Search results for: tomato yield prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4696

Search results for: tomato yield prediction

2386 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: building energy management, machine learning, operation planning, simulation-based optimization

Procedia PDF Downloads 322
2385 Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images

Authors: Jinil Patel, Sarthak Patel, Sarthak Thakkar, Deepti Saraswat

Abstract:

Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption.

Keywords: federated learning, COVID-19, CT-scan, homomorphic encryption, ResNet50, VGG-19, MobileNetv2, DLA

Procedia PDF Downloads 73
2384 The Preparation of 2H-Indazolo [2, 1-b] Phthalazinetriones by One-Pot 4,4ʹ-Bipyridinium Dichloride Ordered Mesoporous Silica

Authors: Aigin Bashti

Abstract:

Preparation of multicomponent reactions (MCRs) via a simple one-pot strategy is considered a novel procedure which has attracted a lot of interest from organic and medicinal chemists. Due to the great importance of phthalazide triones, it was decided to introduce a novel and cost-effective green procedure for the preparation of these derivatives. In this methodology, an efficient 4,4ʹ-Bipyridinium Dichloride Ordered Mesoporous Silica functionalized catalyst (BP-SBA-15) was utilized. The catalyst was characterized by X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FT-IR) analysis. In conclusion, it should be mentioned that this methodology has some advantages, including short reaction time, high yield of the products, recyclable catalyst, green procedure, and facile work-up procedure. The catalyst was successfully utilized for the one-pot preparation of various phthalazinetrione derivatives.

Keywords: dimedone, green procedure, multicomponent reactions, phthalhydrazide

Procedia PDF Downloads 99
2383 Impact of Religious Struggles on Life Satisfaction among Young Muslims: The Mediating Role of Psychological Wellbeing

Authors: Sarwat Sultan, Frasat Kanwal, Motasem Mirza

Abstract:

The impact of religiosity on people’s lives has always been found complex because some of them turn to religion to get comfort and relief from their fear, guilt, and illness, whereas some become away due to the perception that God is revengeful and distant for their conduct. The overarching aim of this study was to know whether the relationship between religious struggles (comfort/strain) and life satisfaction is mediated by psychological well-being. The participants of this study were 529 Muslim students who provided their responses on the measures of religious comfort/strain, psychological well-being, and life satisfaction. Results revealed that religious comfort predicted well-being and life satisfaction positively, while religious strain predicted negatively. Findings showed that psychological well-being mediated the prediction of religious comfort and strain for life satisfaction. These findings have implications for students’ mental health because their teachers and professionals can enhance their well-being by teaching them positive aspects of religion and God.

Keywords: attitude towards god, religious comfort, religious strain, life satisfaction, psychological wellbeing

Procedia PDF Downloads 67
2382 Waveguiding in an InAs Quantum Dots Nanomaterial for Scintillation Applications

Authors: Katherine Dropiewski, Michael Yakimov, Vadim Tokranov, Allan Minns, Pavel Murat, Serge Oktyabrsky

Abstract:

InAs Quantum Dots (QDs) in a GaAs matrix is a well-documented luminescent material with high light yield, as well as thermal and ionizing radiation tolerance due to quantum confinement. These benefits can be leveraged for high-efficiency, room temperature scintillation detectors. The proposed scintillator is composed of InAs QDs acting as luminescence centers in a GaAs stopping medium, which also acts as a waveguide. This system has appealing potential properties, including high light yield (~240,000 photons/MeV) and fast capture of photoelectrons (2-5ps), orders of magnitude better than currently used inorganic scintillators, such as LYSO or BaF2. The high refractive index of the GaAs matrix (n=3.4) ensures light emitted by the QDs is waveguided, which can be collected by an integrated photodiode (PD). Scintillation structures were grown using Molecular Beam Epitaxy (MBE) and consist of thick GaAs waveguiding layers with embedded sheets of modulation p-type doped InAs QDs. An AlAs sacrificial layer is grown between the waveguide and the GaAs substrate for epitaxial lift-off to separate the scintillator film and transfer it to a low-index substrate for waveguiding measurements. One consideration when using a low-density material like GaAs (~5.32 g/cm³) as a stopping medium is the matrix thickness in the dimension of radiation collection. Therefore, luminescence properties of very thick (4-20 microns) waveguides with up to 100 QD layers were studied. The optimization of the medium included QD shape, density, doping, and AlGaAs barriers at the waveguide surfaces to prevent non-radiative recombination. To characterize the efficiency of QD luminescence, low temperature photoluminescence (PL) (77-450 K) was measured and fitted using a kinetic model. The PL intensity degrades by only 40% at RT, with an activation energy for electron escape from QDs to the barrier of ~60 meV. Attenuation within the waveguide (WG) is a limiting factor for the lateral size of a scintillation detector, so PL spectroscopy in the waveguiding configuration was studied. Spectra were measured while the laser (630 nm) excitation point was scanned away from the collecting fiber coupled to the edge of the WG. The QD ground state PL peak at 1.04 eV (1190 nm) was inhomogeneously broadened with FWHM of 28 meV (33 nm) and showed a distinct red-shift due to self-absorption in the QDs. Attenuation stabilized after traveling over 1 mm through the WG, at about 3 cm⁻¹. Finally, a scintillator sample was used to test detection and evaluate timing characteristics using 5.5 MeV alpha particles. With a 2D waveguide and a small area of integrated PD, the collected charge averaged 8.4 x10⁴ electrons, corresponding to a collection efficiency of about 7%. The scintillation response had 80 ps noise-limited time resolution and a QD decay time of 0.6 ns. The data confirms unique properties of this scintillation detector which can be potentially much faster than any currently used inorganic scintillator.

Keywords: GaAs, InAs, molecular beam epitaxy, quantum dots, III-V semiconductor

Procedia PDF Downloads 256
2381 Reactive Dyed Superhydrophobic Cotton Fabric Production by Sol-Gel Method

Authors: Kuddis Büyükakıllı

Abstract:

The pretreated and bleached mercerized cotton fabric was dyed with reactive Everzol Brilliant Yellow 4GR (C.I. Yellow 160) dyestuff. Superhydrophobicity is provided to white and reactive dyed fabrics by using a nanotechnological sol-gel method with tetraethoxysilane and fluorcarbon water repellent agents by the two-step method. The effect of coating on color yield, fastness and functional properties of fabric was investigated. It was observed that water drop contact angles were higher in colorless coated fabrics compared to colored coated fabrics, there was no significant color change in colored superhydrophobic fabric and high color fastness values. Although there are no significant color losses in the fabrics after multiple washing and dry cleaning processes, water drop contact angles are greatly reduced.

Keywords: fluorcarbon water repellent agent, colored cotton fabric, sol-gel, superhydrophobic

Procedia PDF Downloads 118
2380 Response Surface Methodology for the Optimization of Paddy Husker by Medium Brown Rice Peeling Machine 6 Rubber Type

Authors: S. Bangphan, P. Bangphan, C. Ketsombun, T. Sammana

Abstract:

Optimization of response surface methodology (RSM) was employed to study the effects of three factor (rubber of clearance, spindle of speed, and rice of moisture) in brown rice peeling machine of the optimal good rice yield (99.67, average of three repeats). The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α=0.05, the values of Regression coefficient, R2 adjust were 96.55% and standard deviation were 1.05056. The independent variables are initial rubber of clearance, spindle of speed and rice of moisture parameters namely. The investigating responses are final rubber clearance, spindle of speed and moisture of rice.

Keywords: brown rice, response surface methodology (RSM), peeling machine, optimization, paddy husker

Procedia PDF Downloads 574
2379 Estimation of Location and Scale Parameters of Extended Exponential Distribution Based on Record Statistics

Authors: E. Krishna

Abstract:

An Extended form of exponential distribution using Marshall and Olkin method is introduced.The location scale family of these distributions is considered. For location scale free family, exact expressions for single and product moments of upper record statistics are derived. The mean, variance and covariance of record values are computed for various values of the shape parameter. Using these the BLUE's of location and scale parameters are derived.The variances and covariance of estimates are obtained.Through Monte Carlo simulation the con dence intervals for location and scale parameters are constructed.The Best liner unbiased Predictor (BLUP) of future records are also discussed.

