Search results for: success metrics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3030

Search results for: success metrics

720 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients' Cohorts: A Case Study in Scotland

Authors: Raptis Sotirios

Abstract:

Health and social care (HSc) services planning and scheduling are facing unprecedented challenges due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven can help to improve policies, plan and design services provision schedules using algorithms assist healthcare managers’ to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as CART, random forests (RF), and logistic regression (LGR). The significance tests Chi-Squared test and Student test are used on data over a 39 years span for which HSc services data exist for services delivered in Scotland. The demands are probabilistically associated through statistical hypotheses that assume that the target service’s demands are statistically dependent on other demands as a NULL hypothesis. This linkage can be confirmed or not by the data. Complementarily, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus groups of services. Statistical tests confirm ML couplings making the prediction also statistically meaningful and prove that a target service can be matched reliably to other services, and ML shows these indicated relationships can also be linear ones. Zero paddings were used for missing years records and illustrated better such relationships both for limited years and in the entire span offering long term data visualizations while limited years groups explained how well patients numbers can be related in short periods or can change over time as opposed to behaviors across more years. The prediction performance of the associations is measured using Receiver Operating Characteristic(ROC) AUC and ACC metrics as well as the statistical tests, Chi-Squared and Student. Co-plots and comparison tables for RF, CART, and LGR as well as p-values and Information Exchange(IE), are provided showing the specific behavior of the ML and of the statistical tests and the behavior using different learning ratios. The impact of k-NN and cross-correlation and C-Means first groupings is also studied over limited years and the entire span. It was found that CART was generally behind RF and LGR, but in some interesting cases, LGR reached an AUC=0 falling below CART, while the ACC was as high as 0.912, showing that ML methods can be confused padding or by data irregularities or outliers. On average, 3 linear predictors were sufficient, LGR was found competing RF well, and CART followed with the same performance at higher learning ratios. Services were packed only if when significance level(p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited years, across various services sectors, learning configurations, as confirmed using statistical hypotheses.

Keywords: class, cohorts, data frames, grouping, prediction, prob-ability, services

Procedia PDF Downloads 238
719 Modelling of Reactive Methodologies in Auto-Scaling Time-Sensitive Services With a MAPE-K Architecture

Authors: Óscar Muñoz Garrigós, José Manuel Bernabeu Aubán

Abstract:

Time-sensitive services are the base of the cloud services industry. Keeping low service saturation is essential for controlling response time. All auto-scalable services make use of reactive auto-scaling. However, reactive auto-scaling has few in-depth studies. This presentation shows a model for reactive auto-scaling methodologies with a MAPE-k architecture. Queuing theory can compute different properties of static services but lacks some parameters related to the transition between models. Our model uses queuing theory parameters to relate the transition between models. It associates MAPE-k related times, the sampling frequency, the cooldown period, the number of requests that an instance can handle per unit of time, the number of incoming requests at a time instant, and a function that describes the acceleration in the service's ability to handle more requests. This model is later used as a solution to horizontally auto-scale time-sensitive services composed of microservices, reevaluating the model’s parameters periodically to allocate resources. The solution requires limiting the acceleration of the growth in the number of incoming requests to keep a constrained response time. Business benefits determine such limits. The solution can add a dynamic number of instances and remains valid under different system sizes. The study includes performance recommendations to improve results according to the incoming load shape and business benefits. The exposed methodology is tested in a simulation. The simulator contains a load generator and a service composed of two microservices, where the frontend microservice depends on a backend microservice with a 1:1 request relation ratio. A common request takes 2.3 seconds to be computed by the service and is discarded if it takes more than 7 seconds. Both microservices contain a load balancer that assigns requests to the less loaded instance and preemptively discards requests if they are not finished in time to prevent resource saturation. When load decreases, instances with lower load are kept in the backlog where no more requests are assigned. If the load grows and an instance in the backlog is required, it returns to the running state, but if it finishes the computation of all requests and is no longer required, it is permanently deallocated. A few load patterns are required to represent the worst-case scenario for reactive systems: the following scenarios test response times, resource consumption and business costs. The first scenario is a burst-load scenario. All methodologies will discard requests if the rapidness of the burst is high enough. This scenario focuses on the number of discarded requests and the variance of the response time. The second scenario contains sudden load drops followed by bursts to observe how the methodology behaves when releasing resources that are lately required. The third scenario contains diverse growth accelerations in the number of incoming requests to observe how approaches that add a different number of instances can handle the load with less business cost. The exposed methodology is compared against a multiple threshold CPU methodology allocating/deallocating 10 or 20 instances, outperforming the competitor in all studied metrics.

Keywords: reactive auto-scaling, auto-scaling, microservices, cloud computing

Procedia PDF Downloads 96
718 Smart Container Farming: Innovative Urban Strawberry Farming Model from Japan to the World

Authors: Nishantha Giguruwa

Abstract:

This research investigates the transformative potential of smart container farming, building upon the successful cultivation of Japanese mushrooms at Sakai Farms in Aichi Prefecture, Japan, under the strategic collaboration with the Daikei Group. Inspired by this success, the study focuses on establishing an advanced urban strawberry farming laboratory with the aim of understanding strawberry farming technologies, fostering collaboration, and strategizing marketing approaches for both local and global markets. Positioned within the business framework of Sakai Farms and the Daikei Group, the study underscores the sustainability and forward-looking solutions offered by smart container farming in agriculture. The global significance of strawberries is emphasized, acknowledging their economic and cultural importance. The detailed examination of strawberry farming intricacies informs the technological framework developed for smart containers, implemented at Sakai Farms. Integral to this research is the incorporation of controlled bee pollination, a groundbreaking addition to the smart container farming model. The study anticipates future trends, outlining avenues for continuing exploration, stakeholder collaborations, policy considerations, and expansion strategies. Notably, the author expresses a strategic intent to approach the global market, leveraging the foreign student/faculty base at Ritsumeikan Asia Pacific University, where the author is affiliated. This unique approach aims to disseminate the research findings globally, contributing to the broader landscape of agricultural innovation. The integration of controlled bee pollination within this innovative framework not only enhances sustainability but also marks a significant stride in the evolution of urban agriculture, aligning with global agricultural trends.

