Search results for: spatial learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9470

Search results for: spatial learning

7160 Learners as Consultants: Knowledge Acquisition and Client Organisations-A Student as Producer Case Study

Authors: Barry Ardley, Abi Hunt, Nick Taylor

Abstract:

As a theoretical and practical framework, this study uses the student-as-producer approach to learning in higher education, as adopted by the Lincoln International Business School, University of Lincoln, UK. Students as producer positions learners as skilled and capable agents, able to participate as partners with tutors in live research projects. To illuminate the nature of this approach to learning and to highlight its critical issues, the authors report on two guided student consultancy projects. These were set up with the assistance of two local organisations in the city of Lincoln, UK. Using the student as a producer model to deliver the projects enabled learners to acquire and develop a range of key skills and knowledge not easily accessible in more traditional educational settings. This paper presents a systematic case study analysis of the eight organising principles of the student-as-producer model, as adopted by university tutors. The experience of tutors implementing students as producers suggests that the model can be widely applied to benefit not only the learning and teaching experiences of higher education students and staff but additionally a university’s research programme and its community partners.

Keywords: consultancy, learning, student as producer, research

Procedia PDF Downloads 78
7159 Methodical Approach for the Integration of a Digital Factory Twin into the Industry 4.0 Processes

Authors: R. Hellmuth

Abstract:

The orientation of flexibility and adaptability with regard to factory planning is at machine and process level. Factory buildings are not the focus of current research. Factory planning has the task of designing products, plants, processes, organization, areas and the construction of a factory. The adaptability of a factory can be divided into three types: spatial, organizational and technical adaptability. Spatial adaptability indicates the ability to expand and reduce the size of a factory. Here, the area-related breathing capacity plays the essential role. It mainly concerns the factory site, the plant layout and the production layout. The organizational ability to change enables the change and adaptation of organizational structures and processes. This includes structural and process organization as well as logistical processes and principles. New and reconfigurable operating resources, processes and factory buildings are referred to as technical adaptability. These three types of adaptability can be regarded independently of each other as undirected potentials of different characteristics. If there is a need for change, the types of changeability in the change process are combined to form a directed, complementary variable that makes change possible. When planning adaptability, importance must be attached to a balance between the types of adaptability. The vision of the intelligent factory building and the 'Internet of Things' presupposes the comprehensive digitalization of the spatial and technical environment. Through connectivity, the factory building must be empowered to support a company's value creation process by providing media such as light, electricity, heat, refrigeration, etc. In the future, communication with the surrounding factory building will take place on a digital or automated basis. In the area of industry 4.0, the function of the building envelope belongs to secondary or even tertiary processes, but these processes must also be included in the communication cycle. An integrative view of a continuous communication of primary, secondary and tertiary processes is currently not yet available and is being developed with the aid of methods in this research work. A comparison of the digital twin from the point of view of production and the factory building will be developed. Subsequently, a tool will be elaborated to classify digital twins from the perspective of data, degree of visualization, and the trades. Thus a contribution is made to better integrate the secondary and tertiary processes in a factory into the added value.

Keywords: adaptability, digital factory twin, factory planning, industry 4.0

Procedia PDF Downloads 156
7158 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients

Authors: Karina Zaccari, Ernesto Cordeiro Marujo

Abstract:

This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.

Keywords: machine learning, medical diagnosis, meningitis detection, pediatric research

Procedia PDF Downloads 151
7157 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: visual search, deep learning, convolutional neural network, machine learning

Procedia PDF Downloads 215
7156 Suitable Site Selection of Small Dams Using Geo-Spatial Technique: A Case Study of Dadu Tehsil, Sindh

Authors: Zahid Khalil, Saad Ul Haque, Asif Khan

Abstract:

Decision making about identifying suitable sites for any project by considering different parameters is difficult. Using GIS and Multi-Criteria Analysis (MCA) can make it easy for those projects. This technology has proved to be an efficient and adequate in acquiring the desired information. In this study, GIS and MCA were employed to identify the suitable sites for small dams in Dadu Tehsil, Sindh. The GIS software is used to create all the spatial parameters for the analysis. The parameters that derived are slope, drainage density, rainfall, land use / land cover, soil groups, Curve Number (CN) and runoff index with a spatial resolution of 30m. The data used for deriving above layers include 30-meter resolution SRTM DEM, Landsat 8 imagery, and rainfall from National Centre of Environment Prediction (NCEP) and soil data from World Harmonized Soil Data (WHSD). Land use/Land cover map is derived from Landsat 8 using supervised classification. Slope, drainage network and watershed are delineated by terrain processing of DEM. The Soil Conservation Services (SCS) method is implemented to estimate the surface runoff from the rainfall. Prior to this, SCS-CN grid is developed by integrating the soil and land use/land cover raster. These layers with some technical and ecological constraints are assigned weights on the basis of suitability criteria. The pairwise comparison method, also known as Analytical Hierarchy Process (AHP) is taken into account as MCA for assigning weights on each decision element. All the parameters and group of parameters are integrated using weighted overlay in GIS environment to produce suitable sites for the Dams. The resultant layer is then classified into four classes namely, best suitable, suitable, moderate and less suitable. This study reveals a contribution to decision-making about suitable sites analysis for small dams using geospatial data with minimal amount of ground data. This suitability maps can be helpful for water resource management organizations in determination of feasible rainwater harvesting structures (RWH).

