Search results for: stochastic finite elements
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6139

Search results for: stochastic finite elements

3829 Tuned Mass Damper Vibration Control of Pedestrian Bridge

Authors: Qinglin Shu

Abstract:

Based on the analysis of the structural vibration comfort of a domestic bridge, this paper studies the vibration reduction control principle of TMD, the derivation process of design parameter optimization and how to simulate TMD in the finite element software ANSYS. The research shows that, in view of the problem that the comfort level of a bridge exceeds the limit in individual working conditions, the vibration reduction control design of the bridge can effectively reduce the vibration of the structure by using TMD. Calculations show that when the mass ratio of TMD is 0.01, the vibration reduction rate under different working conditions is more than 90%, and the dynamic displacement of the TMD mass block is within 0.01m, indicating that the design of TMD is reasonable and safe.

Keywords: pedestrian bridges, human-induced vibration, comfort, tuned mass dampers

Procedia PDF Downloads 114
3828 Hermitical Landscapes: The Congregation of Saint Paul of Serra De Ossa

Authors: Rolando Volzone

Abstract:

The Congregation of Saint Paul of Serra de Ossa (Ossa Mountain) was founded in 1482, originated by the eremitic movement of the homens da pobre vida (poor life men), which is documented since 1366. The community of hermits expanded up to the first half of the 15th century, mostly in southern Portugal in the Alentejo region. In 1578, following a process of institutionalization led by the Church, an autonomous congregation was set up, affiliated in the Hungarian Order of Saint Paul the First Hermit, until 1834, when the decree of dissolution of the religious orders disbanded all the convents and monasteries in Portugal. The architectural evidences that reached our days as a legacy of the hermitical movement in Serra de Ossa, although studied and analysed from an historical point of view, are still little known with respect to the architectural characteristics of its physical implantation and its relationship with the natural systems. This research intends to expose the appropriation process of the locus eremus as a starting point for the interpretation of this landscape, evidencing the close relationship between the religious experience and the physical space chosen to reach the perfection of the soul. The locus eremus is thus determined not only by practical aspects such as the absolute and relative location, orography, existence of water resources, or the King’s favoring to the religious and settlement action of the hermits, but also by spiritual aspects related to the symbolism of the physical elements present and the solitary walk of these men. These aspects, combined with the built architectural elements and other exerted human action, may be fertile ground for the definition of a hypothetical hermitical landscape based on the sufficiently distinctive characteristics that sustain it. The landscape built by these hermits is established as a cultural and material heritage, and its preservation is of utmost importance. They deeply understood this place and took advantage of its natural resources, manipulating them in an ecological and economically sustainable way, respecting the place, without overcoming its own genius loci but becoming part of it.

Keywords: architecture, congregation of Saint Paul of Serra de Ossa, heremitical landscape, locus eremus

Procedia PDF Downloads 234
3827 A Study on Analysis of Magnetic Field in Induction Generator for Small Francis Turbine Generator

Authors: Young-Kwan Choi, Han-Sang Jeong, Yeon-Ho Ok, Jae-Ho Choi

Abstract:

The purpose of this study is to verify validity of design by testing output of induction generator through finite element analysis before manufacture of induction generator designed. Characteristics in the operating domain of induction generator can be understood through analysis of magnetic field according to load (rotational speed) of induction generator. Characteristics of induction generator such as induced voltage, current, torque, magnetic flux density (magnetic flux saturation), and loss can be predicted by analysis of magnetic field.

Keywords: electromagnetic analysis, induction generator, small hydro power generator, small francis turbine generator

Procedia PDF Downloads 1475
3826 The Relationship between Creative Imagination and Curriculum

Authors: Faride Hashemiannejad, Shima Oloomi

Abstract:

