Search results for: earth observation data cube
24538 Advanced Data Visualization Techniques for Effective Decision-making in Oil and Gas Exploration and Production
Authors: Deepak Singh, Rail Kuliev
Abstract:
This research article explores the significance of advanced data visualization techniques in enhancing decision-making processes within the oil and gas exploration and production domain. With the oil and gas industry facing numerous challenges, effective interpretation and analysis of vast and diverse datasets are crucial for optimizing exploration strategies, production operations, and risk assessment. The article highlights the importance of data visualization in managing big data, aiding the decision-making process, and facilitating communication with stakeholders. Various advanced data visualization techniques, including 3D visualization, augmented reality (AR), virtual reality (VR), interactive dashboards, and geospatial visualization, are discussed in detail, showcasing their applications and benefits in the oil and gas sector. The article presents case studies demonstrating the successful use of these techniques in optimizing well placement, real-time operations monitoring, and virtual reality training. Additionally, the article addresses the challenges of data integration and scalability, emphasizing the need for future developments in AI-driven visualization. In conclusion, this research emphasizes the immense potential of advanced data visualization in revolutionizing decision-making processes, fostering data-driven strategies, and promoting sustainable growth and improved operational efficiency within the oil and gas exploration and production industry.Keywords: augmented reality (AR), virtual reality (VR), interactive dashboards, real-time operations monitoring
Procedia PDF Downloads 8624537 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors
Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin
Abstract:
IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)
Procedia PDF Downloads 13924536 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets
Abstract:
The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 600. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modelling mass transfer by multiple plunging jets.Keywords: mass transfer, multiple plunging jets, multi-linear regression, earth sciences
Procedia PDF Downloads 46224535 New Security Approach of Confidential Resources in Hybrid Clouds
Authors: Haythem Yahyaoui, Samir Moalla, Mounir Bouden, Skander ghorbel
Abstract:
Nowadays, Cloud environments are becoming a need for companies, this new technology gives the opportunities to access to the data anywhere and anytime, also an optimized and secured access to the resources and gives more security for the data which stored in the platform, however, some companies do not trust Cloud providers, in their point of view, providers can access and modify some confidential data such as bank accounts, many works have been done in this context, they conclude that encryption methods realized by providers ensure the confidentiality, although, they forgot that Cloud providers can decrypt the confidential resources. The best solution here is to apply some modifications on the data before sending them to the Cloud in the objective to make them unreadable. This work aims on enhancing the quality of service of providers and improving the trust of the customers.Keywords: cloud, confidentiality, cryptography, security issues, trust issues
Procedia PDF Downloads 37824534 Estimation of Chronic Kidney Disease Using Artificial Neural Network
Authors: Ilker Ali Ozkan
Abstract:
In this study, an artificial neural network model has been developed to estimate chronic kidney failure which is a common disease. The patients’ age, their blood and biochemical values, and 24 input data which consists of various chronic diseases are used for the estimation process. The input data have been subjected to preprocessing because they contain both missing values and nominal values. 147 patient data which was obtained from the preprocessing have been divided into as 70% training and 30% testing data. As a result of the study, artificial neural network model with 25 neurons in the hidden layer has been found as the model with the lowest error value. Chronic kidney failure disease has been able to be estimated accurately at the rate of 99.3% using this artificial neural network model. The developed artificial neural network has been found successful for the estimation of chronic kidney failure disease using clinical data.Keywords: estimation, artificial neural network, chronic kidney failure disease, disease diagnosis
Procedia PDF Downloads 44724533 Analysis of Erosion Quantity on Application of Conservation Techniques in Ci Liwung Hulu Watershed
Authors: Zaenal Mutaqin
Abstract:
The level of erosion that occurs in the upsteam watersheed will lead to limited infiltrattion, land degradation and river trivialisation and estuaries in the body. One of the watesheed that has been degraded caused by using land is the DA Ci Liwung Upstream. The high degradation that occurs in the DA Ci Liwung upstream is indicated by the hugher rate of erosion on the region, especially in the area of agriculture. In this case, agriculture cultivation intent to the agricultural land that has been applied conservation techniques. This study is applied to determine the quantity of erosion by reviewing Hidrologic Response Unit (HRU) in agricuktural cultivation land which is contained in DA Ci Liwung upstream by using the Soil and Water Assessmen Tool (SWAT). Conservation techniques applied are terracing, agroforestry and gulud terrace. It was concluded that agroforestry conservation techniques show the best value of erosion (lowest) compared with other conservation techniques with the contribution of erosion of 25.22 tonnes/ha/year. The results of the calibration between the discharge flow models with the observation that R²=0.9014 and NS=0.79 indicates that this model is acceptable and feasible applied to the Ci Liwung Hulu watershed.Keywords: conservation, erosion, SWAT analysis, watersheed
Procedia PDF Downloads 29224532 Impact of Map Generalization in Spatial Analysis
Authors: Lin Li, P. G. R. N. I. Pussella
Abstract:
When representing spatial data and their attributes on different types of maps, the scale plays a key role in the process of map generalization. The process is consisted with two main operators such as selection and omission. Once some data were selected, they would undergo of several geometrical changing processes such as elimination, simplification, smoothing, exaggeration, displacement, aggregation and size reduction. As a result of these operations at different levels of data, the geometry of the spatial features such as length, sinuosity, orientation, perimeter and area would be altered. This would be worst in the case of preparation of small scale maps, since the cartographer has not enough space to represent all the features on the map. What the GIS users do is when they wanted to analyze a set of spatial data; they retrieve a data set and does the analysis part without considering very important characteristics such as the scale, the purpose of the map and the degree of generalization. Further, the GIS users use and compare different maps with different degrees of generalization. Sometimes, GIS users are going beyond the scale of the source map using zoom in facility and violate the basic cartographic rule 'it is not suitable to create a larger scale map using a smaller scale map'. In the study, the effect of map generalization for GIS analysis would be discussed as the main objective. It was used three digital maps with different scales such as 1:10000, 1:50000 and 1:250000 which were prepared by the Survey Department of Sri Lanka, the National Mapping Agency of Sri Lanka. It was used common features which were on above three maps and an overlay analysis was done by repeating the data with different combinations. Road data, River data and Land use data sets were used for the study. A simple model, to find the best place for a wild life park, was used to identify the effects. The results show remarkable effects on different degrees of generalization processes. It can see that different locations with different geometries were received as the outputs from this analysis. The study suggests that there should be reasonable methods to overcome this effect. It can be recommended that, as a solution, it would be very reasonable to take all the data sets into a common scale and do the analysis part.Keywords: generalization, GIS, scales, spatial analysis
Procedia PDF Downloads 32824531 Jalovchat Gabbroic Intrusive of the Caucasus: Petrological Study, Geochemical Peculiarities and Formation Conditions
Authors: Giorgi Chichinadze, David Shengelia, Tamara Tsutsunava, Nikoloz Maisuradze, Giorgi Beridze
Abstract:
The Jalovchat intrusive is built up of hornblende gabbros, gabbro-norites and norites. Within the intrusive hornblende-bearing gabbro-pegmatites are widespread. That is a coarse-grained rock with gigantic hornblende crystals. By its unusual composition, the Jalovchat intrusive has no analogue in the Caucasus. However, petrologically and geochemically, the intrusive rocks were studied insufficiently. For comprehensive investigations, the authors applied appropriate methodologies: Microscopic study of thin sections, petro- and geochemical analyses of the samples and also different petrogenic, rare and rare earth elements diagrams and spidergrams. Analytical study established that the Jalovchat intrusive by its composition corresponds mainly to the mid-ocean ridge basalts and according to geodynamic type belongs to the subduction type. In general, it is an anomalous phenomenon, as in the rocks of such composition crystallization of hornblende and especially of its gigantic crystals is atypical. The authors believe that the water-rich magma reservoir, which was necessary for the crystallization of gigantic hornblende crystals, appeared as a result of melting of water-rich mid-ocean ridge basaltic rocks during the subduction process in Bajocian time.Keywords: gabbro-pegmatite, intrusive, petrogenesis, petrogeochemistry, the Caucasus