Keywords: Remote sensing, GIS, AHP, RWH

Procedia PDF Downloads 389
7155 Quantitative and Qualitative Analysis: Predicting and Improving Students’ Summative Assessment Math Scores at the National College for Nuclear

Authors: Abdelmenen Abobghala, Mahmud Ahmed, Mohamed Alwaheshi, Anwar Fanan, Meftah Mehdawi, Ahmed Abuhatira

Abstract:

This research aims to predict academic performance and identify weak points in students to aid teachers in understanding their learning needs. Both quantitative and qualitative methods are used to identify difficult test items and the factors causing difficulties. The study uses interventions like focus group discussions, interviews, and action plans developed by the students themselves. The research questions explore the predictability of final grades based on mock exams and assignments, the student's response to action plans, and the impact on learning performance. Ethical considerations are followed, respecting student privacy and maintaining anonymity. The research aims to enhance student engagement, motivation, and responsibility for learning.

Keywords: prediction, academic performance, weak points, understanding, learning, quantitative methods, qualitative methods, formative assessments, feedback, emotional responses, intervention, focus group discussion, interview, action plan, student engagement, motivation, responsibility, ethical considerations

Procedia PDF Downloads 67
7154 Forecasting the Temperature at a Weather Station Using Deep Neural Networks

Authors: Debneil Saha Roy

Abstract:

Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast hori­zon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.

Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron

Procedia PDF Downloads 177
7153 Model Canvas and Process for Educational Game Design in Outcome-Based Education

Authors: Ratima Damkham, Natasha Dejdumrong, Priyakorn Pusawiro

Abstract:

This paper explored the solution in game design to help game designers in the educational game designing using digital educational game model canvas (DEGMC) and digital educational game form (DEGF) based on Outcome-based Education program. DEGMC and DEGF can help designers develop an overview of the game while designing and planning their own game. The way to clearly assess players’ ability from learning outcomes and support their game learning design is by using the tools. Designers can balance educational content and entertainment in designing a game by using the strategies of the Business Model Canvas and design the gameplay and players’ ability assessment from learning outcomes they need by referring to the Constructive Alignment. Furthermore, they can use their design plan in this research to write their Game Design Document (GDD). The success of the research was evaluated by four experts’ perspectives in the education and computer field. From the experiments, the canvas and form helped the game designers model their game according to the learning outcomes and analysis of their own game elements. This method can be a path to research an educational game design in the future.

Keywords: constructive alignment, constructivist theory, educational game, outcome-based education

Procedia PDF Downloads 354
7152 Mesozooplankton in the Straits of Florida: Patterns in Biomass and Distribution

Authors: Sharein El-Tourky, Sharon Smith, Gary Hitchcock

Abstract:

Effective fisheries management is necessarily dependent on the accuracy of fisheries models, which can be limited if they omit critical elements. One critical element in the formulation of these models is the trophic interactions at the larval stage of fish development. At this stage, fish mortality rates are at their peak and survival is often determined by resource limitation. Thus it is crucial to identify and quantify essential prey resources and determine how they vary in abundance and availability. The main resources larval fish consume are mesozooplankton. In the Straits of Florida, little is known about temporal and spatial variability of the mesozooplankton community despite its importance as a spawning ground for fish such as the Blue Marlin. To investigate mesozooplankton distribution patterns in the Straits of Florida, a transect of 16 stations from Miami to the Bahamas was sampled once a month in 2003 and 2004 at four depths. We found marked temporal and spatial variability in mesozooplankton biomass, diversity, and depth distribution. Mesozooplankton biomass peaked on the western boundary of the SOF and decreased gradually across the straits to a minimum at eastern stations. Midcurrent stations appeared to be a region of enhanced year-round variability, but limited seasonality. Examination of dominant zooplankton groups revealed groups could be parsed into 6 clusters based on abundance. Of these zooplankton groups, copepods were the most abundant zooplankton group, with the 20 most abundant species making up 86% of the copepod community. Copepod diversity was lowest at midcurrent stations and highest in the Eastern SOF. Interestingly, one copepods species, previously identified to compose up to 90% of larval blue marlin and sailfish diets in the SOF, had a mean abundance of less than 7%. However, the unique spatial and vertical distribution patterns of this copepod coincide with peak larval fish spawning periods and larval distribution, suggesting an important relationship requiring further investigation.