Imagination is one of the important elements of creative thinking which as a skill needs attention by the educational system. Although most students learn reading, writing, and arithmetic skills well, they lack high level thinking skills like creative thinking. Therefore, in the information age and in the beginning of entry to knowledge-based society, the educational system needs to think over its goals and mission, and concentrate on creativity-based curriculum. From among curriculum elements-goals, content, method and evaluation “method” is a major domain whose reform can pave the way for fostering imagination and creativity. The purpose of this study was examining the relationship between creativity development and curriculum. Research questions were: (1) is there a relationship between the cognitive-emotional structure of the classroom and creativity development? (2) Is there a relationship between the environmental-social structure of the classroom and creativity development? (3) Is there a relationship between the thinking structure of the classroom and creativity development? (4) Is there a relationship between the physical structure of the classroom and creativity development? (5) Is there a relationship between the instructional structure of the classroom and creativity development? Method: This research is a applied research and the research method is Correlational research. Participants: The total number of participants in this study included 894 students from High school through 11th grade from seven schools of seven zones in Mashad city. Sampling Plan: Sampling was selected based on Random Multi State. Measurement: The dependent measure in this study was: (a) the Test of Creative Thinking, (b) The researcher-made questionnaire includes five fragments, cognitive, emotional structure, environmental social structure, thinking structure, physical structure, and instructional structure. The Results Show: There was significant relationship between the cognitive-emotional structure of the classroom and student’s creativity development (sig=0.139). There was significant relationship between the environmental-social structure of the classroom and student’s creativity development (sig=0.006). There was significant relationship between the thinking structure of the classroom and student’s creativity development (sig=0.004). There was not significant relationship between the physical structure of the classroom and student’s creativity development (sig=0.215). There was significant relationship between the instructional structure of the classroom and student’s creativity development (sig=0.003). These findings denote if students feel secure, calm and confident, they can experience creative learning. Also the quality of coping with students’ questions, imaginations and risks can influence on their creativity development.

Keywords: imagination, creativity, curriculum, bioinformatics, biomedicine

Procedia PDF Downloads 480
3825 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 67
3824 Improvement of Compressive and Tensile Strengths of Concrete Using Polypropylene Fibers

Authors: Omar Asad Ahmad, Mohammed Awwad

Abstract:

Concrete is one of the essential elements that used in different types of construction these days, but it has many problems when interacts with environmental elements such as water, air, temperature, dust, and humidity. Also concrete made with Portland cement has certain characteristics: it is relatively strong in compression but weak in tension and tends to be brittle. These disadvantages make concrete limited to use in certain conditions. The most common problems appears on concrete are manifested by tearing, cracking, corrosion and spalling, which will lead to do some defect in concrete then in the whole construction, The fundamental objective of this research was to provide information about the hardened properties of concrete achieved by using easily available local raw materials in Jordan to support the practical work with partners in assessing the practicability of the mixes with polypropylene, and to facilitate the introduction of polypropylene fiber concrete (PFC) technology into general construction practice. Investigate the effect of the polypropylene fibers in PCC mixtures and on materials properties such as compressive strength, and tensile strength. Also to investigate the use of polypropylene fibers in plain cubes and cylindrical concrete to improve its compressive and tensile strengths to reduce early cracking and inhibit later crack growth. Increasing the hardness of concrete in this research is the main purpose to measure the deference of compressive strength and tensile strength between plain concrete and concrete mixture with polypropylene fibers different additions and to investigate its effect on reducing the early and later cracking problem. To achieve the goals of research 225 concrete test sample were prepared to measure it’s compressive strength and tensile strength, the concrete test sample were three classes (A,B,C), sub-classified to standard , and polypropylene fibers added by the volume of concrete (5%, 10%, 15%, and 20%). The investigation of polypropylene fibers mixture with concrete shows that the strengths of the cement are increased and the cracking decreased. The results show that for class A the recommended addition were 5% of polypropylene fibers additions for compressive strength and 10 % for tensile strength revels the best compressive strength that reach 26.67 Mpa and tensile strength that reach 2.548 Mpa records. Achieved results show that for classes B and C the recommend additions were 10 % polypropylene fibers revels the best compressive strength records where they reach 21.11 and 33.78 Mpa, records reach for tensile strength 2.707 and 2.65 Mpa respectively.

Keywords: polypropylene, effects, compressive, tensile, strengths, concrete, construction

Procedia PDF Downloads 544
3823 Primary and Secondary Big Bangs Theory of Creation of Universe

Authors: Shyam Sunder Gupta

Abstract:

The current theory for the creation of the universe, the Big Bang theory, is widely accepted but leaves some unanswered questions. It does not explain the origin of the singularity or what causes the Big Bang. The theory of the Big Bang also does not explain why there is such a huge amount of dark energy and dark matter in our universe. Also, there is a question related to one universe or multiple universes which needs to be answered. This research addresses these questions using the Bhagvat Puran and other Vedic scriptures as the basis. There is a Unique Pure Energy Field that is eternal, infinite, and finest of all and never transforms when in its original form. The Carrier Particles of Unique Pure Energy are Param-anus- Fundamental Energy Particles. Param-anus and a combination of these particles create bigger particles from which the Universe gets created. For creation to initiate, Unique Pure Energy is represented in three phases: positive phase energy, neutral phase eternal time energy and negative phase energy. Positive phase energy further expands in three forms of creative energies (CE1, CE2andCE3). From CE1 energy, three energy modes, mode of activation, mode of action, and mode of darkness, were created. From these three modes, 16 Principles, subtlest forms of energies, namely Pradhan, Mahat-tattva, Time, Ego, Intellect, Mind, Sound, Space, Touch, Air, Form, Fire, Taste, Water, Smell, and Earth, get created. In the Mahat-tattva, dominant in the Mode of Darkness, CE1 energy creates innumerable primary singularities from seven principles: Pradhan, Mahat-tattva, Ego, Sky, Air, Fire, and Water. CE1 energy gets divided as CE2 and enters, along with three modes and time, in each singularity, and primary Big Bang takes place, and innumerable Invisible Universes get created. Each Universe has seven coverings of 7 principles, and each layer is 10 times thicker than the previous layer. By energy CE2, space in Invisible Universe under the coverings is divided into two halves. In the lower half, the process of evolution gets initiated, and seeds of 24 elements get created, out of which 5 fundamental elements, building blocks of matter, Sky, Air, Fire, Water and Earth, create seeds of stars, planets, galaxies and all other matter. Since 5 fundamental elements get created out of the mode of darkness, it explains why there is so much dark energy and dark matter in our Universe. This process of creation, in the lower half of Invisible universe continues for 2.16 billion years. Further, in the lower part of the energy field, exactly at the Centre of Invisible Universe, Secondary Singularity is created, through which, by force of Mode of Action, Secondary Big Bang takes place and Visible Universe gets created in the shape of Lotus Flower, expanding into upper part. Visible matter starts appearing after a gap of 360,000 years. Within the Visible Universe, a small part gets created known as the Phenomenal Material World, which is our Solar System, the sun being in the Centre. Diameter of Solar planetary system is 6.4 billion km.

Keywords: invisible universe, phenomenal material world, primary Big Bang, secondary Big Bang, singularities, visible universe

Procedia PDF Downloads 90
3822 Non-Circular Carbon Fiber Reinforced Polymers Chainring Failure Analysis

Authors: A. Elmikaty, Z. Thanawarothon, L. Mezeix

Abstract:

This paper presents a finite element model to simulate the teeth failure of non-circular composite chainring. Model consists of the chainring and a part of the chain. To reduce the size of the model, only the first 11 rollers are simulated. In order to validate the model, it is firstly applied to a circular aluminum chainring and evolution of the stress in the teeth is compared with the literature. Then, effect of the non-circular shape is studied through three different loading positions. Strength of non-circular composite chainring and failure scenario is investigated. Moreover, two composite lay-ups are proposed to observe the influence of the stacking. Results show that composite material can be used but the lay-up has a large influence on the strength. Finally, loading position does not have influence on the first composite failure that always occurs in the first tooth.

Keywords: CFRP, composite failure, FEA, non-circular chainring

Procedia PDF Downloads 295
3821 Numerical Study of a Nanofluid in a Truncated Cone

Authors: B. Mahfoud, A. Bendjaghlouli

Abstract:

Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.

Keywords: heat source, truncated cone, nanofluid, natural convection

Procedia PDF Downloads 308
3820 Progressive Damage Analysis of Mechanically Connected Composites

Authors: Şeyma Saliha Fidan, Ozgur Serin, Ata Mugan

Abstract:

While performing verification analyses under static and dynamic loads that composite structures used in aviation are exposed to, it is necessary to obtain the bearing strength limit value for mechanically connected composite structures. For this purpose, various tests are carried out in accordance with aviation standards. There are many companies in the world that perform these tests in accordance with aviation standards, but the test costs are very high. In addition, due to the necessity of producing coupons, the high cost of coupon materials, and the long test times, it is necessary to simulate these tests on the computer. For this purpose, various test coupons were produced by using reinforcement and alignment angles of the composite radomes, which were integrated into the aircraft. Glass fiber reinforced and Quartz prepreg is used in the production of the coupons. The simulations of the tests performed according to the American Society for Testing and Materials (ASTM) D5961 Procedure C standard were performed on the computer. The analysis model was created in three dimensions for the purpose of modeling the bolt-hole contact surface realistically and obtaining the exact bearing strength value. The finite element model was carried out with the Analysis System (ANSYS). Since a physical break cannot be made in the analysis studies carried out in the virtual environment, a hypothetical break is realized by reducing the material properties. The material properties reduction coefficient was determined as 10%, which is stated to give the most realistic approach in the literature. There are various theories in this method, which is called progressive failure analysis. Because the hashin theory does not match our experimental results, the puck progressive damage method was used in all coupon analyses. When the experimental and numerical results are compared, the initial damage and the resulting force drop points, the maximum damage load values ​​, and the bearing strength value are very close. Furthermore, low error rates and similar damage patterns were obtained in both test and simulation models. In addition, the effects of various parameters such as pre-stress, use of bushing, the ratio of the distance between the bolt hole center and the plate edge to the hole diameter (E/D), the ratio of plate width to hole diameter (W/D), hot-wet environment conditions were investigated on the bearing strength of the composite structure.