Keywords: BLUE, BLUP, con dence interval, Marshall-Olkin distribution, Monte Carlo simulation, prediction of future records, record statistics

Procedia PDF Downloads 417
2378 Development of a Steam or Microwave-Assisted Sequential Salt-Alkali Pretreatment for Sugarcane Leaf Waste

Authors: Preshanthan Moodley

Abstract:

This study compares two different pretreatments for sugarcane leaf waste (SLW): steam salt-alkali (SSA) and microwave salt-alkali (MSA). The two pretreatment types were modelled, optimized, and validated with R² > 0.97. Reducing sugar yields of 1.21g/g were obtained with optimized SSA pretreatment using 1.73M ZnCl₂, 1.36M NaOH and 9.69% solid loading, and 1.17g/g with optimized MSA pretreatment using 1.67M ZnCl₂, 1.52M NaOH at 400W for 10min. A lower pretreatment time (10min) was required for the MSA model (83% lower). The structure of pretreated SLW was assessed using scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR). The optimized SSA and MSA models showed lignin removal of 80.5 and 73% respectively. The MSA pretreatment was further examined on sorghum leaves and Napier grass and showed yield improvements of 1.9- and 2.8-fold compared to recent reports. The developed pretreatment methods demonstrated high efficiency at enhancing enzymatic hydrolysis on various lignocellulosic substrates.

Keywords: lignocellulosic biomass, pretreatment, salt, sugarcane leaves

Procedia PDF Downloads 264
2377 Interest Rate Prediction with Taylor Rule

Authors: T. Bouchabchoub, A. Bendahmane, A. Haouriqui, N. Attou

Abstract:

This paper presents simulation results of Forex predicting model equations in order to give approximately a prevision of interest rates. First, Hall-Taylor (HT) equations have been used with Taylor rule (TR) to adapt them to European and American Forex Markets. Indeed, initial Taylor Rule equation is conceived for all Forex transactions in every States: It includes only one equation and six parameters. Here, the model has been used with Hall-Taylor equations, initially including twelve equations which have been reduced to only three equations. Analysis has been developed on the following base macroeconomic variables: Real change rate, investment wages, anticipated inflation, realized inflation, real production, interest rates, gap production and potential production. This model has been used to specifically study the impact of an inflation shock on macroeconomic director interest rates.

Keywords: interest rate, Forex, Taylor rule, production, European Central Bank (ECB), Federal Reserve System (FED).

Procedia PDF Downloads 527
2376 Machine Learning Application in Shovel Maintenance

Authors: Amir Taghizadeh Vahed, Adithya Thaduri

Abstract:

Shovels are the main components in the mining transportation system. The productivity of the mines depends on the availability of shovels due to its high capital and operating costs. The unplanned failure/shutdowns of a shovel results in higher repair costs, increase in downtime, as well as increasing indirect cost (i.e. loss of production and company’s reputation). In order to mitigate these failures, predictive maintenance can be useful approach using failure prediction. The modern mining machinery or shovels collect huge datasets automatically; it consists of reliability and maintenance data. However, the gathered datasets are useless until the information and knowledge of data are extracted. Machine learning as well as data mining, which has a major role in recent studies, has been used for the knowledge discovery process. In this study, data mining and machine learning approaches are implemented to detect not only anomalies but also patterns from a dataset and further detection of failures.

