Search results for: vertical product differentiation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5278

Search results for: vertical product differentiation

2968 The Behavior of Ordinary and Encased Stone Columns in Soft Clay Soil of Egypt: A Finite Element Study

Authors: Mahmoud F. Awad-Allah, Mohammed Rabeih, Eman Abdel Baseer

Abstract:

Soft to very soft soil deposits are widely speared in some areas of Egypt such as East Port Said, Damietta, Kafr El-Sheik, Alexandria, etc. The construction projects in these areas have faced the challenge of the presence of extended deep layers of soft and very soft clays which reach to depths of 40 to 60 m from the ground level. Stone columns are commonly used to support structures overlying soft ground soils and surcharged by embankment type loading. Therefore, this paper introduces a wide comparison numerical study between the ordinary stone columns (OSC) versus the geosynthetic encased stone columns (ESC) installed in soft clay soil deposit using finite element method (FEM). Parametric study of an embankment on soft soils reinforced with stone columns is performed using commercial computer program based on the finite element technique (PLAXIS 2D). The investigation will present the influence of the following parameters: diameter of stone columns, stiffness of geosynthetic encasement, embedded depth of stone column from ground level, and the length encasement of the stone column on the consolidation time, vertical settlement, and lateral displacement of soft clay soil formations.

Keywords: finite element method, geosynthetic, lateral displacement, settlement, soft clay

Procedia PDF Downloads 203
2967 Structural Performance Evaluation of Electronic Road Sign Panels Reflecting Damage Scenarios

Authors: Junwon Seo, Bipin Adhikari, Euiseok Jeong

Abstract:

This paper is intended to evaluate the structural performance of welded electronic road signs under various damage scenarios (DSs) using a finite element (FE) model calibrated with full-scale ultimate load testing results. The tested electronic road sign specimen was built with a back skin made of 5052 aluminum and two channels and a frame made of 6061 aluminum, where the back skin was connected to the frame by welding. The size of the tested specimen was 1.52 m long, 1.43 m wide, and 0.28 m deep. An actuator applied vertical loads at the center of the back skin of the specimen, resulting in a displacement of 158.7 mm and an ultimate load of 153.46 kN. Using these testing data, generation and calibration of a FE model of the tested specimen were executed in ABAQUS, indicating that the difference in the ultimate load between the calibrated model simulation and full-scale testing was only 3.32%. Then, six different DSs were simulated where the areas of the welded connection in the calibrated model were diminished for the DSs. It was found that the corners at the back skin-frame joint were prone to connection failure for all the DSs, and failure of the back skin-frame connection occurred remarkably from the distant edges.

Keywords: computational analysis, damage scenarios, electronic road signs, finite element, welded connections

Procedia PDF Downloads 89
2966 Thermal Characterization of Graphene Oxide-Epoxy Nanocomposites Produced by Aqueous Emulsion

Authors: H. A. Brandão Cordeiro, M. G. Bocardo, N. C. Penteado, V. T. de Moraes, S. M. Giampietri Lebrão, G. W. Lebrão

Abstract:

The present study desired to obtain a nanocomposite of epoxy resin reinforced with graphene oxide (OG), for aerospace application, produced by aqueous emulsion. It was obtained proof bodies with 0.00 wt%, 0.10 wt%, 0.25 wt% and 0.50 wt% in weight of nanoparticles, to check the influence of it in the final quality of the obtained product. The validation of the results was done by the application thermal characterization by differential scanning calorimetry (DSC). It was seen that the nanocomposite reinforced with 0.10 wt% of OG showed the best results, the average glass transition temperature, at 2 °C, compared to the pure resin.

Keywords: aqueous emulsion, graphene, nanocomposites, thermal characterization

Procedia PDF Downloads 163
2965 Analysis of Flexural Behavior of Wood-Concrete Beams

Authors: M. Li, V. D. Thi, M. Khelifa, M. El Ganaoui

Abstract:

This study presents an overview of the work carried out by the use of wood waste as coarse aggregate in mortar. The paper describes experimental and numerical investigations carried on pervious concrete made of wood chips and also sheds lights on the mechanical properties of this new product. The properties of pervious wood-concrete such as strength, elastic modulus, and failure modes are compared and evaluated. The characterization procedure of the mechanical properties of wood waste ash are presented and discussed. The numerical and tested load–deflection response results are compared. It was observed that the numerical results are in good agreement with the experimental results.