Keywords: smart container farming, urban agriculture, strawberry farming technologies, controlled bee pollination, agricultural innovation

Procedia PDF Downloads 58
717 The Revitalization of South-south Cooperation: Evaluation of South African Direct Investment in Cameroon

Authors: Albert Herve Nkolo Mpoko

Abstract:

The Foreign Direct Investment (FDI) landscape in Cameroon has garnered significant attention from both European and Asian nations due to perceived benefits such as capital infusion, technology transfer, and potential for economic expansion. However, it is noteworthy that South Africa's investment presence remains comparatively subdued in Cameroon, lagging behind that of Europe and Asia. Equally surprising is the limited footprint of Africa's economic powerhouse within other African economies. This study delved into four specific facets of South African investment in Cameroon. Initially, it focused on identifying South African companies operating within Cameroon. Subsequently, the analysis encompassed assessing the correlation between South African investment and poverty alleviation. Additionally, the study examined the nexus between South African investment and technological advancement, and underscored the significance of investment incentives in both countries Key findings of the research shed light on several crucial points. South Africa ought to reassess its economic engagement with Francophone Africa, particularly Cameroon. Despite existing policies aimed at fostering investment, there remains substantial ground to cover in this realm. The proliferation of South African enterprises in Cameroon holds the potential to ameliorate poverty and foster employment opportunities across both nations. The advent of South African firms in Cameroon can catalyse technological advancements within the region. Data collection involved surveying 100 executives from the respective administrations and conducting ten interviews. The gathered data underwent triangulation, wherein quantitative findings were juxtaposed with qualitative insights. In conclusion, the study underscores the underutilization of Cameroon by South Africa, emphasizing the untapped potential for mutual economic growth. Furthermore, it posits that the success of South Africa's multinational corporations abroad could serve as a pivotal pillar for sustaining its domestic economy.

Keywords: FDI, transfer of technology, South-South cooperation, mutual economic growth

Procedia PDF Downloads 49
716 Rutin C Improve Osseointegration of Dental Implant and Healing of Soft Tissue

Authors: Noha Mohammed Ismael Awad Eladal, Aala Shoukry Emara

Abstract:

Background: Wound healing after dental implant surgery is critical to the procedure's success. The aim of this study was to explore the effects of rutin+vitamin C supplementation in wound healing following the placement of dental implants. Methodology: There were 20 participants in this randomized controlled clinical trial who needed dental implants to replace missing teeth. Patients were divided into two groups, and group A received dental implants. Group B received dental implants with vitamin C administration. Follow-up appointments were performed on day 3, day 7, and day 14 post-surgery, during which soft tissue healing and pain response scores were evaluated using the visual analog scale. Postoperative digital panoramas were taken immediately after surgery, 3 months and 6 months postoperatively. Changes in bone density along with the bone-implant interface at the mesial, distal and apical sides were assessed using the digora software. Results: An independent t-test was used to compare the means of variables between the two groups. At the same time, repeated measures were employed to compare the means of variables between two groups. ANOVA was used to compare bone density for the same group at different dates. Significant increased differences were observed at the mesial, distal and apical sides Surrounding the implants of both groups per time. However, the rate of increase was significantly higher in group B The mean difference at the mesial side after 6 months was 21.99 ± 5.48 in the group B and 14.21 ± 4.95 in group A, while it read 21.74 ± 3.56 in the group B and 10.78 ± 3.90 in group A at the distal side and was 18.90 ± 5.91 in the group B and 10.39 ± 3.49 group A at the apical side. Significance was recorded at P = 0.004, P = 0.0001, and 0.001 at the mesial, distal and apical sides respectively. The mean pain score and wound healing were significantly higher in group A as compared to group B, respectively. Conclusion: The rutin c + vitamin c group significantly promoted bone healing and speeded up the osseointegration process and improved soft tissue healing.

Keywords: osseointegration, soft tissue, rutin c, dental implant

Procedia PDF Downloads 152
715 Integrated Mass Rapid Transit System for Smart City Project in Western India

Authors: Debasis Sarkar, Jatan Talati

Abstract:

This paper is an attempt to develop an Integrated Mass Rapid Transit System (MRTS) for a smart city project in Western India. Integrated transportation is one of the enablers of smart transportation for providing a seamless intercity as well as regional level transportation experience. The success of a smart city project at the city level for transportation is providing proper integration to different mass rapid transit modes by way of integrating information, physical, network of routes fares, etc. The methodology adopted for this study was primary data research through questionnaire survey. The respondents of the questionnaire survey have responded on the issues about their perceptions on the ways and means to improve public transport services in urban cities. The respondents were also required to identify the factors and attributes which might motivate more people to shift towards the public mode. Also, the respondents were questioned about the factors which they feel might restrain the integration of various modes of MRTS. Furthermore, this study also focuses on developing a utility equation for respondents with the help of multiple linear regression analysis and its probability to shift to public transport for certain factors listed in the questionnaire. It has been observed that for shifting to public transport, the most important factors that need to be considered were travel time saving and comfort rating. Also, an Integrated MRTS can be obtained by combining metro rail with BRTS, metro rail with monorail, monorail with BRTS and metro rail with Indian railways. Providing a common smart card to transport users for accessing all the different available modes would be a pragmatic solution towards integration of the available modes of MRTS.

Keywords: mass rapid transit systems, smart city, metro rail, bus rapid transit system, multiple linear regression, smart card, automated fare collection system

Procedia PDF Downloads 272
714 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 95
713 Exploring Key Elements of Successful Distance Learning Programs: A Case Study in Palau

Authors: Maiya Smith, Tyler Thorne

Abstract:

Background: The Pacific faces multiple healthcare crises, including high rates of noncommunicable diseases, infectious disease outbreaks, and susceptibility to natural disasters. These issues are expected to worsen in the coming decades, increasing the burden on an already understaffed healthcare system. Telehealth is not new to the Pacific, but improvements in technology and accessibility have increased its utility and have already proven to reduce costs and increase access to care in remote areas. Telehealth includes distance learning; a form of education that can help alleviate many healthcare issues by providing continuing education to healthcare professionals and upskilling staff, while decreasing costs. This study examined distance learning programs at the Ministry of Health in the Pacific nation of Palau and identified key elements to their successful distance learning programs. Methods: Staff at the Belau National Hospital in Koror, Palau as well as private practitioners were interviewed to assess distance learning programs utilized. This included physicians, IT personnel, public health members, and department managers of allied health. In total, 36 people were interviewed. Standardized questions and surveys were conducted in person throughout the month of July 2019. Results: Two examples of successful distance learning programs were identified. Looking at the factors that made these programs successful, as well as consulting with staff who undertook other distance learning programs, four factors for success were determined: having a cohort, having a facilitator, dedicated study time off from work, and motivation. Discussion: In countries as geographically isolated as the Pacific, with poor access to specialists and resources, telehealth has the potential to radically change how healthcare is delivered. Palau shares similar resources and issues as other countries in the Pacific and the lessons learned from their successful programs can be adapted to help other Pacific nations develop their own distance learning programs.