Keywords: maintenance, machine learning, shovel, conditional based monitoring

Procedia PDF Downloads 219
2375 Theoretical and ML-Driven Identification of a Mispriced Credit Risk

Authors: Yuri Katz, Kun Liu, Arunram Atmacharan

Abstract:

Due to illiquidity, mispricing on Credit Markets is inevitable. This creates huge challenges to banks and investors as they seek to find new ways of risk valuation and portfolio management in a post-credit crisis world. Here, we analyze the difference in behavior of the spread-to-maturity in investment and high-yield categories of US corporate bonds between 2014 and 2023. Deviation from the theoretical dependency of this measure in the universe under study allows to identify multiple cases of mispriced credit risk. Remarkably, we observe mispriced bonds in both categories of credit ratings. This identification is supported by the application of the state-of-the-art machine learning model in more than 90% of cases. Noticeably, the ML-driven model-based forecasting of a category of bond’s credit ratings demonstrate an excellent out-of-sample accuracy (AUC = 98%). We believe that these results can augment conventional valuations of credit portfolios.

Keywords: credit risk, credit ratings, bond pricing, spread-to-maturity, machine learning

Procedia PDF Downloads 80
2374 A Multipurpose Inertial Electrostatic Magnetic Confinement Fusion for Medical Isotopes Production

Authors: Yasser R. Shaban

Abstract:

A practical multipurpose device for medical isotopes production is most wanted for clinical centers and researches. Unfortunately, the major supply of these radioisotopes currently comes from aging sources, and there is a great deal of uneasiness in the domestic market. There are also many cases where the cost of certain radioisotopes is too high for their introduction on a commercial scale even though the isotopes might have great benefits for society. The medical isotopes such as radiotracers PET (Positron Emission Tomography), Technetium-99 m, and Iodine-131, Lutetium-177 by is feasible to be generated by a single unit named IEMC (Inertial Electrostatic Magnetic Confinement). The IEMC fusion vessel is the upgrading unit of the Inertial Electrostatic Confinement IEC fusion vessel. Comprehensive experimental works on IEC were carried earlier with promising results. The principle of inertial electrostatic magnetic confinement IEMC fusion is based on forcing the binary fuel ions to interact in the opposite directions in ions cyclotrons orbits with different kinetic energies in order to have equal compression (forces) and with different ion cyclotron frequency ω in order to increase the rate of intersection. The IEMC features greater fusion volume than IEC by several orders of magnitude. The particles rate from the IEMC approach are projected to be 8.5 x 10¹¹ (p/s), ~ 0.2 microampere proton, for D/He-3 fusion reaction and 4.2 x 10¹² (n/s) for D/T fusion reaction. The projected values of particles yield (neutrons and protons) are suitable for medical isotope productions on-site by a single unit without any change in the fusion vessel but only the fuel gas. The PET radiotracers are usually produced on-site by medical ion accelerator whereas Technetium-99m (Tc-99m) is usually produced off-site from the irradiation facilities of nuclear power plants. Typically, hospitals receive molybdenum-99 isotope container; the isotope decays to Tc-99mwith half-life time 2.75 days. Even though the projected current from IEMC is lesser than the proton current from the medical ion accelerator but still the IEMC vessel is simpler, and reduced in components and power consumption which add a new value of populating the PET radiotracers in most clinical centers. On the other hand, the projected neutrons flux from the IEMC is lesser than the thermal neutron flux at the irradiation facilities of nuclear power plants, but in the IEMC case the productions of Technetium-99m is suggested to be at the resonance region of which the resonance integral cross section is two orders of magnitude higher than the thermal flux. Thus it can be said the net activity from both is evened. Besides, the particle accelerator cannot be considered a multipurpose particles production unless a significant change is made to the accelerator to change from neutrons mode to protons mode or vice versa. In conclusion, the projected fusion yield from IEMC is a straightforward since slightly change in the primer IEC and ion source is required.