Keywords: puck, finite element, bolted joint, composite

Procedia PDF Downloads 102
3819 Solution of Some Boundary Value Problems of the Generalized Theory of Thermo-Piezoelectricity

Authors: Manana Chumburidze

Abstract:

We have considered a non-classical model of dynamical problems for a conjugated system of differential equations arising in thermo-piezoelectricity, which was formulated by Toupin – Mindlin. The basic concepts and the general theory of solvability for isotropic homogeneous elastic media is considered. They are worked by using the methods the Laplace integral transform, potential method and singular integral equations. Approximate solutions of mixed boundary value problems for finite domain, bounded by the some closed surface are constructed. They are solved in explicitly by using the generalized Fourier's series method.

Keywords: thermo-piezoelectricity, boundary value problems, Fourier's series, isotropic homogeneous elastic media

Procedia PDF Downloads 465
3818 Stability Analysis of Three-Lobe Journal Bearing Lubricated with a Micropolar Fluids

Authors: Boualem Chetti

Abstract:

The dynamic characteristics of a three-lobe journal bearing lubricated with micropolar fluids are determined by the linear stability theory. Lubricating oil containing additives and contaminants is modeled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory and the finite difference technique has been used to solve it. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The computed results show compared with Newtonian fluids, that micropolar fluid exhibits better stability.

Keywords: three-lobe bearings, micropolar fluid, dynamic characteristics, stability analysis

Procedia PDF Downloads 361
3817 Modeling Flow and Deposition Characteristics of Solid CO2 during Choked Flow of CO2 Pipeline in CCS

Authors: Teng lin, Li Yuxing, Han Hui, Zhao Pengfei, Zhang Datong

Abstract:

With the development of carbon capture and storage (CCS), the flow assurance of CO2 transportation becomes more important, particularly for supercritical CO2 pipelines. The relieving system using the choke valve is applied to control the pressure in CO2 pipeline. However, the temperature of fluid would drop rapidly because of Joule-Thomson cooling (JTC), which may cause solid CO2 form and block the pipe. In this paper, a Computational Fluid Dynamic (CFD) model, using the modified Lagrangian method, Reynold's Stress Transport model (RSM) for turbulence and stochastic tracking model (STM) for particle trajectory, was developed to predict the deposition characteristic of solid carbon dioxide. The model predictions were in good agreement with the experiment data published in the literature. It can be observed that the particle distribution affected the deposition behavior. In the region of the sudden expansion, the smaller particles accumulated tightly on the wall were dominant for pipe blockage. On the contrary, the size of solid CO2 particles deposited near the outlet usually was bigger and the stacked structure was looser. According to the calculation results, the movement of the particles can be regarded as the main four types: turbulent motion close to the sudden expansion structure, balanced motion at sudden expansion-middle region, inertial motion near the outlet and the escape. Furthermore the particle deposits accumulated primarily in the sudden expansion region, reattachment region and outlet region because of the four type of motion. Also the Stokes number had an effect on the deposition ratio and it is recommended for Stokes number to avoid 3-8St.