Keywords: wood waste ash, characterization, mechanical properties, bending tests

Procedia PDF Downloads 301
2964 Seismic Hazard Study and Strong Ground Motion in Southwest Alborz, Iran

Authors: Fereshteh Pourmohammad, Mehdi Zare

Abstract:

The city of Karaj, having a population of 2.2 millions (est. 2022) is located in the South West of Alborz Mountain Belt in Northern Iran. The region is known to be a highly active seismic zone. This study is focused on the geological and seismological analyses within a radius of 200 km from the center of Karaj. There are identified five seismic zones and seven linear seismic sources. The maximum magnitude was calculated for the seismic zones. Scine tghe seismicity catalog is incomplete, we have used a parametric-historic algorithm and the Kijko and Sellevoll (1992) method was used to calculate seismicity parameters, and the return periods and the probability frequency of recurrence of the earthquake magnitude in each zone obtained for 475-years return period. According to the calculations, the highest and lowest earthquake magnitudes of 7.6 and 6.2 were respectively obtained in Zones 1 and 4. This result is a new and extremely important in view point of earthquake risk in a densely population city. The maximum strong horizontal ground motion for the 475-years return period 0.42g and for 2475-year return period 0.70g also the maximum strong vertical ground motion for 475-years return period 0.25g and 2475-years return period 0.44g was calculated using attenuation relationships. These acceleration levels are new, and are obtained to be about 25% higher than presented values in the Iranian building code.

Keywords: seismic zones, ground motion, return period, hazard analysis

Procedia PDF Downloads 95
2963 A Study on the Mechanism of the Regeneration of ‘Villages-in-City’ under Rapid Urbanization: Cases Study of Luojiazhuang

Authors: Mengying Du, Xiang Chen

Abstract:

‘villages-in-city’ is the unique product of rapid urbanization in China which embodies the contradiction between historical context and urbanization. This article mainly analyzes the corresponding strategy to the common problems such as urban texture, historical context, community structure, and industry pattern during the regeneration of ‘villages-in-city’ of Luojiazhuang. Taking government investment, community demands, the trend of urban renewal and transformation models of the ‘villages-in-city’ into consideration, the author propose a mechanism to balance those factors, and to achieve mutual confirmation with the instance of Luojiazhuang.

Keywords: community demands, historical context, villages-in-city, urbanization

Procedia PDF Downloads 305
2962 CFD Simulation for Development of Cooling System in a Cooking Oven

Authors: V. Jagadish, Mathiyalagan V.

Abstract:

Prediction of Door Touch temperature of a Cooking Oven using CFD Simulation. Self-Clean cycle is carried out in Cooking ovens to convert food spilling into ashes which makes cleaning easy. During this cycle cavity of oven is exposed to high temperature around 460 C. At this operating point the user may prone to touch the Door surfaces, Side Shield, Control Panel. To prevent heat experienced by user, cooling system is built in oven. The most effective cooling system is developed with existing design constraints through CFD Simulations. Cross Flow fan is used for Cooling system due to its cost effectiveness and it can give more air flow with low pressure drop.

Keywords: CFD, MRF, RBM, RANS, new product development, simulation, thermal analysis

Procedia PDF Downloads 151
2961 Development of Gamma Configuration Stirling Engine Using Polymeric and Metallic Additive Manufacturing for Education

Authors: J. Otegui, M. Agirre, M. A. Cestau, H. Erauskin

Abstract:

The increasing accessibility of mid-priced additive manufacturing (AM) systems offers a chance to incorporate this technology into engineering instruction. Furthermore, AM facilitates the creation of manufacturing designs, enhancing the efficiency of various machines. One example of these machines is the Stirling cycle engine. It encompasses complex thermodynamic machinery, revealing various aspects of mechanical engineering expertise upon closer inspection. In this publication, the application of Stirling Engines fabricated via additive manufacturing techniques will be showcased for the purpose of instructive design and product enhancement. The performance of a Stirling engine's conventional displacer and piston is contrasted. The outcomes of utilizing this instructional tool in teaching are demonstrated.

Keywords: 3D printing, additive manufacturing, mechanical design, stirling engine.

Procedia PDF Downloads 46
2960 Comparative Study of Estimators of Population Means in Two Phase Sampling in the Presence of Non-Response

Authors: Syed Ali Taqi, Muhammad Ismail

Abstract:

A comparative study of estimators of population means in two phase sampling in the presence of non-response when Unknown population means of the auxiliary variable(s) and incomplete information of study variable y as well as of auxiliary variable(s) is made. Three real data sets of University students, hospital and unemployment are used for comparison of all the available techniques in two phase sampling in the presence of non-response with the newly generalized ratio estimators.

Keywords: two-phase sampling, ratio estimator, product estimator, generalized estimators

Procedia PDF Downloads 231
2959 Red Clay Properties and Application for Ceramic Production

Authors: Ruedee Niyomrath

Abstract:

This research aimed at surveying the local red clay raw material sources in Samut Songkram province, Thailand to test the physical and chemical properties of the local red clay, including to find the approach to develop the local red clay properties for ceramic production. The findings of this research would be brought to apply in the ceramic production industry of the country all at the upstream level which was the community in the raw material source, at the mid water level which was the ceramic producer and at the downstream level which was the distributor and the consumer as well as the community producer who would apply them to their identity and need of the community business.