Keywords: distance learning, Pacific, Palau, telehealth

Procedia PDF Downloads 143
712 On-Farm Research on Organic Fruits Production in the Eastern Thailand

Authors: Sali Chinsathit, Haruthai Kaenla

Abstract:

Organic agriculture has become a major policy theme for agricultural development in Thailand since October 2005. Organic farming is enlisted as an important national agenda, to promote safe food and national export, and many government authorities have initiated projects and activities centered on organic farming promotion. Currently, Thailand has the market share of about 32 million US$ a year by exporting organic products of rice, vegetables, tea, fruits and a few medicinal herbs. There is high potential in organic crop production as there is the tropical environment promoting crop growth and leader farmer in organic farming. However, organic sector is relatively small (0.2%) comparing with conventional agricultural area, since there are many factors affecting farmers’ adoption and success in organic farming. The objective of this project was to get the organic production technology for at least 3 organic crops. The treatment and method were complied with Thai Organic Standard, and were mainly concerned on increase plant biodiversity and soil improvement by using organic fertilizer and bio-extract from fish, egg, plant and fruits. The bio-logical control, plant-extracts, and cultural practices were used to control insect pests and diseases of 3 crops including mangosteen (Garcinia mangostana L.), longkong (Aglaia dookoo Griff.) and banana (Musa (AA group)). The experiments were carried out at research centers of Department of Agriculture and farmers’ farms in Rayong and Chanthaburi provinces from 2009 to 2013. We found that both locations, plant biodiversity by intercropping mangosteen or longkong with banana and soil improvement with composts and bio-extract from fish could increased yield and farmers’ income by 6,835 US$/ha/year. Farmers got knowledge from these technologies to produce organic crops. The organic products were sold both in domestic and international countries. The organic production technologies were also environmental friendly and could be used as an alternative way for farmers in Thailand.

Keywords: banana, longkong, mangosteen, organic farming

Procedia PDF Downloads 361
711 Monitoring and Evaluation in Community-Based Tourism: An Analysis and Model

Authors: Ivan Gunass Govender, Andrea Giampiccoli

Abstract:

A developmental state should use community engagement to facilitate socio-economic development for disadvantaged groups and individual members of society through empowerment, social justice, sustainability, and self-reliance. In this regard, community-based tourism (CBT) as a growing market should be an indigenous effort aided by external facilitation. Since this form of tourism presents its own preconditions, characteristics, and challenges, it could be guided by higher education institutions engagement. In particular, the facilitation should not only serve to assist the community members to reach their own goals; but rather also focus on learning through knowledge creation and sharing with the engagement of higher education institutions. While the increased relevance of CBT has produced various CBT manuals (or handbooks/guidelines) documents aimed to ‘teach’ and assist various entities in CBT development, this research aims to analyse the current monitoring & evaluation (M&E) manuals and thereafter, propose an M&E model for CBT. It is important to mention that all too often effective monitoring is seldom carried out thus risking the long-term sustainability and improvement of the CBT ventures. Therefore, the proposed model will also consider some inputs external to the tourism field, but in relation to local economic development (LED) matters from the previously proposed development monitoring and evaluation system framework. M&E should be seen as fundamental components of any CBT initiative, and the whole CBT intervention should be evaluated. In this context, M&E in CBT should go beyond strict ‘numerical’ economic matters and should be understood in a holistic development. In addition, M&E in CBT should not consider issues in various ‘compartments’ such as tourists, tourism attractions, CBT owners/participants, and stakeholder engagement but as interdependent components of a macro-ecosystem. Finally, the external facilitation process should be structured in a way to promote community self-reliance in both the intervention and the M&E process. The research will attempt to propose an M&E model for CBT so as to enhance the CBT possibilities of long-term growth and success through effective collaborations with key stakeholders.

Keywords: community-based tourism, community-engagement, monitoring and evaluation, stakeholders

Procedia PDF Downloads 306
710 Gender, Age, and Race Differences in Self-Reported Reading Attitudes of College Students

Authors: Jill Villarreal, Kristalyn Cooksey, Kai Lloyd, Daniel Ha

Abstract:

Little research has been conducted to examine college students' reading attitudes, including students' perceptions of reading behaviors and reading abilities. This is problematic, as reading assigned course material is a critical component to an undergraduate student's academic success. For this study, flyers were electronically disseminated to instructors at 24 public and 10 private U.S. institutions in “Reading-Intensive Departments” including Psychology, Sociology, Education, Business, and Communications. We requested the online survey be completed as an in-class activity during the fall 2019 and spring 2020 semesters. All participants voluntarily completed the questionnaire anonymously. Of the participants, 280 self-identified their race as Black and 280 self-identified their race as White. Of the participants, 177 self-identified their gender as Male and 383 self-identified their Gender as Female. Participants ranged in age from 18-24. Factor analysis found four dimensions resulting from the questions regarding reading. The first we interpret as “Reading Proficiency”, accounted for 19% of the variability. The second dimension was “Reading Anxiety” (15%), the third was “Textbook Reading Ability” (9%), and the fourth was “Reading Enjoyment” (8%). Linear models on each of these dimensions revealed no effect of Age, Gender, Race, or Income on “Reading proficiency”. The linear model of “Reading Anxiety” showed a significant effect of race (p = 0.02), with higher anxiety in white students, as well as higher reading anxiety in female students (p < 0.001). The model of “Textbook Reading Ability” found a significant effect of race (p < 0.001), with higher textbook problems in white students. The model of “Reading Enjoyment” showed significant effects of race (p = 0.013) with more enjoyment for white students, gender (p = 0.001) with higher enjoyment for female students, and age (p = 0.033) with older students showing higher enjoyment. These findings suggest that gender, age, and race are important factors in many aspects of college students' reading attitudes. Further research will investigate possible causes for these differences. In addition, the effectiveness of college-level programs to reduce reading anxiety, promote the reading of textbooks, and foster a love of reading will be assessed.