Procedia PDF Downloads 20924530 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data
Authors: LuoJiaoyang, Yu Hongyang
Abstract:
In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.Keywords: multimodal, three modalities, RGB-D, identity verification
Procedia PDF Downloads 7024529 Persian Garden Design and Climate Case Studies: Shahzadeh-Mahan and Shah Garden
Authors: Raheleh Saifiabolhassan
Abstract:
Gardens symbolize human effort to bring Eden to earth and are defined as the purest pleasures and the greatest inspiration for men. According to Persian mythology, a garden called "Paris" is a magical, perfumed place populated by beautiful and angelic creatures. "Pardis" comes from the word "paridaiza," which means "walled garden." Gardening has always been a worldwide attraction due to the abundance of green space, and desert gardens are no exception. Because most historical garden designs use a similar pattern, such as Chahar-Bagh, climate effects have not been considered. The purpose of studying these general designs was to determine whether location and weather conditions are affecting them. So, two gardens were chosen for comparison: a desert (Shahzadeh-Mahan) and a humid garden (Shah) and compared their geometry, irrigation system, entrances, and pavilions. The findings of the study revealed that there are several notable differences among their architectural principles. For example, the desert garden design is introverted with transparent surfaces and a single focal point, while the moderate garden is extraverted with high complexity and multiple perspectives. In conclusion, the study recognizes the richness and significance of the Persian garden concept, which can be applied in many different contexts.Keywords: Pardis, Chahar-bagh, Persian garden, temperate, humid climate, geometry, pavilion, irrigations, culture
Procedia PDF Downloads 21024528 Candida antarctica Lipase-B Catalyzed Alkaline-Hydrolysis of Some Aryl-Alkyl Acetate in Non-Aqueous Media
Authors: M. Merabet-Khelassi, Z. Houiene, L. Aribi-Zouioueche, O. Riant
Abstract:
Lipases (EC.3.1.1.3) are efficient biotools widely used for their remarkable chemo-, regio- and enantio-selectivity, especially, in kinetic resolution of racemates. They offer access to a large panel of enantiopure building blocks, such as secondary benzylic alcohols, commonly used as synthetic intermediates in pharmaceutical and agrochemical industries. Due to the stability of lipases in both water and organic solvents poor in water, they are able to catalyze both transesterifications of arylalkylcarbinols and hydrolysis of their corresponding acetates. The use of enzymatic hydrolysis in aqueous media still limited. In this presentation, we expose a practical methodology for the preparation of optically enriched acetates using a Candida antarctica lipase B-catalyzed hydrolysis in non-aqueous media in the presence of alkaline carbonate salts. The influence of several parameters which can intervene on the enzymatic efficiency such as the impact of the introduction of the carbonates salts, its amount and the nature of the alkaline earth metal are discussed. The obtained results show that the use of sodium carbonate with CAL-B enhances drastically both reactivity and selectivity of this immobilized lipase. In all cases, the resulting alcohols and remaining acetates are obtained in high ee values (up to > 99 %), and the selectivities reach (E > 500).Keywords: alkaline-hydrolysis, enzymatic kinetic resolution, lipases, arylalkylcarbinol, non-aqueous media
Procedia PDF Downloads 16224527 Non-Linear Causality Inference Using BAMLSS and Bi-CAM in Finance
Authors: Flora Babongo, Valerie Chavez
Abstract:
Inferring causality from observational data is one of the fundamental subjects, especially in quantitative finance. So far most of the papers analyze additive noise models with either linearity, nonlinearity or Gaussian noise. We fill in the gap by providing a nonlinear and non-gaussian causal multiplicative noise model that aims to distinguish the cause from the effect using a two steps method based on Bayesian additive models for location, scale and shape (BAMLSS) and on causal additive models (CAM). We have tested our method on simulated and real data and we reached an accuracy of 0.86 on average. As real data, we considered the causality between financial indices such as S&P 500, Nasdaq, CAC 40 and Nikkei, and companies' log-returns. Our results can be useful in inferring causality when the data is heteroskedastic or non-injective.Keywords: causal inference, DAGs, BAMLSS, financial index
Procedia PDF Downloads 15124526 Managing Incomplete PSA Observations in Prostate Cancer Data: Key Strategies and Best Practices for Handling Loss to Follow-Up and Missing Data
Authors: Madiha Liaqat, Rehan Ahmed Khan, Shahid Kamal
Abstract:
Multiple imputation with delta adjustment is a versatile and transparent technique for addressing univariate missing data in the presence of various missing mechanisms. This approach allows for the exploration of sensitivity to the missing-at-random (MAR) assumption. In this review, we outline the delta-adjustment procedure and illustrate its application for assessing the sensitivity to deviations from the MAR assumption. By examining diverse missingness scenarios and conducting sensitivity analyses, we gain valuable insights into the implications of missing data on our analyses, enhancing the reliability of our study's conclusions. In our study, we focused on assessing logPSA, a continuous biomarker in incomplete prostate cancer data, to examine the robustness of conclusions against plausible departures from the MAR assumption. We introduced several approaches for conducting sensitivity analyses, illustrating their application within the pattern mixture model (PMM) under the delta adjustment framework. This proposed approach effectively handles missing data, particularly loss to follow-up.Keywords: loss to follow-up, incomplete response, multiple imputation, sensitivity analysis, prostate cancer
Procedia PDF Downloads 8924525 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 8624524 General Architecture for Automation of Machine Learning Practices
Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain
Abstract:
Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler
Procedia PDF Downloads 5824523 Time and Cost Efficiency Analysis of Quick Die Change System on Metal Stamping Industry
Authors: Rudi Kurniawan Arief
Abstract:
Manufacturing cost and setup time are the hot topics to improve in Metal Stamping industry because material and components price are always rising up while costumer requires to cut down the component price year by year. The Single Minute Exchange of Die (SMED) is one of many methods to reduce waste in stamping industry. The Japanese Quick Die Change (QDC) dies system is one of SMED systems that could reduce both of setup time and manufacturing cost. However, this system is rarely used in stamping industries. This paper will analyze how deep the QDC dies system could reduce setup time and the manufacturing cost. The research is conducted by direct observation, simulating and comparing of QDC dies system with conventional dies system. In this research, we found that the QDC dies system could save up to 35% of manufacturing cost and reduce 70% of setup times. This simulation proved that the QDC die system is effective for cost reduction but must be applied in several parallel production processes.Keywords: press die, metal stamping, QDC system, single minute exchange die, manufacturing cost saving, SMED
Procedia PDF Downloads 17024522 Specific Frequency of Globular Clusters in Different Galaxy Types
Authors: Ahmed H. Abdullah, Pavel Kroupa
Abstract:
Globular clusters (GC) are important objects for tracing the early evolution of a galaxy. We study the correlation between the cluster population and the global properties of the host galaxy. We found that the correlation between cluster population (NGC) and the baryonic mass (Mb) of the host galaxy are best described as 10 −5.6038Mb. In order to understand the origin of the U -shape relation between the GC specific frequency (SN) and Mb (caused by the high value of SN for dwarfs galaxies and giant ellipticals and a minimum SN for intermediate mass galaxies≈ 1010M), we derive a theoretical model for the specific frequency (SNth). The theoretical model for SNth is based on the slope of the power-law embedded cluster mass function (β) and different time scale (Δt) of the forming galaxy. Our results show a good agreement between the observation and the model at a certain β and Δt. The model seems able to reproduce higher value of SNth of β = 1.5 at the midst formation time scale.Keywords: galaxies: dwarf, globular cluster: specific frequency, number of globular clusters, formation time scale
Procedia PDF Downloads 32624521 Progression Rate, Prevalence, Incidence of Black Band Disease on Stony (Scleractinia) in Barranglompo Island, South Sulawesi
Authors: Baso Hamdani, Arniati Massinai, Jamaluddin Jompa
Abstract:
Coral diseases are one of the factors affect reef degradation. This research had analysed the progression rate, incidence, and prevalence of Black Band Disease (BBD) on stony coral (Pachyseris sp.) in relation to the environmental parameters (pH, nitrate, phospate, Dissolved Organic Matter (DOM), and turbidity). The incidence of coral disease was measured weekly for 6 weeks using Belt Transect Method. The progression rate of BBD was measured manually. Furthermore, the prevalence and incidence of BBD were calculated each colonies infected. The relationship between environmental parameters and the progression rate, prevalence and incidence of BBD was analysed by Principal Component Analysis (PCA). The results showed the average of progression rate is 0,07 ± 0,02 cm/ hari. The prevalence of BBD increased from 0,92% - 19,73% in 7 weeks observation with the average incidence of new infected colonies coral 0,2 - 0,65 colony/day The environment factors which important were pH, Nitrate, Phospate, DOM, and Turbidity.Keywords: progression rate, incidence, prevalence, Black Band Disease, Barranglompo