Keywords: carbon capture and storage, carbon dioxide pipeline, gas-particle flow, deposition

Procedia PDF Downloads 370
3816 Time-Dependent Reliability Analysis of Corrosion Affected Cast Iron Pipes with Mixed Mode Fracture

Authors: Chun-Qing Li, Guoyang Fu, Wei Yang

Abstract:

A significant portion of current water networks is made of cast iron pipes. Due to aging and deterioration with corrosion being the most predominant mechanism, the failure rate of cast iron pipes is very high. Although considerable research has been carried out in the past few decades, most are on the effect of corrosion on the structural capacity of pipes using strength theory as the failure criterion. This paper presents a reliability-based methodology for the assessment of corrosion affected cast iron pipe cracking failures. A nonlinear limit state function taking into account all three fracture modes is proposed for brittle metal pipes with mixed mode fracture. A stochastic model of the load effect is developed, and time-dependent reliability method is employed to quantify the probability of failure and predict the remaining service life. A case study is carried out using the proposed methodology, followed by sensitivity analysis to investigate the effects of the random variables on the probability of failure. It has been found that the larger the inclination angle or the Mode I fracture toughness is, the smaller the probability of pipe failure is. It has also been found that the multiplying and exponential coefficients k and n in the power law corrosion model and the internal pressure have the most influence on the probability of failure for cast iron pipes. The methodology presented in this paper can assist pipe engineers and asset managers in developing a risk-informed and cost-effective strategy for better management of corrosion-affected pipelines.

Keywords: corrosion, inclined surface cracks, pressurized cast iron pipes, stress intensity

Procedia PDF Downloads 321
3815 Revenue Management of Perishable Products Considering Freshness and Price Sensitive Customers

Authors: Onur Kaya, Halit Bayer

Abstract:

Global grocery and supermarket sales are among the largest markets in the world and perishable products such as fresh produce, dairy and meat constitute the biggest section of these markets. Due to their deterioration over time, the demand for these products depends highly on their freshness. They become totally obsolete after a certain amount of time causing a high amount of wastage and decreases in grocery profits. In addition, customers are asking for higher product variety in perishable product categories, leading to less predictable demand per product and to more out-dating. Effective management of these perishable products is an important issue since it is observed that billions of dollars’ worth of food is expired and wasted every month. We consider coordinated inventory and pricing decisions for perishable products with a time and price dependent random demand function. We use stochastic dynamic programming to model this system for both periodically-reviewed and continuously-reviewed inventory systems and prove certain structural characteristics of the optimal solution. We prove that the optimal ordering decision scenario has a monotone structure and the optimal price value decreases by time. However, the optimal price changes in a non-monotonic structure with respect to inventory size. We also analyze the effect of 1 different parameters on the optimal solution through numerical experiments. In addition, we analyze simple-to-implement heuristics, investigate their effectiveness and extract managerial insights. This study gives valuable insights about the management of perishable products in order to decrease wastage and increase profits.

Keywords: age-dependent demand, dynamic programming, perishable inventory, pricing

Procedia PDF Downloads 247
3814 Culture and Internationalization: A Study About Brazilian Companies in Bolivia

Authors: Renato Dias Baptista

Abstract:

The purpose of this paper is to analyze the elements of the cultural dimension in the internationalization process of Brazilian companies in Bolivia. This paper is based on research on two major Brazilian transnational companies which have plants in Bolivia. To achieve the objectives, the interconnective characteristics of culture in the process of productive internationalization were analyzed aiming to highlight it as a guiding element opposite the premises of the Brazilian leadership in the integration and development of the continent. The analysis aims to give relevance to the culture of a country and its relations with internationalization.

Keywords: interculturalism, transnational, internationalization, organizational development

Procedia PDF Downloads 302
3813 Classification of Tropical Semi-Modules

Authors: Wagneur Edouard

Abstract:

Tropical algebra is the algebra constructed over an idempotent semifield S. We show here that every m-dimensional tropical module M over S with strongly independent basis can be embedded into Sm, and provide an algebraic invariant -the Γ-matrix of M- which characterises the isomorphy class of M. The strong independence condition also yields a significant improvement to the Whitney embedding for tropical torsion modules published earlier We also show that the strong independence of the basis of M is equivalent to the unique representation of elements of M. Numerous examples illustrate our results.

Keywords: classification, idempotent semi-modules, strong independence, tropical algebra

Procedia PDF Downloads 370
3812 The Role of Emotions in the Consumer: Theoretical Review and Analysis of Components

Authors: Mikel Alonso López

Abstract:

The early eighties saw the rise of a new research trend in several prestigious journals, mainly articles that related emotions with the decision-making processes of the consumer, and stopped treating them as external elements. That is why we ask questions such as: what are emotions? Are there different types of emotions? What components do they have? Which theories exist about them? In this study, we will review the main theories and components of emotion analysing the cognitive factor and the different emotional states that are generally recognizable with a focus in the classic debate as to whether they occur before the cognitive process or the affective process.