Keywords: electrostatic versus magnetic confinement fusion vessel, ion source, medical isotopes productions, neutron activation

Procedia PDF Downloads 343
2373 Cereal Bioproducts Conversion to Higher Value Feed by Using Pediococcus Strains Isolated from Spontaneous Fermented Cereal, and Its Influence on Milk Production of Dairy Cattle

Authors: Vita Krungleviciute, Rasa Zelvyte, Ingrida Monkeviciene, Jone Kantautaite, Rolandas Stankevicius, Modestas Ruzauskas, Elena Bartkiene

Abstract:

The environmental impact of agricultural bioproducts from the processing of food crops is an increasing concern worldwide. Currently, cereal bran has been used as a low-value ingredient for both human consumption and animal feed. The most popular bioprocessing technologies for cereal bran nutritional and technological functionality increasing are enzymatic processing and fermentation, and the most popular starters in fermented feed production are lactic acid bacteria (LAB) including pediococci. However, the ruminant digestive system is unique, there are billions of microorganisms which help the cow to digest and utilize nutrients in the feed. To achieve efficient feed utilization and high milk yield, the microorganisms must have optimal conditions, and the disbalance of this system is highly undesirable. Pediococcus strains Pediococcus acidilactici BaltBio01 and Pediococcus pentosaceus BaltBio02 from spontaneous fermented rye were isolated (by rep – PCR method), identified, and characterized by their growth (by Thermo Bioscreen C automatic turbidometer), acidification rate (2 hours in 2.5 pH), gas production (Durham method), and carbohydrate metabolism (by API 50 CH test ). Antimicrobial activities of isolated pediococcus against variety of pathogenic and opportunistic bacterial strains previously isolated from diseased cattle, and their resistance to antibiotics were evaluated (EFSA-FEEDAP method). The isolated pediococcus strains were cultivated in barley/wheat bran (90 / 10, m / m) substrate, and developed supplements, with high content of valuable pediococcus, were used for Lithuanian black and white dairy cows feeding. In addition, the influence of supplements on milk production and composition was determined. Milk composition was evaluated by the LactoScope FTIR” FT1.0. 2001 (Delta Instruments, Holland). P. acidilactici BaltBio01 and P. pentosaceus BaltBio02 demonstrated versatile carbohydrate metabolism, grown at 30°C and 37°C temperatures, and acidic tolerance. Isolated pediococcus strains showed to be non resistant to antibiotics, and having antimicrobial activity against undesirable microorganisms. By barley/wheat bran utilisation using fermentation with selected pediococcus strains, it is possible to produce safer (reduced Enterobacteriaceae, total aerobic bacteria, yeast and mold count) feed stock with high content of pediococcus. Significantly higher milk yield (after 33 days) by using pediococcus supplements mix for dairy cows feeding could be obtained, while similar effect by using separate strains after 66 days of feeding could be achieved. It can be stated that barley/wheat bran could be used for higher value feed production in order to increase milk production. Therefore, further research is needed to identify what is the main mechanism of the positive action.

Keywords: barley/wheat bran, dairy cattle, fermented feed, milk, pediococcus

Procedia PDF Downloads 307
2372 Microwave Assisted Synthesis and Metal Complexes of Some Copolymers Based on Itaconic Acid

Authors: Mohamed H. El-Newehy, Sameh M. Osman, Moamen S. Refat, Salem S. Al-Deyab, Ayman El-Faham

Abstract:

The two copolymers itaconic acid-methyl methacrylate and itaconic acid-acrylamide have been prepared in different ratio by radical copolymerization in the presence of azobisisobutyronitrile (AIBN) as initiator and using 2-butanone as reaction medium using microwave irradiation. The microwave technique is safe, fast, and gives high yield of the products with high purity in an optimum time, comparing to the traditional conventional heating. All the prepared copolymers were characterized by FT-IR, thermal analysis and elemental microanalysis. The itaconic acid-based copolymers showed a good sensitivity in alkaline media for scavenging Cu (II) and Pb (II). The chelation behavior of both Cu (II) and Pb (II) complexes were checked using FT-IR, thermogravimetric analysis (TGA), and differential scanning calorimetery (DSC). The infrared data are in a good agreement with the coordination through carboxylate-to-metal, in which the copolymers acting as a bidentate ligand.