Keywords: age, college, gender, race, reading

Procedia PDF Downloads 153
709 Regulating Transnational Corporations and Protecting Human Rights: Analyzing the Efficiency of International Legal Framework

Authors: Stellina Jolly

Abstract:

July 18th to August 19th 2013 has gone down in the history of India for undertaking the country’s first environment referendum. The Supreme Court had ruled that the Vedanta Group's bauxite mining project in the Niyamgiri Hills of Orissa will have to get clearance from the gram sabha, which will consider the cultural and religious rights of the tribals and forest dwellers living in Rayagada and Kalahandi districts. In the Niyamgiri hills, people of small tribal hamlets were asked to voice their opinion on bauxite mining in their habitat. The ministry has reiterated its stand that mining cannot be allowed on the Niyamgiri hills because it will affect the rights of the Dongria Kondhs. The tribal person who occupies the Niyamgiri Hills in Eastern India accomplished their first success in 2010 in their struggle to protect and preserve their existence, culture and land against Vedanta a London-based mining giant. In August, 2010 Government of India revoked permission for Vedanta Resources to mine bauxite from hills in Orissa State where the Dongria Kondh live as forest dwellers. This came after various protests and reports including amnesty report wherein it highlighted that an alumina refinery in eastern India operated by a subsidiary of mining company. Vedanta was accused of causing air and water pollution that threatens the health of local people and their access to water. The abuse of human rights by corporate is not a new issue it has occurred in Africa, Asia and other parts of the world. Paper focuses on the instances and extent of human right especially in terms of environment violations by corporations. Further Paper details on corporations and sustainable development. Paper finally comes up with certain recommendation including call for a declaration by United Nations on Corporate environment Human Rights Liability.

Keywords: environment, corporate, human rights, sustainable development

Procedia PDF Downloads 477
708 Improving Efficiencies of Planting Configurations on Draft Environment of Town Square: The Case Study of Taichung City Hall in Taichung, Taiwan

Authors: Yu-Wen Huang, Yi-Cheng Chiang

Abstract:

With urban development, lots of buildings are built around the city. The buildings always affect the urban wind environment. The accelerative situation of wind caused of buildings often makes pedestrians uncomfortable, even causes the accidents and dangers. Factors influencing pedestrian level wind including atmospheric boundary layer, wind direction, wind velocity, planting, building volume, geometric shape of the buildings and adjacent interference effects, etc. Planting has many functions including scraping and slowing urban heat island effect, creating a good visual landscape, increasing urban green area and improve pedestrian level wind. On the other hand, urban square is an important space element supporting the entrance to buildings, city landmarks, and activity collections, etc. The appropriateness of urban square environment usually dominates its success. This research focuses on the effect of tree-planting on the wind environment of urban square. This research studied the square belt of Taichung City Hall. Taichung City Hall is a cuboid building with a large mass opening. The square belt connects the front square, the central opening and the back square. There is often wind draft on the square belt. This phenomenon decreases the activities on the squares. This research applies tree-planting to improve the wind environment and evaluate the effects of two types of planting configuration. The Computational Fluid Dynamics (CFD) simulation analysis and extensive field measurements are applied to explore the improve efficiency of planting configuration on wind environment. This research compares efficiencies of different kinds of planting configuration, including the clustering array configuration and the dispersion, and evaluates the efficiencies by the SET*.

Keywords: micro-climate, wind environment, planting configuration, comfortableness, computational fluid dynamics (CFD)

Procedia PDF Downloads 312
707 The Beacon of Collective Hope: Mixed Method Study on the Participation of Indian Youth with Regard to Mass Demonstrations Fueled by Social Activism Media

Authors: Akanksha Lohmore, Devanshu Arya, Preeti Kapur

Abstract:

Rarely does the human mind look at the positive fallout of highly negative events. Positive psychology attempts to emphasize on the strengths and positives for human well-being. The present study examines the underpinning socio-cognitive factors of the protest movements regarding the gang rape case of December 16th, 2012 through the lens of positive psychology. A gamut of negative emotions came to the forum globally: of anger, shame, hatred, violence, death penalty for the perpetrators, amongst other equally strong. In relation to this incident, a number of questions can be raised. Can such a heinous crime have some positive inputs for contemporary society? What is it that has held people to protests for long even when they see faded lines of success in view? This paper explains the constant feeding of protests and continuation of movements by the robust model of Collective Hope by Snyder, a phenomenon unexplored by social psychologists. In this paper, mixed method approach was undertaken. Results confirmed the interaction of various socio-psychological factors that imitated the Snyders model of collective hope. Emergence of major themes was: Sense of Agency, Sense of Worthiness, Social Sharing and Common Grievances and Hope of Collective Efficacy. Statistical analysis (correlation and regression) showed significant relationship between media usage and occurrence of these themes among participants. Media-communication processes and educational theories for development of citizenship behavior can find implications from these results. Theory development as indicated by theorists working in the area of Social Psychology of Protests can be furthered by the direction of research.

Keywords: agency, collective, hope, positive psychology, protest, social media

Procedia PDF Downloads 361
706 Analyzing the Impact of Board Diversity on Firm Performance: Case Study of the Nigerian Banking Sector

Authors: Data Collete Bob-Manuel

Abstract:

In light of global financial crisis in 2007-2008 various factors including board diversity, succession planning and board evaluation have been identified as essential ingredients in ensuring board effectiveness. The composition and structure of the board is of outmost importance in assessing a board’s ability and success in achieving its objectives. Following the corporate frauds and accounting scandals such as Enron, WorldCom, Parmalat, Oceanic Bank Nigeria and AfriBank Nigeria, there has been a notable amount of research about the effectiveness of the board of directors in the corporate governance of firms. The need to have an effective board cannot be over emphasized as it results in a more stable and thriving company. There has been an overarching need in the business world for a more diverse workforce and board of directors. Big corporations like Texaco, Ford Motors and DuPont have stated how diversity at every level of the workforce including the board of directors has been cited as a vital element for a company to succeed. Developed countries are also seeking for companies to have a more diverse board. For instance Norway has implemented a 60:40 board ratio to all companies. In West Africa, particularly Nigeria, the topic of diversity has received little attention as most studies conducted have focused on the gender aspect of diversity, which results found to have a negative impact on firm performance. This paper seeks to examine four variables of diversity; age, ethnicity, gender and skills to weigh the positive or negative impact the variables have on firm performance, based on evidence from the Nigerian Financial sector. Information used for this study will be gathered from financial statements and annual reports so as to enable the researcher to reflect on past years to know what is being done differently today. The findings of this study will help the researcher to develop a working definition for ethnicity with regards to the West African context where the issue of “tribe” is a sensitive topic.