Keywords: chemical properties of red clay, physical properties of red clay, ceramic production, red clay product

Procedia PDF Downloads 444
2958 Estimation of Consolidating Settlement Based on a Time-Dependent Skin Friction Model Considering Column Surface Roughness

Authors: Jiang Zhenbo, Ishikura Ryohei, Yasufuku Noriyuki

Abstract:

Improvement of soft clay deposits by the combination of surface stabilization and floating type cement-treated columns is one of the most popular techniques worldwide. On the basis of one dimensional consolidation model, a time-dependent skin friction model for the column-soil interaction is proposed. The nonlinear relationship between column shaft shear stresses and effective vertical pressure of the surrounding soil can be described in this model. The influence of column-soil surface roughness can be represented using a roughness coefficient R, which plays an important role in the design of column length. Based on the homogenization method, a part of floating type improved ground will be treated as an unimproved portion, which with a length of αH1 is defined as a time-dependent equivalent skin friction length. The compression settlement of this unimproved portion can be predicted only using the soft clay parameters. Apart from calculating the settlement of this composited ground, the load transfer mechanism is discussed utilizing model tests. The proposed model is validated by comparing with calculations and laboratory results of model and ring shear tests, which indicate the suitability and accuracy of the solutions in this paper.

Keywords: floating type improved foundation, time-dependent skin friction, roughness, consolidation

Procedia PDF Downloads 463
2957 Application of Generalized Taguchi and Design of Experiment Methodology for Rebar Production at an Integrated Steel Plant

Authors: S. B. V. S. P. Sastry, V. V. S. Kesava Rao

Abstract:

In this paper, x-ray impact of Taguchi method and design of experiment philosophy to project relationship between various factors leading to output yield strength of rebar is studied. In bar mill of an integrated steel plant, there are two production lines called as line 1 and line 2. The metallic properties e.g. yield strength of finished product of the same material is varying for a particular grade material when rolled simultaneously in both the lines. A study has been carried out to set the process parameters at optimal level for obtaining equal value of yield strength simultaneously for both lines.

Keywords: bar mill, design of experiment, taguchi, yield strength

Procedia PDF Downloads 238
2956 Enhancements to the Coupled Hydro-Mechanical Hypoplastic Model for Unsaturated Soils

Authors: Shanujah Mathuranayagam, William Fuentes, Samanthika Liyanapathirana

Abstract:

This paper introduces an enhanced version of the coupled hydro-mechanical hypoplastic model. The model is able to simulate volumetric collapse upon wetting and incorporates suction effects on stiffness and strength. Its mechanical constitutive equation links Bishop’s effective stress with strain and suction, featuring a normal consolidation line (NCL) with a compression index (λ) presenting a non-linear dependency with the degree of saturation. The Bulk modulus has been modified to ensure that under rapid volumetric collapse, the stress state remains at the NCL. The coupled model comprises eighteen parameters, with nine for the hydraulic component and nine for the mechanical component. Hydraulic parameters are calibrated with the use of water retention curves (IWRC) across varied soil densities, while mechanical parameters undergo calibration using isotropic and triaxial tests on both unsaturated and saturated samples. The model's performance is analyzed through the back-calculation of two experimental studies: (i) wetting under different vertical stresses for Lower Cromer Till and (ii) isotropic loading and triaxial loading for undisturbed loess. The results confirm that the proposed model is able to predict the hydro-mechanical behavior of unsaturated soils.

Keywords: hypoplastic model, volumetric collapse, normal consolidation line, compression index (λ), degree of saturation, soil suction

Procedia PDF Downloads 57
2955 Utilization of Bauxite Residue in Construction Materials: An Experimental Study

Authors: Ryan Masoodi, Hossein Rostami

Abstract:

Aluminum has been credited for the massive advancement of many industrial products, from aerospace and automotive to electronics and even household appliances. These developments have come with a cost, which is a toxic by-product. The rise of aluminum production has been accompanied by the rise of a waste material called Bauxite Residue or Red Mud. This toxic material has been proved to be harmful to the environment, yet, there is no proper way to dispose or recycle it. Herewith, a new experimental method to utilize this waste in the building material is proposed. A method to mix red mud, fly ash, and some other ingredients is explored to create a new construction material that can satisfy the minimum required strength for bricks. It concludes that it is possible to produce bricks with enough strength that is suitable for constriction in environments with low to moderate weather conditions.

Keywords: bauxite residue, brick, red mud, recycling

Procedia PDF Downloads 162
2954 Evaluation Of The Incorporation Of Modified Starch In Puff Pastry Dough By Mixolab Rheological Analysis

Authors: Alejandra Castillo-Arias, Carlos A. Fuenmayor, Carlos M. Zuluaga-Domínguez

Abstract:

The connection between health and nutrition has driven the food industry to explore healthier and more sustainable alternatives. Key strategies to enhance nutritional quality and extend shelf life include reducing saturated fats and incorporating natural ingredients. One area of focus is the use of modified starch in baked goods, which has attracted significant interest in food science and industry due to its functional benefits. Modified starches are commonly used for their gelling, thickening, and water-retention properties. Derived from sources like waxy corn, potatoes, tapioca, or rice, these polysaccharides improve thermal stability and resistance to dough. The use of modified starch enhances the texture and structure of baked goods, which is crucial for consumer acceptance. In this study, it was evaluated the effects of modified starch inclusion on dough used for puff pastry elaboration, measured with Mixolab analysis. This technique assesses flour quality by examining its behavior under varying conditions, providing a comprehensive profile of its baking properties. The analysis included measurements of water absorption capacity, dough development time, dough stability, softening, final consistency, and starch gelatinization. Each of these parameters offers insights into how the flour will perform during baking and the quality of the final product. The performance of wheat flour with varying levels of modified starch inclusion (10%, 20%, 30%, and 40%) was evaluated through Mixolab analysis, with a control sample consisting of 100% wheat flour. Water absorption, gluten content, and retrogradation indices were analyzed to understand how modified starch affects dough properties. The results showed that the inclusion of modified starch increased the absorption index, especially at levels above 30%, indicating a dough with better handling qualities and potentially improved texture in the final baked product. However, the reduction in wheat flour resulted in a lower kneading index, affecting dough strength. Conversely, incorporating more than 20% modified starch reduced the retrogradation index, indicating improved stability and resistance to crystallization after cooling. Additionally, the modified starch improved the gluten index, contributing to better dough elasticity and stability, providing good structural support and resistance to deformation during mixing and baking. As expected, the control sample exhibited a higher amylase index, due to the presence of enzymes in wheat flour. However, this is of low concern in puff pastry dough, as amylase activity is more relevant in fermented doughs, which is not the case here. Overall, the use of modified starch in puff pastry enhanced product quality by improving texture, structure, and shelf life, particularly when used at levels between 30% and 40%. This research underscores the potential of modified starches to address health concerns associated with traditional starches and to contribute to the development of higher-quality, consumer-friendly baked products. Furthermore, the findings suggest that modified starches could play a pivotal role in future innovations within the baking industry, particularly in products aiming to balance healthfulness with sensory appeal. By incorporating modified starch into their formulations, bakeries can meet the growing demand for healthier, more sustainable products while maintaining the indulgent qualities that consumers expect from baked goods.

Keywords: baking quality, dough properties, modified starch, puff pastry

Procedia PDF Downloads 17
2953 Wave Velocity-Rock Property Relationships in Shallow Marine Libyan Carbonate Reservoir

Authors: Tarek S. Duzan, Abdulaziz F. Ettir

Abstract:

Wave velocities, Core and Log petrophysical data were collected from recently drilled four new wells scattered through-out the Dahra/Jofra (PL-5) Reservoir. The collected data were analyzed for the relationships of Wave Velocities with rock property such as Porosity, permeability and Bulk Density. Lots of Literature review reveals a number of differing results and conclusions regarding wave velocities (Compressional Waves (Vp) and Shear Waves (Vs)) versus rock petrophysical property relationships, especially in carbonate reservoirs. In this paper, we focused on the relationships between wave velocities (Vp , Vs) and the ratio Vp/Vs with rock properties for shallow marine libyan carbonate reservoir (Real Case). Upon data analysis, a relationship between petrophysical properties and wave velocities (Vp, Vs) and the ratio Vp/Vs has been found. Porosity and bulk density properties have shown exponential relationship with wave velocities, while permeability has shown a power relationship in the interested zone. It is also clear that wave velocities (Vp , Vs) seems to be a good indicator for the lithology change with true vertical depth. Therefore, it is highly recommended to use the output relationships to predict porosity, bulk density and permeability of the similar reservoir type utilizing the most recent seismic data.

Keywords: conventional core analysis (porosity, permeability bulk density) data, VS wave and P-wave velocities, shallow carbonate reservoir in D/J field

Procedia PDF Downloads 326
2952 Drivers of Farmers' Contract Compliance Behaviour: Evidence from a Case Study of Dangote Tomato Processing Plant in Northern Nigeria.

Authors: Umar Shehu Umar

Abstract:

Contract farming is a viable strategy agribusinesses rely on to strengthen vertical coordination. However, low contract compliance remains a significant setback to agribusinesses' contract performance. The present study aims to understand what drives smallholder farmers’ contract compliance behaviour. Qualitative information was collected through Focus Group Discussions to enrich the design of the survey questionnaire administered on a sample of 300 randomly selected farmers contracted by the Dangote Tomato Processing Plant (DTPP) in four regions of northern Nigeria. Novel transaction level data of tomato sales covering one season were collected in addition to socio-economic information of the sampled farmers. Binary logistic model results revealed that open fresh market tomato prices and payment delays negatively affect farmers' compliance behaviour while quantity harvested, education level and input provision correlated positively with compliance. The study suggests that contract compliance will increase if contracting firms devise a reliable and timely payment plan (e.g., digital payment), continue input and service provisions (e.g., improved seeds, extension services) and incentives (e.g., loyalty rewards, bonuses) in the contract.