Keywords: emotion, consumer behaviour, feelings, decision making

Procedia PDF Downloads 347
3811 Intelligent and Optimized Placement for CPLD Devices

Authors: Abdelkader Hadjoudja, Hajar Bouazza

Abstract:

The PLD/CPLD devices are widely used for logic synthesis since several decades. Based on sum of product terms (PTs) architecture, the PLD/CPLD offer a high degree of flexibility to support various application requirements. They are suitable for large combinational logic, finite state machines as well as intensive I/O designs. CPLDs offer very predictable timing characteristics and are therefore ideal for critical control applications. This paper describes how the logic synthesis techniques, such as 1) XOR detection, 2) logic doubling, 3) complement of a Boolean function are combined, applied and used to optimize the CPLDs devices architecture that is based on PAL-like macrocells. Our goal is to use these techniques for minimizing the number of macrocells required to implement a circuit and minimize the delay of mapped circuit.

Keywords: CPLD, doubling, optimization, XOR

Procedia PDF Downloads 282
3810 Slip Limit Prediction of High-Strength Bolt Joints Based on Local Approach

Authors: Chang He, Hiroshi Tamura, Hiroshi Katsuchi, Jiaqi Wang

Abstract:

In this study, the aim is to infer the slip limit (static friction limit) of contact interfaces in bolt friction joints by analyzing other bolt friction joints with the same contact surface but in a different shape. By using the Weibull distribution to deal with microelements on the contact surface statistically, the slip limit of a certain type of bolt joint was predicted from other types of bolt joint with the same contact surface. As a result, this research succeeded in predicting the slip limit of bolt joins with different numbers of contact surfaces and with different numbers of bolt rows.

Keywords: bolt joints, slip coefficient, finite element method, Weibull distribution

Procedia PDF Downloads 170
3809 Epistemic Uncertainty Analysis of Queue with Vacations

Authors: Baya Takhedmit, Karim Abbas, Sofiane Ouazine

Abstract:

The vacations queues are often employed to model many real situations such as computer systems, communication networks, manufacturing and production systems, transportation systems and so forth. These queueing models are solved at fixed parameters values. However, the parameter values themselves are determined from a finite number of observations and hence have uncertainty associated with them (epistemic uncertainty). In this paper, we consider the M/G/1/N queue with server vacation and exhaustive discipline where we assume that the vacation parameter values have uncertainty. We use the Taylor series expansions approach to estimate the expectation and variance of model output, due to epistemic uncertainties in the model input parameters.

Keywords: epistemic uncertainty, M/G/1/N queue with vacations, non-parametric sensitivity analysis, Taylor series expansion

Procedia PDF Downloads 433
3808 Study the Effect of Friction on Barreling Behavior during Upsetting Process Using Anand Model

Authors: H. Mohammadi Majd, M. Jalali Azizpour, V. Tavaf, A. Jaderi

Abstract:

In upsetting processes contact friction significantly influence metal flow, stress-strain state and process parameters. Furthermore, tribological conditions influence workpiece deformation and its dimensional precision. A viscoplastic constitutive law, the Anand model, was applied to represent the inelastic deformation behavior in upsetting process. This paper presents research results of the influence of contact friction coefficient on a workpiece deformation in upsetting process.finite element parameters. This technique was tested for three different specimens simulations of the upsetting and the corresponding material and can be successfully employed to predict the deformation of the upsetting process.

Keywords: friction, upsetting, barreling, Anand model

Procedia PDF Downloads 336
3807 Unconfined Laminar Nanofluid Flow and Heat Transfer around a Square Cylinder with an Angle of Incidence

Authors: Rafik Bouakkaz

Abstract:

A finite-volume method simulation is used to investigate two dimensional unsteady flow of nanofluids and heat transfer characteristics past a square cylinder inclined with respect to the main flow in the laminar regime. The computations are carried out of nanoparticle volume fractions varying from 0 ≤ ∅ ≤ 5% for an inclination angle in the range 0° ≤ δ ≤ 45° at a Reynolds number of 100. The variation of stream line and isotherm patterns are presented for the above range of conditions. Also, it is noticed that the addition of nanoparticles enhances the heat transfer. Hence, the local Nusselt number is found to increase with increasing value of the concentration of nanoparticles for the fixed value of the inclination angle.