Keywords: Board of Directors, Board Diversity, Firm Performance, Nigeria

Procedia PDF Downloads 398
705 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 342
704 Impact of Contemporary Performance Measurement System and Organization Justice on Academic Staff Work Performance

Authors: Amizawati Mohd Amir, Ruhanita Maelah, Zaidi Mohd Noor

Abstract:

As part of the Malaysia Higher Institutions' Strategic Plan in promoting high-quality research and education, the Ministry of Higher Education has introduced various instrument to assess the universities performance. The aims are that university will produce more commercially-oriented research and continue to contribute in producing professional workforce for domestic and foreign needs. Yet the spirit of the success lies in the commitment of university particularly the academic staff to translate the vision into reality. For that reason, the element of fairness and justice in assessing individual academic staff performance is crucial to promote directly linked between university and individual work goals. Focusing on public research universities (RUs) in Malaysia, this study observes at the issue through the practice of university contemporary performance measurement system. Accordingly management control theory has conceptualized that contemporary performance measurement consisting of three dimension namely strategic, comprehensive and dynamic building upon equity theory, the relationships between contemporary performance measurement system and organizational justice and in turn the effect on academic staff work performance are tested based on online survey data administered on 365 academic staff from public RUs, which were analyzed using statistics analysis SPSS and Equation Structure Modeling. The findings validated the presence of strategic, comprehensive and dynamic in the contemporary performance measurement system. The empirical evidence also indicated that contemporary performance measure and procedural justice are significantly associated with work performance but not for distributive justice. Furthermore, procedural justice does mediate the relationship between contemporary performance measurement and academic staff work performance. Evidently, this study provides evidence on the importance of perceptions of justice towards influencing academic staff work performance. This finding may be a fruitful input in the setting up academic staff performance assessment policy.

Keywords: comprehensive, dynamic, distributive justice, contemporary performance measurement system, strategic, procedure justice, work performance

Procedia PDF Downloads 410
703 Infrared Spectroscopy in Tandem with Machine Learning for Simultaneous Rapid Identification of Bacteria Isolated Directly from Patients' Urine Samples and Determination of Their Susceptibility to Antibiotics

Authors: Mahmoud Huleihel, George Abu-Aqil, Manal Suleiman, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman

Abstract:

Urinary tract infections (UTIs) are considered to be the most common bacterial infections worldwide, which are caused mainly by Escherichia (E.) coli (about 80%). Klebsiella pneumoniae (about 10%) and Pseudomonas aeruginosa (about 6%). Although antibiotics are considered as the most effective treatment for bacterial infectious diseases, unfortunately, most of the bacteria already have developed resistance to the majority of the commonly available antibiotics. Therefore, it is crucial to identify the infecting bacteria and to determine its susceptibility to antibiotics for prescribing effective treatment. Classical methods are time consuming, require ~48 hours for determining bacterial susceptibility. Thus, it is highly urgent to develop a new method that can significantly reduce the time required for determining both infecting bacterium at the species level and diagnose its susceptibility to antibiotics. Fourier-Transform Infrared (FTIR) spectroscopy is well known as a sensitive and rapid method, which can detect minor molecular changes in bacterial genome associated with the development of resistance to antibiotics. The main goal of this study is to examine the potential of FTIR spectroscopy, in tandem with machine learning algorithms, to identify the infected bacteria at the species level and to determine E. coli susceptibility to different antibiotics directly from patients' urine in about 30minutes. For this goal, 1600 different E. coli isolates were isolated for different patients' urine sample, measured by FTIR, and analyzed using different machine learning algorithm like Random Forest, XGBoost, and CNN. We achieved 98% success in isolate level identification and 89% accuracy in susceptibility determination.

Keywords: urinary tract infections (UTIs), E. coli, Klebsiella pneumonia, Pseudomonas aeruginosa, bacterial, susceptibility to antibiotics, infrared microscopy, machine learning

Procedia PDF Downloads 171
702 Prospects of Low Immune Response Transplants Based on Acellular Organ Scaffolds

Authors: Inna Kornienko, Svetlana Guryeva, Anatoly Shekhter, Elena Petersen

Abstract:

Transplantation is an effective treatment option for patients suffering from different end-stage diseases. However, it is plagued by a constant shortage of donor organs and the subsequent need of a lifelong immunosuppressive therapy for the patient. Currently some researchers look towards using of pig organs to replace human organs for transplantation since the matrix derived from porcine organs is a convenient substitute for the human matrix. As an initial step to create a new ex vivo tissue engineered model, optimized protocols have been created to obtain organ-specific acellular matrices and evaluated their potential as tissue engineered scaffolds for culture of normal cells and tumor cell lines. These protocols include decellularization by perfusion in a bioreactor system and immersion-agitation on an orbital shaker with use of various detergents (SDS, Triton X-100) and freezing. Complete decellularization – in terms of residual DNA amount – is an important predictor of probability of immune rejection of materials of natural origin. However, the signs of cellular material may still remain within the matrix even after harsh decellularization protocols. In this regard, the matrices obtained from tissues of low-immunogenic pigs with α3Galactosyl-tranferase gene knock out (GalT-KO) may be a promising alternative to native animal sources. The research included a study of induced effect of frozen and fresh fragments of GalT-KO skin on healing of full-thickness plane wounds in 80 rats. Commercially available wound dressings (Ksenoderm, Hyamatrix and Alloderm) as well as allogenic skin were used as a positive control and untreated wounds were analyzed as a negative control. The results were evaluated on the 4th day after grafting, which corresponds to the time of start of normal wound epithelization. It has been shown that a non-specific immune response in models treated with GalT-Ko pig skin was milder than in all the control groups. Research has been performed to measure technical skin characteristics: stiffness and elasticity properties, corneometry, tevametry, and cutometry. These metrics enabled the evaluation of hydratation level, corneous layer husking level, as well as skin elasticity and micro- and macro-landscape. These preliminary data may contribute to development of personalized transplantable organs from GalT-Ko pigs with significantly limited potential of immune rejection. By applying growth factors to a decellularized skin sample it is possible to achieve various regenerative effects based on the particular situation. In this particular research BMP2 and Heparin-binding EGF-like growth factor have been used. Ideally, a bioengineered organ must be biocompatible, non-immunogenic and support cell growth. Porcine organs are attractive for xenotransplantation if severe immunologic concerns can be bypassed. The results indicate that genetically modified pig tissues with knock-outed α3Galactosyl-tranferase gene may be used for production of low-immunogenic matrix suitable for transplantation.

Keywords: decellularization, low-immunogenic, matrix, scaffolds, transplants

Procedia PDF Downloads 276
701 Ergonomics and Its Applicability in the Design Process in Egypt Challenges and Prospects

Authors: Mohamed Moheyeldin Mahmoud

Abstract:

Egypt suffers from a severe shortage of data and charts concerning the physical dimensions, measurements, qualities and consumer behavior. The shortage of needed information and appropriate methods has forced the Egyptian designer to use any other foreign standard when designing a product for the Egyptian consumer which has led to many problems. The urgently needed database concerning the physical specifications, measurements of the Egyptian consumers, as well as the need to support the Ergonomics given courses in many colleges and institutes with the latest technologies, is stated as the research problem. Descriptive analytical method relying on the compiling, comparing and analyzing of information and facts in order to get acceptable perceptions, ideas and considerations is the used methodology by the researcher. The research concludes that: 1. Good interaction relationship between users and products shows the success of that product. 2. An integration linkage between the most prominent fields of science specially Ergonomics, Interaction Design and Ethnography should be encouraged to provide an ultimately updated database concerning the nature, specifications and environment of the Egyptian consumer, in order to achieve a higher benefit for both user and product. 3. Chinese economic policy based on the study of market requirements long before any market activities should be emulated. 4. Using Ethnography supports the design activities creating new products or updating existent ones through measuring the compatibility of products with their environment and user expectations, While contracting a joint cooperation between military colleges, sports education institutes from one side, and design institutes from the other side to provide an ultimately updated (annually updated) database concerning some specifications about students of both sexes applying in those institutes (height, weight, etc.) to provide the Industrial designer with the needed information when creating a new product or updating an existing one concerning that category is recommended by the researcher.