Keywords: microwave synthesis, itaconic acid, copolymerization, scavenging, thermal stability

Procedia PDF Downloads 458
2371 Experimental Chip/Tool Temperature FEM Model Calibration by Infrared Thermography: A Case Study

Authors: Riccardo Angiuli, Michele Giannuzzi, Rodolfo Franchi, Gabriele Papadia

Abstract:

Temperature knowledge in machining is fundamental to improve the numerical and FEM models used for the study of some critical process aspects, such as the behavior of the worked material and tool. The extreme conditions in which they operate make it impossible to use traditional measuring instruments; infrared thermography can be used as a valid measuring instrument for temperature measurement during metal cutting. In the study, a large experimental program on superduplex steel (ASTM A995 gr. 5A) cutting was carried out, the relevant cutting temperatures were measured by infrared thermography when certain cutting parameters changed, from traditional values to extreme ones. The values identified were used to calibrate a FEM model for the prediction of residual life of the tools. During the study, the problems related to the detection of cutting temperatures by infrared thermography were analyzed, and a dedicated procedure was developed that could be used during similar processing.

Keywords: machining, infrared thermography, FEM, temperature measurement

Procedia PDF Downloads 184
2370 Comparison Physicochemical Properties of Hexane Extracted Aniseed Oil from Cold Press Extraction Residue and Cold Press Aniseed Oil

Authors: Derya Ören, Şeyma Akalın

Abstract:

Cold pres technique is a traditional method to obtain oil. The cold-pressing procedure, involves neither heat nor chemical treatments, so cold press technique has low oil yield and cold pressed herbal material residue still contains some oil. In this study, the oil that is remained in the cold pressed aniseed extracted with hegzan and analysed to determine physicochemical properties and quality parameters. It is found that the aniseed after cold press process contains % 10 oil. Other analysis parametres free fatty acid (FFA) is 2,1 mgKOH/g, peroxide value is 7,6 meq02/kg. Cold pressed aniseed oil values are determined for fatty acid (FFA) value as 2,1 mgKOH/g, peroxide value 4,5 meq02/kg respectively. Also fatty acid composition is analysed, it is found that both of these oil have same fatty acid composition. The main fatty acids are; oleic, linoleic, and palmitic acids.

Keywords: aniseed oil, cold press, extraction, residue

Procedia PDF Downloads 405
2369 The Effect of Material Properties and Volumetric Changes in Phase Transformation to the Final Residual Stress of Welding Process

Authors: Djarot B. Darmadi

Abstract:

The wider growing Finite Element Method (FEM) application is caused by its benefits of cost saving and environment friendly. Also, by using FEM a deep understanding of certain phenomenon can be achieved. This paper observed the role of material properties and volumetric change when Solid State Phase Transformation (SSPT) takes place in residual stress formation due to a welding process of ferritic steels through coupled Thermo-Metallurgy-Mechanical (TMM) analysis. The correctness of FEM residual stress prediction was validated by experiment. From parametric study of the FEM model, it can be concluded that the material properties change tend to over-predicts residual stress in the weld center whilst volumetric change tend to underestimates it. The best final result is the compromise of both by incorporates them in the model which has a better result compared to a model without SSPT.

Keywords: residual stress, ferritic steels, SSPT, coupled-TMM

Procedia PDF Downloads 270
2368 Analysis of User Data Usage Trends on Cellular and Wi-Fi Networks

Authors: Jayesh M. Patel, Bharat P. Modi

Abstract:

The availability of on mobile devices that can invoke the demonstrated that the total data demand from users is far higher than previously articulated by measurements based solely on a cellular-centric view of smart-phone usage. The ratio of Wi-Fi to cellular traffic varies significantly between countries, This paper is shown the compression between the cellular data usage and Wi-Fi data usage by the user. This strategy helps operators to understand the growing importance and application of yield management strategies designed to squeeze maximum returns from their investments into the networks and devices that enable the mobile data ecosystem. The transition from unlimited data plans towards tiered pricing and, in the future, towards more value-centric pricing offers significant revenue upside potential for mobile operators, but, without a complete insight into all aspects of smartphone customer behavior, operators will unlikely be able to capture the maximum return from this billion-dollar market opportunity.

Keywords: cellular, Wi-Fi, mobile, smart phone

Procedia PDF Downloads 365
2367 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries

Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco

Abstract:

SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.