Keywords: copper nanoparticles, heat transfer, square cylinder, inclination angle

Procedia PDF Downloads 190
3806 Research on the Conservation Strategy of Territorial Landscape Based on Characteristics: The Case of Fujian, China

Authors: Tingting Huang, Sha Li, Geoffrey Griffiths, Martin Lukac, Jianning Zhu

Abstract:

Territorial landscapes have experienced a gradual loss of their typical characteristics during long-term human activities. In order to protect the integrity of regional landscapes, it is necessary to characterize, evaluate and protect them in a graded manner. The study takes Fujian, China, as an example and classifies the landscape characters of the site at the regional scale, middle scale, and detailed scale. A multi-scale approach combining parametric and holistic approaches is used to classify and partition the landscape character types (LCTs) and landscape character areas (LCAs) at different scales, and a multi-element landscape assessment approach is adopted to explore the conservation strategies of the landscape character. Firstly, multiple fields and multiple elements of geography, nature and humanities were selected as the basis of assessment according to the scales. Secondly, the study takes a parametric approach to the classification and partitioning of landscape character, Principal Component Analysis, and two-stage cluster analysis (K-means and GMM) in MATLAB software to obtain LCTs, combines with Canny Operator Edge Detection Algorithm to obtain landscape character contours and corrects LCTs and LCAs by field survey and manual identification methods. Finally, the study adopts the Landscape Sensitivity Assessment method to perform landscape character conservation analysis and formulates five strategies for different LCAs: conservation, enhancement, restoration, creation, and combination. This multi-scale identification approach can efficiently integrate multiple types of landscape character elements, reduce the difficulty of broad-scale operations in the process of landscape character conservation, and provide a basis for landscape character conservation strategies. Based on the natural background and the restoration of regional characteristics, the results of landscape character assessment are scientific and objective and can provide a strong reference in regional and national scale territorial spatial planning.

Keywords: parameterization, multi-scale, landscape character identify, landscape character assessment

Procedia PDF Downloads 99
3805 Numerical Solution of Space Fractional Order Solute Transport System

Authors: Shubham Jaiswal

Abstract:

In the present article, a drive is taken to compute the solution of spatial fractional order advection-dispersion equation having source/sink term with given initial and boundary conditions. The equation is converted to a system of ordinary differential equations using second-kind shifted Chebyshev polynomials, which have finally been solved using finite difference method. The striking feature of the article is the fast transportation of solute concentration as and when the system approaches fractional order from standard order for specified values of the parameters of the system.

Keywords: spatial fractional order advection-dispersion equation, second-kind shifted Chebyshev polynomial, collocation method, conservative system, non-conservative system

Procedia PDF Downloads 261
3804 The Cracks Propagation Monitoring of a Cantilever Beam Using Modal Analysis

Authors: Morteza Raki, Abolghasem Zabihollah, Omid Askari

Abstract:

Cantilever beam is a simplified sample of a lot of mechanical components used in a wide range of applications, including many industries such as gas turbine blade. Due to the nature of the operating conditions, beams are subject to variety of damages especially crack propagates. Crack propagation may lead to catastrophic failure during operation. Therefore, online detection of crack presence and its propagation is very important and may reduce possible significant cost of the whole system failure. This paper aims to investigate the effect of cracks presence and crack propagation on one end fixed beam`s vibration. A finite element model will be developed for the blade in which the modal response of the structure with and without crack will be studied. 

Keywords: blade, crack propagation, health monitoring, modal analysis

Procedia PDF Downloads 346
3803 Aggregation of Electric Vehicles for Emergency Frequency Regulation of Two-Area Interconnected Grid

Authors: S. Agheb, G. Ledwich, G.Walker, Z.Tong

Abstract:

Frequency control has become more of concern for reliable operation of interconnected power systems due to the integration of low inertia renewable energy sources to the grid and their volatility. Also, in case of a sudden fault, the system has less time to recover before widespread blackouts. Electric Vehicles (EV)s have the potential to cooperate in the Emergency Frequency Regulation (EFR) by a nonlinear control of the power system in case of large disturbances. The time is not adequate to communicate with each individual EV on emergency cases, and thus, an aggregate model is necessary for a quick response to prevent from much frequency deviation and the occurrence of any blackout. In this work, an aggregate of EVs is modelled as a big virtual battery in each area considering various aspects of uncertainty such as the number of connected EVs and their initial State of Charge (SOC) as stochastic variables. A control law was proposed and applied to the aggregate model using Lyapunov energy function to maximize the rate of reduction of total kinetic energy in a two-area network after the occurrence of a fault. The control methods are primarily based on the charging/ discharging control of available EVs as shunt capacity in the distribution system. Three different cases were studied considering the locational aspect of the model with the virtual EV either in the center of the two areas or in the corners. The simulation results showed that EVs could help the generator lose its kinetic energy in a short time after a contingency. Earlier estimation of possible contributions of EVs can help the supervisory control level to transmit a prompt control signal to the subsystems such as the aggregator agents and the grid. Thus, the percentage of EVs contribution for EFR will be characterized in the future as the goal of this study.