Keywords: adapt, ergonomics, ethnography, interaction design

Procedia PDF Downloads 228
700 Entry, Descent and Landing System Design and Analysis of a Small Platform in Mars Environment

Authors: Daniele Calvi, Loris Franchi, Sabrina Corpino

Abstract:

Thanks to the latest Mars mission, the planetary exploration has made enormous strides over the past ten years increasing the interest of the scientific community and beyond. These missions aim to fulfill many complex operations which are of paramount importance to mission success. Among these, a special mention goes to the Entry, Descent and Landing (EDL) functions which require a dedicated system to overcome all the obstacles of these critical phases. The general objective of the system is to safely bring the spacecraft from orbital conditions to rest on the planet surface, following the designed mission profile. For this reason, this work aims to develop a simulation tool integrating the re-entry trajectory algorithm in order to support the EDL design during the preliminary phase of the mission. This tool was used on a reference unmanned mission, whose objective is finding bio-evidence and bio-hazards on Martian (sub)surface in order to support the future manned mission. Regarding the concept of operations (CONOPS) of the mission, it concerns the use of Space Penetrator Systems (SPS) that will descend on Mars surface following a ballistic fall and will penetrate the ground after the impact with the surface (around 50 and 300 cm of depth). Each SPS shall contain all the instrumentation required to sample and make the required analyses. Respecting the low-cost and low-mass requirements, as result of the tool, an Entry Descent and Impact (EDI) system based on inflatable structure has been designed. Hence, a solution could be the one chosen by Finnish Meteorological Institute in the Mars Met-Net mission, using an inflatable Thermal Protection System (TPS) called Inflatable Braking Unit (IBU) and an additional inflatable decelerator. Consequently, there are three configurations during the EDI: at altitude of 125 km the IBU is inflated at speed 5.5 km/s; at altitude of 16 km the IBU is jettisoned and an Additional Inflatable Braking Unit (AIBU) is inflated; Lastly at about 13 km, the SPS is ejected from AIBU and it impacts on the Martian surface. Since all parameters are evaluated, it is possible to confirm that the chosen EDI system and strategy verify the requirements of the mission.

Keywords: EDL, Mars, mission, SPS, TPS

Procedia PDF Downloads 170
699 Biopics in Hindi Film Industry and the Youth Perception

Authors: Divyani Redhu, Sachin Bharti

Abstract:

India, as a nation, has always been known for its concept of ‘Unity in Diversity’, and the same ideology can very well be witnessed in the kind of cinema that is produced in India. From mythological films in the beginning to historical films and from comedy to the all-entertaining commercial ‘masala’ films, the Indian film industry has time and again catered its viewers with varied flavors on screen. Needless to say that for a film industry which stood at a total value of 183.2 billion in the year 2019 as per the Statista Portal 2020, there is no dearth of viewers and at the same time, to cater to the needs of a humongous viewer base, variety in content needs to be offered. Particularly looking at the filmography of the Hindi film industry of the last decade, undoubtedly, the genre that has risen like a shining star is that of Biopics. Hindi cinema’s never-ending fascination with the biopic has grown stronger and become more evident in recent times. The success of biographical films like Jodha Akbar, The Dirty Picture, Mary Kom, Bajirao Mastani, Neerja, Aligarh, Azhar, etc. seems to have truly reinforced the industry’s faith and put Bollywood on a biopic spree. From films on the lives of sportspersons to those of the actors, gangsters, social workers, historical figures, and extraordinary citizens, the industry has left no stone unturned till now. Also, many more biopics are in the pipeline slated to be released soon. Also, when the film viewers are concerned, India is known as the youngest nation in the world where youth constituted about 34% of the country’s population in 2019, making India the country with maximum young people. Thus, the attempt of the researchers is to understand the perception of youth (15-24 years of age as per the UN) towards the biopic films. The above-mentioned study would be quantitative in nature. For the same, a survey would be conducted in the capital city of India, i.e., Delhi. The tool of the survey would be a questionnaire, and the number of respondents would be 200. The results derived from the study would focus on the film viewing preferences of youth in Delhi, the popularity of biopic films among the youth, reasons for watching biopic films and their overall perception about the same, etc.

Keywords: biopics, Delhi, Hindi cinema, India, youth

Procedia PDF Downloads 117
698 Yoga Offers Protection for Premenstrual Syndrome

Authors: Katalin Gocze, Vanda A Nemes, Charlotte Briest

Abstract:

Introduction: Premenstrual syndrome (PMS) is a psychoneuroendocrinological disorder adversely affecting life-quality for over 80% of hormonally active women. PMS has a negative impact on women’s daily life in terms of work, interpersonal relationships and leisure time activities. The aim of our study was to evaluate the effects of a yoga intervention focusing on the female pelvic area. Materials and methods: 34 women (ages 18-40) with PMS (Premenstrual Syndrome Screening Tool) and no previous experience in yoga were recruited and randomly assigned to either the yoga or the control group. The intervention consisted of 90’ yoga sessions twice a week and a daily 15’ self-practice module with carefully chosen yogic exercises addressing the reproductive organs by toning the pelvic floor and opening the hips as well as relieving stress and improving concentration. Severity of symptoms of PMS was assessed at the beginning and after the 8-week-long intervention. Pre- and post-program data collection included physical and psychological parameters and the evaluation of ACOQ PMS questionnaire and daily symptom diary. Results: Age and educational background were similar in the control and intervention group with an overall mean age of 29.11±4.78 years. PSST scores significantly improved in the yoga group (p=0.002), while difference in the control group’s pre and post-program values were non-significant (p=0.38). Perception and tolerance of anxiety and stress was significantly better after the intervention (p=0.008). As for changes in physical symptoms distinct improvement was registered for breast tenderness (p=0.028) and for meteorism (p=0.015). Discussion: Yoga’s success originates from the synergic positive effects of stress relief and regular physical activity. Benefits (both mental and physical) of strategically planned, focused yoga practice are apparent even after shorter time periods and can help women with PMS manage or eliminate symptoms in order to improve their life-quality.