Keywords: forecasting, ordinary differential equations, SARS-COV-2 epidemic, SIR model

Procedia PDF Downloads 152
2366 New Approach for Load Modeling

Authors: Slim Chokri

Abstract:

Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression

Procedia PDF Downloads 435
2365 Optical and Mechanical Characterization of Severe Plastically Deformed Copper Alloy Processed by Constrained Groove Pressing

Authors: Jaya Prasad Vanam, Vinay Anurag P, Vidya Sravya N S, Kishore Babu Nagamothu

Abstract:

Constrained Groove Pressing (CGP) is one of the severe plastic deformation technique (SPD) by which we can process Ultra Fine Grained (UFG)/plane metallic materials. This paper discusses the effects of CGP on Cu-Zn alloy specimen at room temperature. A comprehensive study is made on the structural and mechanical properties of Brass specimen before and after Constrained grooves Pressing. Entire process is simulated in AFDEX CAE Software. It is found that most of the properties are superior with respect to brass samples such as yield strength, ultimate tensile strength, hardness, strain rate, etc., and they are found to be better for the CGP processed specimen. The results are discussed with respective graphs.

Keywords: constrained groove pressing, AFDEX, ultra fine grained materials, severe plastic deformation technique

Procedia PDF Downloads 156
2364 Combined Machine That Fertilizes Evenly under Plowing on Slopes and Planning an Experiment

Authors: Qurbanov Huseyn Nuraddin

Abstract:

The results of scientific research on a machine that pours an equal amount of mineral fertilizer under the soil to increase the productivity of grain in mountain farming and obtain quality grain are substantiated. The average yield of the crop depends on the nature of the distribution of fertilizers in the soil. Therefore, the study of effective energy-saving methods for the application of mineral fertilizers is the actual task of modern agriculture. Depending on the type and variety of plants in mountain farming, there is an optimal norm of mineral fertilizers. Applying an equal amount of fertilizer to the soil is one of the conditions that increase the efficiency of the field. One of the main agro-technical indicators of the work of mineral fertilizing machines is to ensure equal distribution of mineral fertilizers in the field. Taking into account the above-mentioned issues, a combined plough has been improved in our laboratory.

Keywords: combined plough, mineral fertilizers, sprinkle fluently, fertilizer rate, cereals

Procedia PDF Downloads 73
2363 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study

Authors: Laidi Maamar, Hanini Salah

Abstract:

The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.

Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria

Procedia PDF Downloads 499
2362 Possibility of Prediction of Death in SARS-Cov-2 Patients Using Coagulogram Analysis

Authors: Omonov Jahongir Mahmatkulovic

Abstract:

Purpose: To study the significance of D-dimer (DD), prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), and fibrinogen coagulation parameters (Fg) in predicting the course, severity and prognosis of COVID-19. Source and method of research: From September 15, 2021, to November 5, 2021, 93 patients aged 25 to 60 with suspected COVID-19, who are under inpatient treatment at the multidisciplinary clinic of the Tashkent Medical Academy, were retrospectively examined. DD, PT, APTT, and Fg were studied in dynamics and studied changes. Results: Coagulation disorders occurred in the early stages of COVID-19 infection with an increase in DD in 54 (58%) patients and an increase in Fg in 93 (100%) patients. DD and Fg levels are associated with the clinical classification. Of the 33 patients who died, 21 had an increase in DD in the first laboratory study, 27 had an increase in DD in the second and third laboratory studies, and 15 had an increase in PT in the third test. The results of the ROC analysis of mortality showed that the AUC DD was three times 0.721, 0.801, and 0.844, respectively; PT was 0.703, 0.845, and 0.972. (P<0:01). Conclusion”: Coagulation dysfunction is more common in patients with severe and critical conditions. DD and PT can be used as important predictors of mortality from COVID-19.