Keywords: emergency frequency regulation, electric vehicle, EV, aggregation, Lyapunov energy function

Procedia PDF Downloads 100
3802 Exergy Analysis of Regenerative Organic Rankine Cycle Using Turbine Bleeding

Authors: Kyoung Hoon Kim

Abstract:

This work presents an exergetical performance analysis of regenerative organic Rankine cycle (ORC) using turbine bleeding based on the second law of thermodynamics for recovery of finite thermal energy. Effects of system parameters such as turbine bleeding pressure and turbine bleeding fraction are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as the exergy and the second-law efficiencies. Under the conditions of the critical fraction of turbine bleeding, the simulation results show that the exergy efficiency decreases monotonically with respect to the bleeding pressure, however, the second-law efficiency has a peak with respect to the turbine bleeding pressure.

Keywords: organic Rankine cycle, ORC, regeneration, turbine bleeding, exergy, second-law efficiency

Procedia PDF Downloads 499
3801 A Posteriori Analysis of the Spectral Element Discretization of Heat Equation

Authors: Chor Nejmeddine, Ines Ben Omrane, Mohamed Abdelwahed

Abstract:

In this paper, we present a posteriori analysis of the discretization of the heat equation by spectral element method. We apply Euler's implicit scheme in time and spectral method in space. We propose two families of error indicators, both of which are built from the residual of the equation and we prove that they satisfy some optimal estimates. We present some numerical results which are coherent with the theoretical ones.

Keywords: heat equation, spectral elements discretization, error indicators, Euler

Procedia PDF Downloads 306
3800 Assessment of Groundwater Aquifer Impact from Artificial Lagoons and the Reuse of Wastewater in Qatar

Authors: H. Aljabiry, L. Bailey, S. Young

Abstract:

Qatar is a desert with an average temperature 37⁰C, reaching over 40⁰C during summer. Precipitation is uncommon and mostly in winter. Qatar depends on desalination for drinking water and on groundwater and recycled water for irrigation. Water consumption and network leakage per capita in Qatar are amongst the highest in the world; re-use of treated wastewater is extremely limited with only 14% of treated wastewater being used for irrigation. This has led to the country disposing of unwanted water from various sources in lagoons situated around the country, causing concern over the possibility of environmental pollution. Accordingly, our hypothesis underpinning this research is that the quality and quantity of water in lagoons is having an impact on the groundwater reservoirs in Qatar. Lagoons (n = 14) and wells (n = 55) were sampled for both summer and winter in 2018 (summer and winter). Water, adjoining soil and plant samples were analysed for multiple elements by Inductively Coupled Plasma Mass Spectrometry. Organic and inorganic carbon were measured (CN analyser) and the major anions were determined by ion chromatography. Salinization in both the lagoon and the wells was seen with good correlations between Cl⁻, Na⁺, Li, SO₄, S, Sr, Ca, Ti (p-value < 0.05). Association of heavy metals was observed of Ni, Cu, Ag, and V, Cr, Mo, Cd which is due to contamination from anthropological activities such as wastewater disposal or spread of contaminated dust. However, looking at each elements none of them exceeds the Qatari regulation. Moreover, gypsum saturation in the system was observed in both the lagoon and wells water samples. Lagoons and the water of the well are found to be of a saline type as well as Ca²⁺, Cl⁻, SO₄²⁻ type evidencing both gypsum dissolution and salinization in the system. Moreover, Maps produced by Inverse distance weighting showed an increasing level of Nitrate in the groundwater in winter, and decrease chloride and sulphate level, indicating recharge effect after winter rain events. While E. coli and faecal bacteria were found in most of the lagoons, biological analysis for wells needs to be conducted to understand the biological contamination from lagoon water infiltration. As a conclusion, while both the lagoon and the well showed the same results, more sampling is needed to understand the impact of the lagoons on the groundwater.

Keywords: groundwater quality, lagoon, treated wastewater, water management, wastewater treatment, wetlands

Procedia PDF Downloads 135