Keywords: mesozooplankton biodiversity, larval fish diet, food web, Straits of Florida, vertical distribution, spatiotemporal variability, cross-current comparisons, Gulf Stream

Procedia PDF Downloads 552
7151 Teaching and Learning with Picturebooks: Developing Multimodal Literacy with a Community of Primary School Teachers in China

Authors: Fuling Deng

Abstract:

Today’s children are frequently exposed to multimodal texts that adopt diverse modes to communicate myriad meanings within different cultural contexts. To respond to the new textual landscape, scholars have considered new literacy theories which propose picturebooks as important educational resources. Picturebooks are multimodal, with their meaning conveyed through the synchronisation of multiple modes, including linguistic, visual, spatial, and gestural acting as access to multimodal literacy. Picturebooks have been popular reading materials in primary educational settings in China. However, often viewed as “easy” texts directed at the youngest readers, picturebooks remain on the margins of Chinese upper primary classrooms, where they are predominantly used for linguistic tasks, with little value placed on their multimodal affordances. Practices with picturebooks in the upper grades in Chinese primary schools also encounter many challenges associated with the curation of texts for use, designing curriculum, and assessment. To respond to these issues, a qualitative study was conducted with a community of Chinese primary teachers using multi-methods such as interviews, focus groups, and documents. The findings showed the impact of the teachers’ increased awareness of picturebooks' multimodal affordances on their pedagogical decisions in using picturebooks as educational resources in upper primary classrooms.

Keywords: picturebook education, multimodal literacy, teachers' response to contemporary picturebooks, community of practice

Procedia PDF Downloads 136
7150 Learning Grammars for Detection of Disaster-Related Micro Events

Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev

Abstract:

Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.

Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter

Procedia PDF Downloads 478
7149 Analysing Tertiary Lecturers’ Teaching Practices and Their English Major Students’ Learning Practices with Information and Communication Technology (ICT) Utilization in Promoting Higher-Order Thinking Skills (HOTs)

Authors: Malini Ganapathy, Sarjit Kaur

Abstract:

Maximising learning with higher-order thinking skills with Information and Communications Technology (ICT) has been deep-rooted and emphasised in various developed countries such as the United Kingdom, the United States of America and Singapore. The transformation of the education curriculum in the Malaysia Education Development Plan (PPPM) 2013-2025 focuses on the concept of Higher Order Thinking (HOT) skills which aim to produce knowledgeable students who are critical and creative in their thinking and can compete at the international level. HOT skills encourage students to apply, analyse, evaluate and think creatively in and outside the classroom. In this regard, the National Education Blueprint (2013-2025) is grounded based on high-performing systems which promote a transformation of the Malaysian education system in line with the vision of Malaysia’s National Philosophy in achieving educational outcomes which are of world class status. This study was designed to investigate ESL students’ learning practices on the emphasis of promoting HOTs while using ICT in their curricula. Data were collected using a stratified random sampling where 100 participants were selected to take part in the study. These respondents were a group of undergraduate students who undertook ESL courses in a public university in Malaysia. A three-part questionnaire consisting of demographic information, students’ learning experience and ICT utilization practices was administered in the data collection process. Findings from this study provide several important insights on students’ learning experiences and ICT utilization in developing HOT skills.

Keywords: English as a second language students, critical and creative thinking, learning, information and communication technology and higher order thinking skills

Procedia PDF Downloads 490
7148 Fostering Students' Engagement with Historical Issues Surrounding the Field of Graphic Design

Authors: Sara Corvino

Abstract:

The aim of this study is to explore the potential of inclusive learning and assessment strategies to foster students' engagement with historical debates surrounding the field of graphic design. The goal is to respond to the diversity of L4 Graphic Design students, at Nottingham Trent University, in a way that instead of 'lowering standards' can benefit everyone. This research tests, measures, and evaluates the impact of a specific intervention, an assessment task, to develop students' critical visual analysis skills and stimulate a deeper engagement with the subject matter. Within the action research approach, this work has followed a case study research method to understand students' views and perceptions of a specific project. The primary methods of data collection have been: anonymous electronic questionnaire and a paper-based anonymous critical incident questionnaire. NTU College of Business Law and Social Sciences Research Ethics Committee granted the Ethical approval for this research in November 2019. Other methods used to evaluate the impact of this assessment task have been Evasys's report and students' performance. In line with the constructivist paradigm, this study embraces an interpretative and contextualized analysis of the collected data within the triangulation analytical framework. The evaluation of both qualitative and quantitative data demonstrates that active learning strategies and the disruption of thinking patterns can foster greater students' engagement and can lead to meaningful learning.