Procedia PDF Downloads 64624520 Vision of Justice in the Future of Humanity
Authors: Morteza Khorrami
Abstract:
The idea of final triumph of peace and justice on evil force, conflict and global spread of the religious faith, the full deployment of human values, constitute a utopia and the ideal society is discussed by many of religions. Thus, mankind has always been waiting for a savior and has received good tidings for coming of Great Savior at the end of Time. Of course, various persons were introduced as the Promised Saviors by different religions, but all of the religions share in this fact that the future of humanity is very bright and promising and the future will belong to the righteous and justice. In this article which is written with a descriptive and analytic method, the author tries to show the vision of global justice at the end of time. The opinion of various religions such as Judaism, Christianity, Zoroastrianism, Islam and even idolatry about the great savior as well as the justice status in his era in the world will be discussed. Also the viewpoint of Muslims and specially Shiites, which is explained clearly in their scripts, will be depicted. Current human responsibility towards this golden era will be discussed, too. Based on paper findings, religious doctrine promises that a heaven person and sacred character will come as a reformer of the world. In his era, humanity will be saved from tyranny, oppression and inequality, and the earth will be filled with peace, security, justice, and equity. Moreover promoting justice, truth and spreading religion in the world, economic, scientific, political and moral development will be happened.Keywords: future of humanity, global justice, islam, religions
Procedia PDF Downloads 37324519 Effect of Co-doping on Polycrystalline Ni-Mn-Ga
Authors: Mahsa Namvari, Kari Ullakko
Abstract:
It is well-known that the Co-doping of ferromagnetic shape memory alloys (FSMAs) is a crucial tool to control their multifunctional properties. The present work investigates the use of small quantities of Co to fine-tune the transformation, structure, microstructure, mechanical and magnetic properties of the polycrystalline Ni₄₉.₈Mn₂₈.₅Ga₂₁.₇ (at.%) alloy, At Co concentrations of 1-1.5 at.%, a microstructure with an average grain size of about 2.00 mm was formed with a twin structure, enabling the experimental observation of magnetic-field-induced twin variant rearrangement. At higher levels of Co-doping, the grain size was essentially reduced, and the crystal structure of the martensitic phase became 2M martensite. The decreasing grain size and changing crystal structure are attributed to the progress of γ-phase precipitates. Alongside the academic aspect, the results of the present work point to the commercial advantage of fabricating 10M Co-doped Ni-Mn-Ga actuating elements made from large grains of polycrystalline ingots obtained by a standard melting facility instead of grown single crystals.Keywords: Ni-Mn-Ga, ferromagnetic shape memory, martensitic phase transformation, grain growth
Procedia PDF Downloads 9524518 Wedding Organizer Strategy in the Era Covid-19 Pandemic In Surabaya, Indonesia
Authors: Rifky Cahya Putra
Abstract:
At this time of corona makes some countries affected difficult. As a result, many traders or companies are difficult to work in this pandemic era. So human activities in some fields must implement a new lifestyle or known as new normal. The transition from the one activity to another certainly requires high adaptation. So that almost in all sectors experience the impact of this phase, on of which is the wedding organizer. This research aims to find out what strategies are used so that the company can run in this pandemic. Techniques in data collection in the form interview to the owner of the wedding organizer and his team. Data analysis qualitative descriptive use interactive model analysis consisting of three main things, namely data reduction, data presentaion, and conclusion. For the result of the interview, the conclusion is that there are three strategies consisting of social media, sponsorship, and promotion.Keywords: strategy, wedding organizer, pandemic, indonesia
Procedia PDF Downloads 13524517 Research on Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System
Authors: Zhou Mo, Dennis Chow
Abstract:
In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing pro-tocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turns out to reduce the energy consumption of nodes and increase the efficiency of data delivery.Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols
Procedia PDF Downloads 46724516 Significant Stressed Zone of Highway Embankment
Authors: Sharifullah Ahmed, P. Eng
Abstract:
The Axle Pressure and the Consolidation Pressure decrease with the height of the highway embankment and the depth of subsoil. This reduction of pressure depends on the height and width of the embankment. The depth is defined as the significantly stressed zone at which the pressure is reduced to 0.2 or 20%. The axle pressure is reduced to 7% for embankment height 1-3m and to 0.7% for embankment height 4-12m at the bottom level of Highway Embankment. This observation implies that, the portion of axle pressure transferred to subsoil underlying the embankment is not significant for ESAL factor 4.8. The 70% consolidation to have occurred after the construction of the surface layer of pavement. Considering this ratio of post construction settlement, 70% consolidation pressure (Δσ70) is used in this analysis. The magnitude of influence depth or Significant Stressed Zone (Ds) had been obtained for the range of crest width (at the top level of the embankment) is kept between 5m and 50m and for the range of embankment height from 1.0m to 12.0m considering 70% of consolidation pressure (Δσ70). Significantly stressed zones (Ds) for 70% embankment pressure are found as 2-6.2He for embankment top width 5-50m.Keywords: consolidation pressure, consolidation settlement, ESAL, highway embankment, HS 20-44, significant stressed zone, stress distribution
Procedia PDF Downloads 9124515 MapReduce Algorithm for Geometric and Topological Information Extraction from 3D CAD Models
Authors: Ahmed Fradi
Abstract:
In a digital world in perpetual evolution and acceleration, data more and more voluminous, rich and varied, the new software solutions emerged with the Big Data phenomenon offer new opportunities to the company enabling it not only to optimize its business and to evolve its production model, but also to reorganize itself to increase competitiveness and to identify new strategic axes. Design and manufacturing industrial companies, like the others, face these challenges, data represent a major asset, provided that they know how to capture, refine, combine and analyze them. The objective of our paper is to propose a solution allowing geometric and topological information extraction from 3D CAD model (precisely STEP files) databases, with specific algorithm based on the programming paradigm MapReduce. Our proposal is the first step of our future approach to 3D CAD object retrieval.Keywords: Big Data, MapReduce, 3D object retrieval, CAD, STEP format
Procedia PDF Downloads 54024514 Data Hiding in Gray Image Using ASCII Value and Scanning Technique
Authors: R. K. Pateriya, Jyoti Bharti
Abstract:
This paper presents an approach for data hiding methods which provides a secret communication between sender and receiver. The data is hidden in gray-scale images and the boundary of gray-scale image is used to store the mapping information. In this an approach data is in ASCII format and the mapping is in between ASCII value of hidden message and pixel value of cover image, since pixel value of an image as well as ASCII value is in range of 0 to 255 and this mapping information is occupying only 1 bit per character of hidden message as compared to 8 bit per character thus maintaining good quality of stego image.Keywords: ASCII value, cover image, PSNR, pixel value, stego image, secret message
Procedia PDF Downloads 41524513 DCASH: Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y Synchronizing Mobile Database Systems
Authors: Gunasekaran Raja, Kottilingam Kottursamy, Rajakumar Arul, Ramkumar Jayaraman, Krithika Sairam, Lakshmi Ravi
Abstract:
The synchronization server maintains a dynamically changing cache, which contains the data items which were requested and collected by the mobile node from the server. The order and presence of tuples in the cache changes dynamically according to the frequency of updates performed on the data, by the server and client. To synchronize, the data which has been modified by client and the server at an instant are collected, batched together by the type of modification (insert/ update/ delete), and sorted according to their update frequencies. This ensures that the DCASH (Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y synchronizing Mobile Database Systems) gives priority to the frequently accessed data with high usage. The optimal memory management algorithm is proposed to manage data items according to their frequency, theorems were written to show the current mobile data activity is reverse Y in nature and the experiments were tested with 2g and 3g networks for various mobile devices to show the reduced response time and energy consumption.Keywords: mobile databases, synchronization, cache, response time
Procedia PDF Downloads 40524512 Unified Structured Process for Health Analytics
Authors: Supunmali Ahangama, Danny Chiang Choon Poo
Abstract:
Health analytics (HA) is used in healthcare systems for effective decision-making, management, and planning of healthcare and related activities. However, user resistance, the unique position of medical data content, and structure (including heterogeneous and unstructured data) and impromptu HA projects have held up the progress in HA applications. Notably, the accuracy of outcomes depends on the skills and the domain knowledge of the data analyst working on the healthcare data. The success of HA depends on having a sound process model, effective project management and availability of supporting tools. Thus, to overcome these challenges through an effective process model, we propose an HA process model with features from the rational unified process (RUP) model and agile methodology.Keywords: agile methodology, health analytics, unified process model, UML
Procedia PDF Downloads 50624511 Use of Life Cycle Data for State-Oriented Maintenance
Authors: Maximilian Winkens, Matthias Goerke
Abstract:
The state-oriented maintenance enables the preventive intervention before the failure of a component and guarantees avoidance of expensive breakdowns. Because the timing of the maintenance is defined by the component’s state, the remaining service life can be exhausted to the limit. The basic requirement for the state-oriented maintenance is the ability to define the component’s state. New potential for this is offered by gentelligent components. They are developed at the Corporative Research Centre 653 of the German Research Foundation (DFG). Because of their sensory ability they enable the registration of stresses during the component’s use. The data is gathered and evaluated. The methodology developed determines the current state of the gentelligent component based on the gathered data. This article presents this methodology as well as current research. The main focus of the current scientific work is to improve the quality of the state determination based on the life-cycle data analysis. The methodology developed until now evaluates the data of the usage phase and based on it predicts the timing of the gentelligent component’s failure. The real failure timing though, deviate from the predicted one because the effects from the production phase aren’t considered. The goal of the current research is to develop a methodology for state determination which considers both production and usage data.Keywords: state-oriented maintenance, life-cycle data, gentelligent component, preventive intervention
Procedia PDF Downloads 49524510 Averting Food Crisis in Nigeria and Beyond, Activities of the National Food Security Programme
Authors: Musa M. Umar, S. G. Ado
Abstract:
The paper examines the activities of the National Programme for food security (NPFS) for averting food insecurity in Nigeria and beyond. The components of the NPFS include site development, outreach, community development and management support. On each site, core activities comprise crop productivity, production diversification and agro-processing. The outreach activities consist of inputs and commodity marketing, rural finance, strengthening research-extension-farmers-inputs linkages, health and nutrition and expansion of site activities. The community development activities include small-scale rural infrastructure, micro-earth dams and community forestry. The overall benefits include food security, improved productivity, marketing and processing, enhanced land and water use, increased animal production and fish catches, improved nutrition, reduction in post-harvest losses and value addition, improved rural infrastructure and diversification of production leading to improved livelihood. The NPFS would poster sustained development of small-holder agricultural and income generation.Keywords: food-security, community development, post-harvest, production
Procedia PDF Downloads 35824509 Computational Fluid Dynamics Simulation to Study the Effect of Ambient Temperature on the Ventilation in a Metro Tunnel
Authors: Yousef Almutairi, Yajue Wu
Abstract:
Various large-scale trends have characterized the current century thus far, including increasing shifts towards urbanization and greater movement. It is predicted that there will be 9.3 billion people on Earth in 2050 and that over two-thirds of this population will be city dwellers. Moreover, in larger cities worldwide, mass transportation systems, including underground systems, have grown to account for the majority of travel in those settings. Underground networks are vulnerable to fires, however, endangering travellers’ safety, with various examples of fire outbreaks in this setting. This study aims to increase knowledge of the impacts of extreme climatic conditions on fires, including the role of the high ambient temperatures experienced in Middle Eastern countries and specifically in Saudi Arabia. This is an element that is not always included when assessments of fire safety are made (considering visibility, temperatures, and flows of smoke). This paper focuses on a tunnel within Riyadh’s underground system as a case study and includes simulations based on computational fluid dynamics using ANSYS Fluent, which investigates the impact of various ventilation systems while identifying smoke density, speed, pressure and temperatures within this tunnel.Keywords: fire, subway tunnel, CFD, mechanical ventilation, smoke, temperature, harsh weather
Procedia PDF Downloads 132