Keywords: life-quality, physical symptoms, premenstrual syndrome, psychological impact, yoga

Procedia PDF Downloads 119
697 A Survey to Determine the Incidence of Piglets' Mortality in Outdoor Farms in New Zealand

Authors: Patrick C. H. Morel, Ian W. Barugh, Kirsty L. Chidgey

Abstract:

The aim of this study was to quantify the level of piglet deaths in outdoor farrowing systems in New Zealand. A total of 14 farms were visited, the farmers interviewed, and data collected. A total of 10,154 sows were kept on those farms representing an estimated 33% of the NZ sow herd or 80% of the outdoor sow herd in 2016. Data from 25,911 litters was available for the different analyses. The characteristics and reproductive performance for the years 2015-2016 from the 14 farms surveyed in this study were analysed, and the following results were obtained. The average percentage of stillbirths was 7.1% ranging between 3.5 and 10.7%, and the average pre-weaning live-born mortality was 16.7% ranging between 3.7% and 23.6%. The majority of piglet deaths (89%) occurred during the first week after birth, with 81% of deaths occurring up to day three. The number of piglets born alive was 12.3 (8.0 to 14.0), and average number of piglets weaned per sow per year was 22.4, range 10.5-27.3. The average stocking rate per ha (number of sows and mated gilts) was 15.3 and ranged from 2.8 to 28.6. The sow to boar ratio average was 20.9:1 and the range was 7.1: 1 to 63:1. The sow replacement rate ranged between 37% and 78%. There was a large variation in the piglet live-born mortality both between months within a farm and between farms within a given month. The monthly recorded piglet mortality ranged between 7.7% and 31.5%, and there was no statistically significant difference between months on the number of piglets born, born alive, weaned or on pre-weaning piglet mortality. Twelve different types of hut/farrowing systems were used on the 14 farms. No difference in piglet mortality was observed between A-Frame, A-Frame Modified and for Box-shape huts. There was a positive relationship between the average number of piglets born per litter and the number of piglets born alive (r=0.975) or the number weaned per litter (r=0.845). Moreover, as the average number of piglets born-alive increases, both pre-weaning live-born mortality rate and the number of piglets weaned increased. An increase of 1 piglet in the number born alive corresponds to an increase of 2.9% in live-born mortality and an increase of 0.56 piglets weaned. Farmers reported that staff are the key to success with the key attributes being: good and reliable with attention to detail and skills with the stock.

Keywords: mortality, piglets, outdoor, pig farm

Procedia PDF Downloads 116
696 Managing Company's Reputation during Crisis: An Analysis of Croatia Airlines' Crisis Response Strategy to the Labor Unions' Strike Announcement

Authors: M. Polic, N. Cesarec Salopek

Abstract:

When it comes to crisis, no company, notwithstanding its financial success, power or reputation is immune to the new environment and circumstances emerging from it. The main challenge company faces with during a crisis is to protect its most valuable intangible asset reputation. Crisis has the serious potential to disrupt company’s everyday operations and damage its reputation extremely fast, especially if the company did not anticipate threats that may cause a crisis. Therefore, when a crisis happens, company must directly respond to it, whilst an effective crisis communication can limit consequences arising from the crisis, protect and repair the reputational damage caused to the company. Since every crisis is unique, each one of it requires different crisis response strategy. In July 2018, airline labor unions threatened Croatia Airlines, the state owned flag carrier of Croatia, to hold a strike that would be called into question regular flights and affect more than 7.600 passengers per day. This study explores the differences between crisis response strategies that Croatia Airlines, the state owned flag carrier of Croatia and airline labor unions used during the crisis period within the Situational Crisis Communication Theory (SCCT) by analyzing the content of formal communication tools used by Croatia Airlines and airline labor unions. Moreover, this study shows how Croatia Airlines successfully managed to communicate to the general public the threat that airline labor unions imposed on it and how was it received by the Croatian media. By using the qualitative and quantitative content analysis, the study will reveal the frames that dominated in the media articles during the crisis period. The greatest significance of this study is that it will provide the deeper insight into how transparent and consistent communication, the one that Croatia Airlines used before and during the crisis period, contributed to the decision of the competent court (Zagreb County Court) which prohibited labor unions strike in August 2018.

Keywords: crisis communication, crisis response strategy, Croatia Airlines, labor union, reputation management, situational crisis communication theory, strike

Procedia PDF Downloads 137
695 The Journey from Lean Manufacturing to Industry 4.0: The Rail Manufacturing Process in Mexico

Authors: Diana Flores Galindo, Richard Gil Herrera

Abstract:

Nowadays, Lean Manufacturing and Industry 4.0 are very important in every country. One of the main benefits is continued market presence. It has been identified that there is a need to change existing educational programs, as well as update the knowledge and skills of existing employees. It should be borne in mind that behind each technological improvement, there is a human being. Human talent cannot be neglected. The main objectives of this article are to review the link between Lean Manufacturing, the incorporation of Industry 4.0 and the steps to follow to implement it; analyze the current situation and study the implications and benefits of this new trend, with a particular focus on Mexico. Lean Manufacturing and Industry 4.0 implementation waves must always take care of the most important capital – intellectual capital. The methodology used in this article comprised the following steps: reviewing the reality of the fourth industrial revolution, reviewing employees’ skills on the journey to become world-class, and analyzing the situation in Mexico. Lean Manufacturing and Industry 4.0 were studied not as exclusive concepts, but as complementary ones. The methodological framework used is focused on motivating companies’ collaborators to guarantee common results, innovate, and remain in the market in the face of new requirements from company stakeholders. The key findings were that both trends emphasize the need to improve communication across the entire company and incorporate new technologies into everyday work, from the shop floor to administrative staff, to help improve processes. Taking care of people, activities and processes will bring a company success. In the specific case of Mexico, companies in all sectors need to be aware of and implement technological improvements according to their specific needs. Low-cost labor represents one of the most typical barriers. In conclusion, companies must build a roadmap according to their strategy and needs to achieve their short, medium- and long-term goals.