Keywords: active learning, assessment for learning, graphic design, higher education, student engagement

Procedia PDF Downloads 178
7147 Cardiovascular Disease Prediction Using Machine Learning Approaches

Authors: P. Halder, A. Zaman

Abstract:

It is estimated that heart disease accounts for one in ten deaths worldwide. United States deaths due to heart disease are among the leading causes of death according to the World Health Organization. Cardiovascular diseases (CVDs) account for one in four U.S. deaths, according to the Centers for Disease Control and Prevention (CDC). According to statistics, women are more likely than men to die from heart disease as a result of strokes. A 50% increase in men's mortality was reported by the World Health Organization in 2009. The consequences of cardiovascular disease are severe. The causes of heart disease include diabetes, high blood pressure, high cholesterol, abnormal pulse rates, etc. Machine learning (ML) can be used to make predictions and decisions in the healthcare industry. Thus, scientists have turned to modern technologies like Machine Learning and Data Mining to predict diseases. The disease prediction is based on four algorithms. Compared to other boosts, the Ada boost is much more accurate.

Keywords: heart disease, cardiovascular disease, coronary artery disease, feature selection, random forest, AdaBoost, SVM, decision tree

Procedia PDF Downloads 153
7146 Women Perception of Spatial Safety Relating to Working in Historic Cairo’s Retail Street Markets

Authors: Toka M. Abufarag

Abstract:

This research primarily studies the correlation between the existence of different spatial factors in relation to the perception of females towards safely participating in the labor force within selected areas of economic bustle in Historic Cairo. This research measures the following independent variables: (1) perception regarding spatial safety on the street as controlled by street network, (2) vegetation as a facilitator and inhibitor of feeling safe in public places, and (3) outdoor lighting; in relation to the following dependent variable: the perception of females towards safely participating in the labor force in Historic Cairo. The objective of this research lies within adding to the design guidelines of urban design and planning in terms of design recommendations, making them more inclusive, especially those dealing with conserving and enhancing the built environment of old and historic cities. It is hypothesized that a balanced male-to-female ratio in terms of street activity, increased visibility of street in terms of its volume, a decrease in street obstacles, creation of open sighted vegetation, and increased visibility due to proper lighting will show up as positive response relating to the female perception of safety. The site chosen as an area to host this exercise of data collection is Al-Ataba. The site is within the borders of Historic Cairo and was chosen for two reasons: firstly, it provides a major source of economic bustle in Historic Cairo; and secondly, it hosts retail economic activities. This is a cross-sectional study. The data collected will consist of three parts: (1) observations by the researcher regarding the percentage of female participation, as well as perception of females on site, (2) interviews with women working on-site regarding the percentage of female participation, as well as their perception on participating, and (3) an anonymous online survey that studies the perception of a random sample of women towards the site as a place to exist in. The survey will aid in producing design recommendations on how to design an open 'souk' that suits women’s perception of a safe space.

Keywords: urban design, women empowerment, safety perception, street markets, historic Cairo

Procedia PDF Downloads 125
7145 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 114
7144 Co-Participation: Towards the Sustainable Micro-Rural Complex in China

Authors: Danhua Xu, Zhenlan Qian, Zhu Wang, Jiayan Fu, Ling Wang

Abstract:

A new business mode called rural complex is proposed by the China’s government to promote the development the economy in the rural area. However, for the sake of current national conditions including the great number of labor farmers owning the small scale farmlands and the uncertain enthusiasm from the enterprises, it is challenging to develop the big scale rural complex. To react to the dilemmas, this paper puts forward the micro-rural complex to boost the small scale farms by co-participation from a bottom-up mode. By analyzing the potential opportunities to find the suitable mode, exploring the interdisciplinary and interdepartmental co-participation way beyond architecture design and spatial planning between different actors, the paper tries to find a complete process towards the sustainable micro-rural complex and conducts an ongoing practice to optimize it, to bring new insights and reference to the rural development. According to the transformation of the economy, the micro-rural complex will develop into two phases, both of which can be discussed in three parts, the economic mode, the spatial support, and the Cooperating mechanism. The first stage is the agriculture co-participation based on the rise of Community supported agriculture (CSA) in which the consumers buy the products planted in an organic way from the farmers directly with a higher price to support the small-scale agriculture and overcome the food safety issues. The following stage sets up the agritourism catering the citizens with the restaurants, inns and other tourist service facilities to be planned and designed. In the whole process, the interdisciplinary co-participation will play an important role to provide the guidelines and consultation from the agronomists, architects and rural planners to the farmers. This mode has been applied to an on-going farm project, from which to explore the mode in a more practical way. In conclusion, the micro-rural complex aims at creating a balanced urban-rural relationship by co-participation taking advantage of the different actors. The spatial development is considered from the economic mode and social organization. The integration of the mode based on the small-scale agriculture will contribute to a sustainable growth and realize the long run development in the rural area.