Keywords: Covid19, DD, PT, Coagulogram analysis, APTT

Procedia PDF Downloads 107
2361 After-Cooling Analysis of RC Structural Members Exposed to High Temperature by Using Numerical Approach

Authors: Ju-Young Hwang, Hyo-Gyoung Kwak

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical nonlinearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC, high temperature, after-cooling analysis, nonlinear analysis

Procedia PDF Downloads 414
2360 Olive Seed Tannins as Bioadhesives for Manufacturing Wood-Based Panels

Authors: Ajith K. A. Gedara, Iva Chianella, Jose L. Endrino, Qi Zhang

Abstract:

The olive seed is a by-product of the olive oil production industry. Biuret test and ferric chloride test revealed that water or alkali NaOH extractions of olive seed flour are rich in proteins and tannins. Both protein and tannins are well-known bio-based wood adhesives in the wood-based panel industry. In general, tannins-based adhesives show better mechanical and physical properties than protein wood adhesives. This paper explores different methods of extracting tannins from olive seed flour against the tannins yield and their applications as bio-based adhesives in wood-based panels. Once investigated, the physical and the mechanical properties of wood-based panels made using bio-adhesives based tannins extracted from olive seed flour revealed that the resulting products seemed to satisfy the Japanese Industrial Standards JIS A 5908:2015.

Keywords: bio-adhesives, olive seed flour, tannins, wood-based panels

Procedia PDF Downloads 151
2359 Study of Salinity Stress and Calcium Interaction on Morphological and Physiological Traits of Vicia villosa under Hydroponic Condition

Authors: Raheleh Khademian, Roghayeh Aminian

Abstract:

For the study of salinity stress on Vicia villosa and calcium effect for modulation of that, an experiment was conducted under hydroponic condition, and some important morphological and physiological characteristics were evaluated. This experiment was conducted as a factorial based on randomized complete design with three replications. The treatments include salinity stress in three levels (0, 50, and 100 mM NaCl) and calcium in two levels (content in Hoagland solution and double content). The results showed that all morphological and physiological traits include root and shoot length, root and shoot wet and dry weight, leaf area, leaf chlorophyll content, RWC, CMS, and biological yield was significantly different from the control and is affected by the salinity stress severely. But, calcium effect on them was not significant despite of decreasing salinity effect.

Keywords: Vicia villossa, salinity stress, calcium, hydroponic

Procedia PDF Downloads 264
2358 Mesotrione and Tembotrione Applied Alone or in Tank-Mix with Atrazine on Weed Control in Elephant Grass

Authors: Alexandre M. Brighenti

Abstract:

The experiment was carried out in Valença, Rio de Janeiro State, Brazil, to evaluate the selectivity and weed control of carotenoid biosynthesis inhibiting herbicides applied alone or in combination with atrazine in elephant grass crop. The treatments were as follows: mesotrione (0.072 and 0.144 kg ha-1 + 0.5% v/v mineral oil - Assist®), tembotrione (0.075 and 0.100 kg ha-1 + 0.5% v/v mineral oil - Aureo®), atrazine + mesotrione (1.25 + 0.072 kg ha-1 + 0.5% v/v mineral oil - Assist®), atrazine + tembotrione (1.25 + 0.100 kg ha-1 + 0.5% v/v mineral oil - Aureo®), atrazine + mesotrione (1.25 + 0.072 kg ha-1), atrazine + tembotrione (1.25 + 0.100 kg ha-1) and two controls (hoed and unhoed check). Two application rates of mesotrione with the addition of mineral oil or the tank mixture of atrazine plus mesotrione, with or without the addition of mineral oil, did not provide injuries capable to reduce elephant grass forage yield. Tembotrione was phytotoxic to elephant grass when applied with mineral oil. Atrazine and tembotrione in a tank-mix, with or without mineral oil, were also phytotoxic to elephant grass. All treatments provided satisfactory weed control.

Keywords: forage, Napier grass, pasture, Pennisetum purpureum, weeds

Procedia PDF Downloads 285
2357 Tools for Analysis and Optimization of Standalone Green Microgrids

Authors: William Anderson, Kyle Kobold, Oleg Yakimenko

Abstract:

Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.

Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks

Procedia PDF Downloads 282