Keywords: contract farming, compliance, farmers and processors., smallholder

Procedia PDF Downloads 48
2951 Influence of Loading Pattern and Shaft Rigidity on Laterally Loaded Helical Piles in Cohesion-Less Soil

Authors: Mohamed Hesham Hamdy Abdelmohsen, Ahmed Shawky Abdul Aziz, Mona Fawzy Al-Daghma

Abstract:

Helical piles are widely used as axially and laterally loaded deep foundations. Once they are required to resist bearing combined loads (BCLs), as axial compression and lateral thrust, different behaviour is expected, necessitating further investigation. The objective of the present article is to clarify the behaviour of a single helical pile of different shaft rigidity embedded in cohesion-less soil and subjected to simultaneous or successive loading patterns of BCLs. The study was first developed analytically and extended numerically. The numerical analysis was further verified through a laboratory experimental program on a set of helical pile models. The results indicate highly interactive effects of the studied parameters, but it is obviously confirmed that the pile performance increases with both the increase of shaft rigidity and the change of BCLs loading pattern from simultaneous to successive. However, it is noted that the increase of vertical load does not always enhance the lateral capacity but may cause a decrement in lateral capacity, as observed with helical piles of flexible shafts. This study provides insightful information for the design of helical piles in structures loaded by complex sequence of forces, wind turbines, and industrial shafts.

Keywords: helical pile, lateral loads, combined loads, cohesion-less soil, analytical, numerical

Procedia PDF Downloads 58
2950 Displacement Fields in Footing-Sand Interactions under Cyclic Loading

Authors: S. Joseph Antony, Z. K. Jahanger

Abstract:

Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems.

Keywords: cyclic loading, DPIV, settlement, soil-structure interactions, strip footing

Procedia PDF Downloads 163
2949 Influence of Strong Optical Feedback on Frequency Chirp and Lineshape Broadening in High-Speed Semiconductor Laser

Authors: Moustafa Ahmed, Fumio Koyama

Abstract:

Directly-modulated semiconductor lasers, including edge-emitting and vertical-cavity surface-emitting lasers, have received considerable interest recently for use in data transmitters in cost-effective high-speed data centers, metro, and access networks. Optical feedback has been proved as an efficient technique to boost the modulation bandwidth and enhance the speed of the semiconductor laser. However, both the laser linewidth and frequency chirping in directly-modulated lasers are sensitive to both intensity modulation and optical feedback. These effects along width fiber dispersion affect the transmission bit rate and distance in single-mode fiber links. In this work, we continue our recent research on directly-modulated semiconductor lasers with modulation bandwidth in the millimeter-wave band by introducing simultaneous modeling and simulations on both the frequency chirping and lineshape broadening. The lasers are operating under strong optical feedback. The model takes into account the multiple reflections of laser reflections of laser radiation in the external cavity. The analyses are given in terms of the chirp-to-modulated power ratio, and the results are shown for the possible dynamic states of continuous wave, period-1 oscillation, and chaos.

Keywords: chirp, linewidth, optical feedback, semiconductor laser

Procedia PDF Downloads 476
2948 Hyaluronic Acid - Alginate Hydrogel for the Transdifferentiation of Testis Cells into Erythrocyte and Hepatocyte-like Cells; A Practice Within an Effective Agent Choice

Authors: Leila Rashki Ghaleno, Mohamad Amin Hajari, Leila Montazeri, Abdolhossein Shahverdi, Mojtaba Rezazadeh Valojerdi

Abstract:

Background: Spermatogonia stem cells (SSCs) exhibit pluripotency, enabling them to undergo differentiation into many cell lineages, including neurons, glia, endothelial cells, and hepatocytes when cultured in vitro. Although the specific mechanisms are not yet fully understood, it has been observed that biopolymer agents, such as hyaluronic acid (HA) and alginate (Alg), have the potential to induce transdifferentiation of SSCs. The current work aimed to examine the process of in vitro spermatogenesis and the conversion of mouse testicular cells into hepatocytes and erythrocyte-like cells utilizing the HA-Alg hydrogel. Method: After being extracted from the testes of a 5-day postpartum mouse (5 DPP), the testicular cells were separated into two enzymatic stages and then put into a composite hydrogel containing 0.5% HA and 1% alginate. On days 14 and 28 of culture, the colonies' growth, the cells' viability, and their histology were assessed. Result: Despite observing significant cell proliferation on day 14 and the development of circular-shaped organoids on day 28, it was noted that the organoids generated in the HA-Alg medium tended to maintain their circular morphology on day 28. Notably, the testicular cells underwent transdifferentiation into cell types resembling erythrocytes and hepatocytes. The hepatocyte-like cells exhibited the presence of glycogen and lipid deposits, indicating their hepatocyte-like characteristics. Interestingly, immunostaining analysis revealed the secretion of albumin and the presence of VEGFR on day 14. However, on day 28, albumin expression was not detected, while the expression of Sox9 (a marker for hepatocytes), Vegf, CD34, and C-kit (markers for erythrocytes) showed increased levels in the gene expression evaluation. Conclusion: The present findings indicated that HA-Alg could be a potent and effective agent for the transdifferentiation of testis cells into erythrocyte and hepatocyte-like cells, as recent studies have confirmed the transformation of SSCs into hepatocyte cells during in vitro culture.