Keywords: micro-rural complex, co-participation, sustainable development, China

Procedia PDF Downloads 263
7143 Sense Environmental Hormones in Elementary School Teachers and Their in Service Learning Motivation

Authors: Fu-Chi Chuang, Yu-Liang, Chang, Wen-Der Wang

Abstract:

Our environment has been contaminated by many artificial chemicals, such as plastics, pesticides. Many of them have hormone-like activity and are classified as 'environmental hormone (also named endocrine disruptors)'. These chemicals interfere with or mimic hormones have adverse effects that persist into adulthood. Environmental education is an important way to teach students to become engaged in real-world issues that transcend classroom walls. Elementary education is the first stage to perform environmental education and it is an important component to help students develop adequate environmental knowledge, attitudes, and behavior. However, elementary teachers' knowledge plays a critical role in this mission. Therefore, we use a questionnaire to survey the knowledge of environmental hormone of elementary school teachers and their learning motivation of the environmental hormone-regarding knowledge. We collected 218 questionnaires from Taiwanese elementary teachers and the results indicate around 73% of elementary teachers do not have enough knowledge about environmental hormones. Our results also reveal the in-service elementary teachers’ learning motivation of environmental hormones knowledge is positively enhanced once they realized their insufficient cognitive ability of environmental hormones. We believe our study will provide the powerful reference for Ministry of Education to set up the policy of environmental education to enrich all citizens sufficient knowledge of the effects of the environmental hormone on organisms, and further to enhance our correct environmental behaviors.

Keywords: elementary teacher, environmental hormones, learning motivation, questionnaire

Procedia PDF Downloads 313
7142 Urban Landscape Composition and Configuration Dynamics and Expansion of Hawassa City Analysis, Ethiopia Using Satellite Images and Spatial Metrics Approach

Authors: Berhanu Keno Terfa

Abstract:

To understand the consequences of urbanization, accurate, and long-term representation of urban dynamics is essential. Remote sensing data from various multi-temporal satellite images viz., TM (1987), TM (1995), ETM+ (2005) and OLI (2017) were used. An integrated method, landscape metrics, built-up density, and urban growth type analysis were employed to analyze the pattern, process, and overall growth status in the city. The result showed that the built-up area had increased by 541.3% between 1987 and 2017, at an average annual increment of 8.9%. The area of urban expansion in a city has tripled during the 2005-2017 period as compared to 187- 1995. The major growth took place in the east and southeast directions during 1987–1995 period, whereas predominant built-up development was observed in south and southeast direction during 1995–2017 period. The analysis using landscape metrics and urban typologies showed that Hawassa experienced a fragmented and irregular spatiotemporal urban growth patterns, mostly by extension, suggesting a strong tendency towards sprawl in the past three decades.

Keywords: Hawassa, spatial patterns, remote sensing, multi-temporal, urban sprawl

Procedia PDF Downloads 148
7141 ePA-Coach: Design of the Intelligent Virtual Learning Coach for Senior Learners in Support of Digital Literacy in the Context of Electronic Patient Record

Authors: Ilona Buchem, Carolin Gellner

Abstract:

Over the last few years, the call for the support of senior learners in the development of their digital literacy has become prevalent, mainly due to the progression towards ageing societies paired with advances in digitalisation in all spheres of life, including e-health and electronic patient record (EPA). While major research efforts in supporting senior learners in developing digital literacy have been invested so far in e-learning focusing on knowledge acquisition and cognitive tasks, little research exists in learning models which target virtual mentoring and coaching with the help of pedagogical agents and address the social dimensions of learning. Research from studies with students in the context of formal education has already provided methods for designing intelligent virtual agents in support of personalised learning. However, this research has mostly focused on cognitive skills and has not yet been applied to the context of mentoring/coaching of senior learners, who have different characteristics and learn in different contexts. In this paper, we describe how insights from previous research can be used to develop an intelligent virtual learning coach (agent) for senior learners with a focus on building the social relationship between the agent and the learner and the key task of the agent to socialize learners to the larger context of digital literacy with a focus on electronic health records. Following current approaches to mentoring and coaching, the agent is designed not to enhance and monitor the cognitive performance of the learner but to serve as a trusted friend and advisor, whose role is to provide one-to-one guidance and support sharing of experiences among learners (peers). Based on literature review and synopsis of research on virtual agents and current coaching/mentoring models under consideration of the specific characteristics and requirements of senior learners, we describe the design framework which was applied to design an intelligent virtual learning coach as part of the e-learning system for digital literacy of senior learners in the ePA-Coach project founded by the German Ministry of Education and Research. This paper also presents the results from the evaluation study, which compared the use of the first prototype of the virtual learning coach designed according to the design framework with a voice narration in a multimedia learning environment with senior learners. The focus of the study was to validate the agent design in the context of the persona effect (Lester et al., 1997). Since the persona effect is related to the hypothesis that animated agents are perceived as more socially engaging, the study evaluated possible impacts of agent coaching in comparison with voice coaching on motivation, engagement, experience, and digital literacy.