Keywords: lean management, lean manufacturing, industry 4.0, motivation, SWOT analysis, Hoshin Kanri

Procedia PDF Downloads 145
694 RPM-Synchronous Non-Circular Grinding: An Approach to Enhance Efficiency in Grinding of Non-Circular Workpieces

Authors: Matthias Steffan, Franz Haas

Abstract:

The production process grinding is one of the latest steps in a value-added manufacturing chain. Within this step, workpiece geometry and surface roughness are determined. Up to this process stage, considerable costs and energy have already been spent on components. According to the current state of the art, therefore, large safety reserves are calculated in order to guarantee a process capability. Especially for non-circular grinding, this fact leads to considerable losses of process efficiency. With present technology, various non-circular geometries on a workpiece must be grinded subsequently in an oscillating process where X- and Q-axis of the machine are coupled. With the approach of RPM-Synchronous Noncircular Grinding, such workpieces can be machined in an ordinary plung grinding process. Therefore, the workpieces and the grinding wheels revolutionary rate are in a fixed ratio. A non-circular grinding wheel is used to transfer its geometry onto the workpiece. The authors use a worldwide unique machine tool that was especially designed for this technology. Highest revolution rates on the workpiece spindle (up to 4500 rpm) are mandatory for the success of this grinding process. This grinding approach is performed in a two-step process. For roughing, a highly porous vitrified bonded grinding wheel with medium grain size is used. It ensures high specific material removal rates for efficiently producing the non-circular geometry on the workpiece. This process step is adapted by a force control algorithm, which uses acquired data from a three-component force sensor located in the dead centre of the tailstock. For finishing, a grinding wheel with a fine grain size is used. Roughing and finishing are performed consecutively among the same clamping of the workpiece with two locally separated grinding spindles. The approach of RPM-Synchronous Noncircular Grinding shows great efficiency enhancement in non-circular grinding. For the first time, three-dimensional non-circular shapes can be grinded that opens up various fields of application. Especially automotive industries show big interest in the emerging trend in finishing machining.

Keywords: efficiency enhancement, finishing machining, non-circular grinding, rpm-synchronous grinding

Procedia PDF Downloads 284
693 High School Gain Analytics From National Assessment Program – Literacy and Numeracy and Australian Tertiary Admission Rankin Linkage

Authors: Andrew Laming, John Hattie, Mark Wilson

Abstract:

Nine Queensland Independent high schools provided deidentified student-matched ATAR and NAPLAN data for all 1217 ATAR graduates since 2020 who also sat NAPLAN at the school. Graduating cohorts from the nine schools contained a mean 100 ATAR graduates with previous NAPLAN data from their school. Excluded were vocational students (mean=27) and any ATAR graduates without NAPLAN data (mean=20). Based on Index of Community Socio-Educational Access (ICSEA) prediction, all schools had larger that predicted proportions of their students graduating with ATARs. There were an additional 173 students not releasing their ATARs to their school (14%), requiring this data to be inferred by schools. Gain was established by first converting each student’s strongest NAPLAN domain to a statewide percentile, then subtracting this result from final ATAR. The resulting ‘percentile shift’ was corrected for plausible ATAR participation at each NAPLAN level. Strongest NAPLAN domain had the highest correlation with ATAR (R2=0.58). RESULTS School mean NAPLAN scores fitted ICSEA closely (R2=0.97). Schools achieved a mean cohort gain of two ATAR rankings, but only 66% of students gained. This ranged from 46% of top-NAPLAN decile students gaining, rising to 75% achieving gains outside the top decile. The 54% of top-decile students whose ATAR fell short of prediction lost a mean 4.0 percentiles (or 6.2 percentiles prior to correction for regression to the mean). 71% of students in smaller schools gained, compared to 63% in larger schools. NAPLAN variability in each of the 13 ICSEA1100 cohorts was 17%, with both intra-school and inter-school variation of these values extremely low (0.3% to 1.8%). Mean ATAR change between years in each school was just 1.1 ATAR ranks. This suggests consecutive school cohorts and ICSEA-similar schools share very similar distributions and outcomes over time. Quantile analysis of the NAPLAN/ATAR revealed heteroscedasticity, but splines offered little additional benefit over simple linear regression. The NAPLAN/ATAR R2 was 0.33. DISCUSSION Standardised data like NAPLAN and ATAR offer educators a simple no-cost progression metric to analyse performance in conjunction with their internal test results. Change is expressed in percentiles, or ATAR shift per student, which is layperson intuitive. Findings may also reduce ATAR/vocational stream mismatch, reveal proportions of cohorts meeting or falling short of expectation and demonstrate by how much. Finally, ‘crashed’ ATARs well below expectation are revealed, which schools can reasonably work to minimise. The percentile shift method is neither value-add nor a growth percentile. In the absence of exit NAPLAN testing, this metric is unable to discriminate academic gain from legitimate ATAR-maximizing strategies. But by controlling for ICSEA, ATAR proportion variation and student mobility, it uncovers progression to ATAR metrics which are not currently publicly available. However achieved, ATAR maximisation is a sought-after private good. So long as standardised nationwide data is available, this analysis offers useful analytics for educators and reasonable predictivity when counselling subsequent cohorts about their ATAR prospects.  

Keywords: NAPLAN, ATAR, analytics, measurement, gain, performance, data, percentile, value-added, high school, numeracy, reading comprehension, variability, regression to the mean

Procedia PDF Downloads 69
692 Identifying the Challenges of Implementing Nationwide E-Government Services in Underdeveloped Countries: Sudan as a Case Study

Authors: Mohamed Abdalla Khalil Mahmoud, Omnia Haidar Suliman

Abstract:

Information and Communication technologies have revolutionized the way services are developed and offered to customers and have achieved evident success in a variety of vital sectors and widely contributed to the growth and resilience of the economy worldwide. Consequently, governments, especially of developing countries, have turned their attention to examine possible ways to utilize contemporary technology advances to offer essential governmental services to citizens, especially in areas where government agencies are not present. This paper investigates the challenges that impede governments of developing countries to provide basic services to its constituents nationwide. Sudan, as a case study, has taken major steps to provide essential governmental services via electronic channels. However, these services are still not widely used by the citizens, resulting in waste of financial and human resources and efforts that could have been invested more appropriately. This paper examines the challenges that hinder the Sudan’s government in their pursuit of availing its services via electronic channels. Different categories of e-government challenges, such as organizational, technological, social and, demographic, and financial and economic, have been explored in order to pinpoint the major challenges. A structured questionnaire is used to survey the target population of e-government professionals and executives who have direct involvement in the implementation of this nationwide endeavor in Sudan. The survey has successfully identified the main challenges that have high impact on the government’s effort to offer its services via electronic channels, such as Lack of coordination between public and private sectors and Lack of the benefits recognition of the e-government program. The findings of this paper can be used as a solid foundation for improving the way governmental services are offered to citizens in Sudan, resulting in a successful investment of financial and human resources and benefiting the targeted customers of all types.

Keywords: citizen, digital, e-channels, public sector, Sudan, technology

Procedia PDF Downloads 73
691 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning

Authors: Pinzhe Zhao

Abstract:

This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.

Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity

Procedia PDF Downloads 23