Keywords: 3D culture, mouse testicular cell, hyaluronic acid, liver organoids

Procedia PDF Downloads 66
2947 Development of a Process Method to Manufacture Spreads from Powder Hardstock

Authors: Phakamani Xaba, Robert Huberts, Bilainu Oboirien

Abstract:

It has been over 200 years since margarine was discovered and manufactured using liquid oil, liquified hardstock oils and other oil phase & aqueous phase ingredients. Henry W. Bradley first used vegetable oils in liquid state and around 1871, since then; spreads have been traditionally manufactured using liquified oils. The main objective of this study was to develop a process method to produce spreads using spray dried hardstock fat powders as a structing fats in place of current liquid structuring fats. A high shear mixing system was used to condition the fat phase and the aqueous phase was prepared separately. Using a single scraped surface heat exchanger and pin stirrer, margarine was produced. The process method was developed for to produce spreads with 40%, 50% and 60% fat . The developed method was divided into three steps. In the first step, fat powders were conditioned by melting and dissolving them into liquid oils. The liquified portion of the oils were at 65 °C, whilst the spray dried fat powder was at 25 °C. The two were mixed using a mixing vessel at 900 rpm for 4 minutes. The rest of the ingredients i.e., lecithin, colorant, vitamins & flavours were added at ambient conditions to complete the fat/ oil phase. The water phase was prepared separately by mixing salt, water, preservative, acidifier in the mixing tank. Milk was also separately prepared by pasteurizing it at 79°C prior to feeding it into the aqueous phase. All the water phase contents were chilled to 8 °C. The oil phase and water phase were mixed in a tank, then fed into a single scraped surface heat exchanger. After the scraped surface heat exchanger, the emulsion was fed in a pin stirrer to work the formed crystals and produce margarine. The margarine produced using the developed process had fat levels of 40%, 50% and 60%. The margarine passed all the qualitative, stability, and taste assessments. The scores were 6/10, 7/10 & 7.5/10 for the 40%, 50% & 60% fat spreads, respectively. The success of the trials brought about differentiated knowledge on how to manufacture spreads using non micronized spray dried fat powders as hardstock. Manufacturers do not need to store structuring fats at 80-90°C and even high in winter, instead, they can adapt their processes to use fat powders which need to be stored at 25 °C. The developed process method used one scrape surface heat exchanger instead of the four to five currently used in votator based plants. The use of a single scraped surface heat exchanger translated to about 61% energy savings i.e., 23 kW per ton of product. Furthermore, it was found that the energy saved by implementing separate pasteurization was calculated to be 6.5 kW per ton of product produced.

Keywords: margarine emulsion, votator technology, margarine processing, scraped sur, fat powders

Procedia PDF Downloads 87
2946 Conformational Switch of hRAGE upon Self-Association

Authors: Ikhlas Ahmed, Jamillah Zamoon

Abstract:

The human receptor for advanced glycation end product is a plasma membrane receptor with an intrinsically disordered region. The protein consists of three extracellular domains, a single membrane spanning transmembrane domain, and a cytosolic domain which is intrinsically disordered and responsible for signaling. The disordered nature of the cytosolic domain allows it to be dynamic in solution. This receptor self-associates to higher forms. The association is triggered by ligand, metal or by the extracellular domain. Fluorescence spectroscopy technique is used to test the self-association of the different concentrations of the cytosolic domain. This work has concluded that the cytosolic domain of this receptor also self-associates. Moreover, the self-association does not require ligand or metal.

Keywords: fluorescence spectroscopy, hRAGE, IDP, Self-association

Procedia PDF Downloads 355
2945 Adaptor Protein APPL2 Could Be a Therapeutic Target for Improving Hippocampal Neurogenesis and Attenuating Depressant Behaviors and Olfactory Dysfunctions in Chronic Corticosterone-induced Depression

Authors: Jiangang Shen

Abstract:

Olfactory dysfunction is a common symptom companied by anxiety- and depressive-like behaviors in depressive patients. Chronic stress triggers hormone responses and inhibits the proliferation and differentiation of neural stem cells (NSCs) in the hippocampus and subventricular zone (SVZ)-olfactory bulb (OB), contributing to depressive behaviors and olfactory dysfunction. However, the cellular signaling molecules to regulate chronic stress mediated olfactory dysfunction are largely unclear. Adaptor proteins containing the pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif (APPLs) are multifunctional adaptor proteins. Herein, we tested the hypothesis that APPL2 could inhibit hippocampal neurogenesis by affecting glucocorticoid receptor (GR) signaling, subsequently contributing to depressive and anxiety behaviors as well as olfactory dysfunctions. The major discoveries are included: (1) APPL2 Tg mice had enhanced GR phosphorylation under basic conditions but had no different plasma corticosterone (CORT) level and GR phosphorylation under stress stimulation. (2) APPL2 Tg mice had impaired hippocampal neurogenesis and revealed depressive and anxiety behaviors. (3) GR antagonist RU486 reversed the impaired hippocampal neurogenesis in the APPL2 Tg mice. (4) APPL2 Tg mice displayed higher GR activity and less capacity for neurogenesis at the olfactory system with lesser olfactory sensitivity than WT mice. (5) APPL2 negatively regulates olfactory functions by switching fate commitments of NSCs in adult olfactory bulbs via interaction with Notch1 signaling. Furthermore, baicalin, a natural medicinal compound, was found to be a promising agent targeting APPL2/GR signaling and promoting adult neurogenesis in APPL2 Tg mice and chronic corticosterone-induced depression mouse models. Behavioral tests revealed that baicalin had antidepressant and olfactory-improving effects. Taken together, APPL2 is a critical therapeutic target for antidepressant treatment.

Keywords: APPL2, hippocampal neurogenesis, depressive behaviors and olfactory dysfunction, stress

Procedia PDF Downloads 75
2944 Merit Measures and Validation in Employee Evaluation and Selection

Authors: Wilson P. R. Malebye, Solly M. Seeletse

Abstract:

Applicants for space in selection problems are usually compared subjectively, and the selection made are not reliable and often cannot be verified scientifically. The paper illustrates objective selection by involving a mathematical measure in selecting a candidate applying for a job, and then using other two independent measures, validates the choice made. The scientific process followed is SToR (SAW, TOPSIS, WP) in which Simple Additive Weighting (SAW) is used to select, and the TOPSIS (technique for order preference by similarity to ideal solution) and weighted product (WP) are used to validate. A practical exercise was obtained from a factual selection problem in a recruitment task undertaken in an organization in which the authors consulted, and their Human Resources (HR) department wanted to check if their selection was justifiable. The result was that our approach was consistent and convincing to that HR, and theirs was not because our selection was satisfactory while theirs could not be corroborated using any method.

Keywords: candidate selection, SToR, SW, TOPSIS, WP

Procedia PDF Downloads 333
2943 Mechanical-Reliability Coupling for a Bearing Capacity Assessment of Shallow Foundations

Authors: Amal Hentati, Mbarka Selmi, Tarek Kormi, Julien Baroth, Barthelemy Harthong

Abstract:

The impact of uncertainties on the performance assessment of shallow foundations is often significant. The need of the geotechnical engineers to a more objective and rigorous description of soil variations permitting to quantify these uncertainties and to incorporate them into calculation methods led to the development of reliability approaches. In this context, a mechanical-reliability coupling was developed in this paper, using a program coded in Matlab and the finite element software Abaqus, for the bearing capacity assessment of shallow foundations. The reliability analysis, based on the finite element method, assumed both soil cohesion and friction angle as uncertain parameters characterized by normal or lognormal probability distributions. The inherent spatial variability of both soil properties was, then, taken into account using 1D stationary random fields. The application of the proposed methodology to a shallow foundation subjected to a centered vertical loading permitted to highlight the proposed process interest. Findings proved the insufficiency of the conventional approach to predict the foundation failure and a high sensitivity of the ultimate loads to the soil properties uncertainties, mainly those related to the friction angle, was noted. Moreover, an asymmetry of both displacement and velocity fields was obtained.

Keywords: mechanical-reliability coupling, finite element method, shallow foundation, random fields, spatial variability

Procedia PDF Downloads 654
2942 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads

Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan

Abstract:

In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.

Keywords: elastic foundation, impact, moving load, thick plate

Procedia PDF Downloads 309
2941 Expression of Micro-RNA268 in Zinc Deficient Rice

Authors: Sobia Shafqat, Saeed Ahmad Qaisrani

Abstract:

MicroRNAs play an essential role in the regulation and development of all processes in most eukaryotes because of their prospective part as mediators controlling cell growth and differentiation towards the exact position of RNAs response in plants under biotic and abiotic factors or stressors. In a few cases, Zn is oblivious poisonous for plants due to its heavy metal status. Some other metals are extremely toxic, like Cd, Hg, and Pb, but these elements require in rice for the programming of genes under abiotic stress resembling Zn stress when micro RNAs268 was importantly introduced in rice. The micro RNAs overexpressed in transgenic plants with an accumulation of a large amount of melanin dialdehyde, hydrogen peroxide, and an excessive quantity of Zn in the seedlings stage. Let out results for rice pliability under Zn stress micro RNAs act as negative controllers. But the role of micro RNA268 act as a modulator in different ecological condition. It has been explained clearly with a long understanding of the role of micro RNA268 under stress conditions; pliability and practically showed outcome to increase plant sufferance under Zn stress because micro RNAs is an intervention technique for gene regulation in gene expression. The proposed study was experimented with by using genetic factors of Zn stress and toxicity effect on rice plants done at District Vehari, Pakistan. The trial was performed randomly with three replications in a complete block design (RCBD). These blocks were controlled with different concentrations of genetic factors. By overexpression of micro RNA268 rice, seedling growth was not stopped under Zn deficiency due to the accumulation of a large amount of melanin dialdehyde, hydrogen peroxide, and an excessive quantity of Zn in their seedlings. Results showed that micro RNA268 act as a negative controller under Zn stress. In the end, under stress conditions, micro RNA268 showed the necessary function in the tolerance of rice plants. The directorial work sketch gave out high agronomic applications and yield outcomes in rice with a specific amount of Zn application.