Keywords: virtual learning coach, virtual mentor, pedagogical agent, senior learners, digital literacy, electronic health records

Procedia PDF Downloads 117
7140 An Embarrassingly Simple Semi-supervised Approach to Increase Recall in Online Shopping Domain to Match Structured Data with Unstructured Data

Authors: Sachin Nagargoje

Abstract:

Complete labeled data is often difficult to obtain in a practical scenario. Even if one manages to obtain the data, the quality of the data is always in question. In shopping vertical, offers are the input data, which is given by advertiser with or without a good quality of information. In this paper, an author investigated the possibility of using a very simple Semi-supervised learning approach to increase the recall of unhealthy offers (has badly written Offer Title or partial product details) in shopping vertical domain. The author found that the semisupervised learning method had improved the recall in the Smart Phone category by 30% on A=B testing on 10% traffic and increased the YoY (Year over Year) number of impressions per month by 33% at production. This also made a significant increase in Revenue, but that cannot be publicly disclosed.

Keywords: semi-supervised learning, clustering, recall, coverage

Procedia PDF Downloads 122
7139 Open Educational Resources (OER): Deciding upon Openness

Authors: Eunice H. Li

Abstract:

This e-poster explores some of the issues that are linked to Open Educational Resources (OER). It describes how OER is explained by experts in the field and relates its value in attaining and using knowledge. ‘Open', 'open pedagogy', self-direction, freedom, and autonomy are the main issues identified for the discussion. All of these issues make essential contributions to OER in one way or another. Nevertheless, there are seemingly areas of contentions with regard to applying these concepts in teaching and learning practices. For this e-Poster, it is the teaching-learning aspects of OER that it is primarily concerned with. The basis for the discussion comes from a 2013 critique of OER presented by Jeremy Knox of the University of Edinburgh, tutor of the MSc in Digital Education Programme. This discussion is also supported by the analysis of other research work and papers in this area. The general view on OER is that it is a useful tool for the advancement of learner-centred models of education, but in whatever context, pedagogy cannot be diminished and overlooked. It should take into consideration how to deal with the issues identified above in order to allow learners to gain full benefit from OER.

Keywords: open, pedagogy, e-learning technologies, autonomy, knowledge

Procedia PDF Downloads 400
7138 Francophone University Students' Attitudes Towards English Accents in Cameroon

Authors: Eric Agrie Ambele

Abstract:

The norms and models for learning pronunciation in relation to the teaching and learning of English pronunciation are key issues nowadays in English Language Teaching in ESL contexts. This paper discusses these issues based on a study on the attitudes of some Francophone university students in Cameroon towards three English accents spoken in Cameroon: Cameroon Francophone English (CamFE), Cameroon English (CamE), and Hyperlectal Cameroon English (near standard British English). With the desire to know more about the treatment that these English accents receive among these students, an aspect that had hitherto received little attention in the literature, a language attitude questionnaire, and the matched-guise technique was used to investigate this phenomenon. Two methods of data analysis were employed: (1) the percentage count procedure, and (2) the semantic differential scale. The findings reveal that the participants’ attitudes towards the selected accents vary in degree. Though Hyperlectal CamE emerged first, CamE second and CamFE third, no accent, on average, received a negative evaluation. It can be deduced from this findings that, first, CamE is gaining more and more recognition and can stand as an autonomous accent; second, that the participants all rated Hyperlectal CamE higher than CamE implies that they would be less motivated in a context where CamE is the learning model. By implication, in the teaching of English pronunciation to francophone learners learning English in Cameroon, Hyperlectal Cameroon English should be the model.

