungary, strategy formulation

Procedia PDF Downloads 505
2776 Efficient Control of Some Dynamic States of Wheeled Robots

Authors: Boguslaw Schreyer

Abstract:

In some types of wheeled robots it is important to secure starting acceleration and deceleration maxima while at the same time maintaining transversal stability. In this paper torque distribution between the front and rear wheels as well as the timing of torque application have been calculated. Both secure an optimum traction coefficient. This paper also identifies required input signals to a control unit, which controls the torque values and timing. Using a three dimensional, two mass model of a robot developed by the author a computer simulation was performed confirming the calculations presented in this paper. These calculations were also implemented and confirmed during military robot testing.

Keywords: robot dynamics, torque distribution, traction coefficient, wheeled robots

Procedia PDF Downloads 312
2775 Coupling of Reticular and Fuzzy Set Modelling in the Analysis of the Action Chains from Socio-Ecosystem, Case of the Renewable Natural Resources Management in Madagascar

Authors: Thierry Ganomanana, Dominique Hervé, Solo Randriamahaleo

Abstract:

Management of Malagasy renewable natural re-sources allows, in the case of forest, the mobilization of several actors with norms and/or territory. The interaction in this socio-ecosystem is represented by a graph of two different relationships in which most of action chains, from individual activities under the continuous of forest dynamic and discrete interventions by institutional, are also studied. The fuzzy set theory is adapted to graduate the elements of the set Illegal Activities in the space of sanction’s institution by his severity and in the space of degradation of forest by his extent.

Keywords: fuzzy set, graph, institution, renewable resource, system

Procedia PDF Downloads 88
2774 Moisturising Prepared Lip Balm Behavior in Dynamic States

Authors: Fatiha Boudjema, Samia Boudergua, Abdallah Elhirtsi Nour El Houda, Ahmed Mbarek Kaouther

Abstract:

The main objective of our work is to prepare and characterize a moisturizing lip balm based on natural ingredients such as waxes, vegetable oils, and shea butter. First, the vegetable and essential oils were extracted, and then lip balm was prepared. The extracted oils and the lip balm were submitted to many tests in order to guarantee their quality and effectiveness. These tests show that our balm has a shear thinning behavior with a melting point of 58 °C and that it spreads easily on the skin without showing an allergic reaction. The balm showed a moisturising effect and stability over the two-month period at storage room temperature condition.

Keywords: lip balm, natural products, rheological study, antioxydant activity

Procedia PDF Downloads 105
2773 Speed Power Control of Double Field Induction Generator

Authors: Ali Mausmi, Ahmed Abbou, Rachid El Akhrif

Abstract:

This research paper aims to reduce the chattering phenomenon due to control by sliding mode control applied on a wind energy conversion system based on the doubly fed induction generator (DFIG). Our goal is to offset the effect of parametric uncertainties and come as close as possible to the dynamic response solicited by the control law in the ideal case and therefore force the active and reactive power generated by the DFIG to accurately follow the reference values which are provided to it. The simulation results using Matlab / Simulink demonstrate the efficiency and performance of the proposed technique while maintaining the simplicity of control by first order sliding mode.

Keywords: control of speed, correction of the equivalent command, induction generator, sliding mode

Procedia PDF Downloads 377
2772 An Improved VM Allocation Algorithm by Utilizing Combined Resource Allocation Mechanism and Released Resources in Cloud Environment

Authors: Md Habibul Ansary, Chandan Garai, Ranjan Dasgupta

Abstract:

Utilization of resources is always a great challenge for any allocation problem, particularly when resource availability is dynamic in nature. In this work VM allocation mechanism has been augmented by providing resources in a combined manner. This approach has some inherent advantages in terms of reduction of wait state for the pending jobs of some users and better utilization of unused resources from the service providers’ point of view. Moreover the algorithm takes care of released resources from the finished jobs as soon as those become available. The proposed algorithm has been explained by suitable example to make the work complete.

Keywords: Bid ratio, cloud service, virtualization, VM allocation problem

Procedia PDF Downloads 396
2771 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning

Authors: Kwaku Damoah

Abstract:

This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.

Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.

Procedia PDF Downloads 70