Keywords: micro RNA268, zinc, rice, agronomic approach

Procedia PDF Downloads 58
2940 A Serum- And Feeder-Free Culture System for the Robust Generation of Human Stem Cell-Derived CD19+ B Cells and Antibody-Secreting Cells

Authors: Kirsten Wilson, Patrick M. Brauer, Sandra Babic, Diana Golubeva, Jessica Van Eyk, Tinya Wang, Avanti Karkhanis, Tim A. Le Fevre, Andy I. Kokaji, Allen C. Eaves, Sharon A. Louis, , Nooshin Tabatabaei-Zavareh

Abstract:

Long-lived plasma cells are rare, non-proliferative B cells generated from antibody-secreting cells (ASCs) following an immune response to protect the host against pathogen re-exposure. Despite their therapeutic potential, the lack of in vitro protocols in the field makes it challenging to use B cells as a cellular therapeutic tool. As a result, there is a need to establish robust and reproducible methods for the generation of B cells. To address this, we have developed a culture system for generating B cells from hematopoietic stem and/or progenitor cells (HSPCs) derived from human umbilical cord blood (CB) or pluripotent stem cells (PSCs). HSPCs isolated from CB were cultured using the StemSpan™ B Cell Generation Kit and produced CD19+ B cells at a frequency of 23.2 ± 1.5% and 59.6 ± 2.3%, with a yield of 91 ± 11 and 196 ± 37 CD19+ cells per input CD34+ cell on culture days 28 and 35, respectively (n = 50 - 59). CD19+IgM+ cells were detected at a frequency of 31.2 ± 2.6% and were produced at a yield of 113 ± 26 cells per input CD34+ cell on culture day 35 (n = 50 - 59). The B cell receptor loci of CB-derived B cells were sequenced to confirm V(D)J gene rearrangement. ELISpot analysis revealed that ASCs were generated at a frequency of 570 ± 57 per 10,000 day 35 cells, with an average IgM+ ASC yield of 16 ± 2 cells per input CD34+ cell (n = 33 - 42). PSC-derived HSPCs were generated using the STEMdiff™ Hematopoietic - EB reagents and differentiated to CD10+CD19+ B cells with a frequency of 4 ± 0.8% after 28 days of culture (n = 37, 1 embryonic and 3 induced pluripotent stem cell lines tested). Subsequent culture of PSC-derived HSPCs increased CD19+ frequency and generated ASCs from 1 - 2 iPSC lines. This method is the first report of a serum- and feeder-free system for the generation of B cells from CB and PSCs, enabling further B lineage-specific research for potential future clinical applications.

Keywords: stem cells, B cells, immunology, hematopoiesis, PSC, differentiation

Procedia PDF Downloads 53
2939 Enhanced Photoelectrochemical performance of TiO₂ Nanorods: The Critical Role of Hydrothermal Reaction Time

Authors: Srijitra Khanpakdee, Teera Butburee, Jung-Ho Yun, Miaoqiang Lyu, Supphasin Thaweesak, Piangjai Peerakiatkhajohn

Abstract:

The synthesis of titanium dioxide (TiO₂) nanorods (NRs) on fluorine-doped tin oxide (FTO) glass via hydrothermal methods was investigated to determine the optimal reaction time for enhanced photocatalytic and optical performance. Reaction times of 4, 6, and 8 hours were studied. Characterization through SEM, UV-vis, XRD, FTIR, Raman spectroscopy and photoelectrochemical (PEC) techniques revealed significant differences in the properties of the TiO₂ NRs based on the reaction duration. XRD and Raman spectroscopy analysis confirmed the formation of the rutile phase of TiO₂. As photoanodes in PEC cells, TiO₂ NRs synthesized for 4 hours exhibited the best photocatalytic activity, with the highest photocurrent density and superior charge transport properties, attributed to their densely packed vertical structure. Longer reaction times resulted in less optimal morphological and photoelectrochemical characteristics. The bandgap of the TiO₂ NRs remained consistent around 3.06 eV, with only slight variations observed. This study highlights the critical role of reaction time in hydrothermal synthesis, identifying 4 hours as the optimal duration for producing TiO₂ NRs with superior photoelectrochemical performance. These findings provide valuable insights for optimizing TiO₂-based materials for solar energy conversion and renewable energy applications.

Keywords: titanium dioxide, nanorods, hydrothermal, photocatalytic, photoelectrochemical

Procedia PDF Downloads 36