Keywords: teaching pronunciation, English accents, Francophone learners, attitudes

Procedia PDF Downloads 197
7137 Enhancing Higher Education Teaching and Learning Processes: Examining How Lecturer Evaluation Make a Difference

Authors: Daniel Asiamah Ameyaw

Abstract:

This research attempts to investigate how lecturer evaluation makes a difference in enhancing higher education teaching and learning processes. The research questions to guide this research work states first as, “What are the perspectives on the difference made by evaluating academic teachers in order to enhance higher education teaching and learning processes?” and second, “What are the implications of the findings for Policy and Practice?” Data for this research was collected mainly through interviewing and partly documents review. Data analysis was conducted under the framework of grounded theory. The findings showed that for individual lecturer level, lecturer evaluation provides a continuous improvement of teaching strategies, and serves as source of data for research on teaching. At the individual student level, it enhances students learning process; serving as source of information for course selection by students; and by making students feel recognised in the educational process. At the institutional level, it noted that lecturer evaluation is useful in personnel and management decision making; it assures stakeholders of quality teaching and learning by setting up standards for lecturers; and it enables institutions to identify skill requirement and needs as a basis for organising workshops. Lecturer evaluation is useful at national level in terms of guaranteeing the competencies of graduates who then provide the needed manpower requirement of the nation. Besides, it mentioned that resource allocation to higher educational institution is based largely on quality of the programmes being run by the institution. The researcher concluded, that the findings have implications for policy and practice, therefore, higher education managers are expected to ensure that policy is implemented as planned by policy-makers so that the objectives can successfully be achieved.

Keywords: academic quality, higher education, lecturer evaluation, teaching and learning processes

Procedia PDF Downloads 143
7136 [Keynote Talk]: Study of Cooperative Career Education between Universities and Companies

Authors: Azusa Katsumata

Abstract:

Where there is collaboration between universities and companies in the educational context, companies seek ‘knowledge’ from universities and provide a ‘place of practice’ to them. Several universities have introduced activities aimed at the mutual enlightenment of a diversity of people in career education. However, several programs emphasize on delivering results, and on practicing the prepared materials as planned. Few programs focus on unexpected failures and setbacks. This way of learning is important in career education so that classmates can help each other, overcome difficulties, draw out each other’s strengths, and learn from them. Seijo University in Tokyo offered Tokyo Tourism, a Project-Based Learning course, as a first-year career education course until 2016. In cooperation with a travel agency, students participate in planning actual tourism products for foreigners visiting Japan, undertake tours serving as guides. This paper aims to study the 'learning platform' created by a series of processes such as the fieldwork, planning tours, the presentation, selling the tourism products, and guiding the tourists. We conducted a questionnaire to measure the development of work-related skills in class. From the results of the questionnaire, we can see, in the example of this class, that students demonstrated an increased desire to be pro-active and an improved motivation to learn. Students have not, however, acquired policy or business skills. This is appropriate for first-year careers education, but we need to consider how this can be incorporated into future courses. In the questionnaire filled out by the students after the class, the following results were found. Planning and implementing travel products while learning from each other, and helping the teams has led to improvements in the student workforce. This course is a collaborative project between Japanese universities and the 2020 Tokyo Olympics and Paralympic Games committee.

Keywords: university career education, platform of learning, project-based learning, collaboration between university and company

Procedia PDF Downloads 161
7135 Variation of Phytoplankton Biomass in the East China Sea Based on MODIS Data

Authors: Yumei Wu, Xiaoyan Dang, Shenglong Yang, Shengmao Zhang

Abstract:

The East China Sea is one of four main seas in China, where there are many fishery resources. Some important fishing grounds, such as Zhousan fishing ground important to society. But the eco-environment is destroyed seriously due to the rapid developing of industry and economy these years. In this paper, about twenty-year satellite data from MODIS and the statistical information of marine environment from the China marine environmental quality bulletin were applied to do the research. The chlorophyll-a concentration data from MODIS were dealt with in the East China Sea and then used to analyze the features and variations of plankton biomass in recent years. The statistics method was used to obtain their spatial and temporal features. The plankton biomass in the Yangtze River estuary and the Taizhou region were highest. The high phytoplankton biomass usually appeared between the 88th day to the 240th day (end-March - August). In the peak time of phytoplankton blooms, the Taizhou islands was the earliest, and the South China Sea was the latest. The intensity and period of phytoplankton blooms were connected with the global climate change. This work give us confidence to use satellite data to do more researches about the China Sea, and it also provides some help for us to know about the eco-environmental variation of the East China Sea and regional effect from global climate change.

Keywords: the East China Sea, phytoplankton biomass, temporal and spatial variation, phytoplankton bloom

Procedia PDF Downloads 329
7134 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 465
7133 Minimizing Learning Difficulties in Teaching Mathematics

Authors: Hari Sharan Pandit

Abstract:

Mathematics teaching in Nepal has been centralized and guided by the notion of transfer of knowledge and skills from teachers to students. The overemphasis on an algorithm-centric approach of mathematics teaching and the focus on ‘rote–learning’ as the ultimate way of solving mathematical problems since the early years of schooling have been creating severe problems in school-level mathematics in Nepal. In this context, the author argues that students should learn real-world mathematical problems through various interesting, creative and collaborative, as well as artistic and alternative ways of knowing. The collaboration-incorporated pedagogy is an distinct pedagogical approach that offers a better alternative as an integrated and interdisciplinary approach to learning that encourages students to think more broadly and critically about real-world problems. The paper, as a summarized report of action research designed, developed and implemented by the author, focuses on the needs and usefulness of collaboration-incorporated pedagogy in the Nepali context to make mathematics teaching more meaningful for producing creative and critical citizens. This paper is useful for mathematics teachers, teacher educators and researchers who argue on arts integration in mathematics teaching.

Keywords: algorithm-centric, rote-learning, collaboration - incorporated pedagogy, action research

Procedia PDF Downloads 13
7132 Differentiated Instruction for All Learners: Strategies for Full Inclusion

Authors: Susan Dodd

Abstract:

This presentation details the methodology for teachers to identify and support a population of students who have historically been overlooked in regards to their educational needs. The twice exceptional (2e) student is a learner who is considered gifted and also has a learning disability, as defined by the Individuals with Disabilities Education Act (IDEA). Many of these students remain underserved throughout their educational careers because their exceptionalities may mask each other, resulting in a special population of students who are not achieving to their fullest potential. There are three common scenarios that may make the identification of a 2e student challenging. First, the student may have been identified as gifted, and her disability may go unnoticed. She could also be considered an under-achiever, or she may be able to compensate for her disability under the school works becomes more challenging. In the second scenario, the student may be identified as having a learning disability and is only receiving remedial services where his giftedness will not be highlighted. His overall IQ scores may be misleading because they were impacted by his learning disability. In the third scenario, the student is able to compensate for her ability well enough to maintain average scores, and she goes undetected as both gifted and learning disabled. Research in the area identifies the complexity involved in identifying 2e students, and how multiple forms of assessment are required. It is important for teachers to be aware of the common characteristics exhibited by many 2e students, so these learners can be identified and appropriately served. Once 2e students have been identified, teachers are then challenged to meet the varying needs of these exceptional learners. Strength-based teaching entails simultaneously providing gifted instruction as well as individualized accommodations for those students. Research in this field has yielded strategies that have proven helpful for teaching 2e students, as well as other students who may be struggling academically. Differentiated instruction, while necessary in all classrooms, is especially important for 2e students, as is encouragement for academic success. Teachers who take the time to really know their students will have a better understanding of each student’s strengths and areas for growth, and therefore tailor instruction to extend the intellectual capacities for optimal achievement. Teachers should also understand that some learning activities can prove very frustrating to students, and these activities can be modified based on individual student needs. Because 2e students can often become discouraged by their learning challenges, it is especially important for teachers to assist students in recognizing their own strengths and maintaining motivation for learning. Although research on the needs of 2e students has spanned across two decades, this population remains underserved in many educational institutions. Teacher awareness of the identification of and the support strategies for 2e students is critical for their success.

Keywords: gifted, learning disability, special needs, twice exceptional

Procedia PDF Downloads 179
7131 An Experimental Study of Self-Regulated Learning with High School Gifted Pupils

Authors: Prakash Singh

Abstract:

Research studies affirm the view that gifted pupils are endowed with unique personality traits, enabling them to study at higher levels of thinking, at a faster pace, and with a greater degree of autonomy than their average counterparts. The focus of this study was whether high school gifted pupils are capable of studying an advanced level curriculum on their own by employing self-regulated learning (SRL) strategies. To be self-regulated, pupils are required to be metacognitively, motivationally, and behaviourally active participants in their own learning processes so that they are able to initiate and direct their personal curriculum efforts to acquire cognitive skills and knowledge, instead of being solely reliant on their teachers. Researchers working with gifted populations concede that limited studies have been conducted thus far to examine gifted pupils’ expertise in using SRL strategies to assume ownership of their learning. In order to conduct this investigation, an enriched module in Accounting for specifically gifted grade eleven pupils was developed, incorporating advanced level content, and use was made of the Post-test-Only Control Group Design to accomplish this research objective. The results emanating from this empirical study strongly suggest that SRL strategies can be employed to overcome a narrow, rigid approach that limits the education of gifted pupils in the regular classroom of the high school. SRL can meaningfully offer an alternative way to implement an advanced level curriculum for the gifted in the mainstream of education. This can be achieved despite the limitations of differentiation in the regular classroom.

Keywords: advanced level curriculum, high school gifted pupils, self-regulated learning, teachers’ professional competencies

Procedia PDF Downloads 402