Search results for: data to action
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26936

Search results for: data to action

24626 Application Difference between Cox and Logistic Regression Models

Authors: Idrissa Kayijuka

Abstract:

The logistic regression and Cox regression models (proportional hazard model) at present are being employed in the analysis of prospective epidemiologic research looking into risk factors in their application on chronic diseases. However, a theoretical relationship between the two models has been studied. By definition, Cox regression model also called Cox proportional hazard model is a procedure that is used in modeling data regarding time leading up to an event where censored cases exist. Whereas the Logistic regression model is mostly applicable in cases where the independent variables consist of numerical as well as nominal values while the resultant variable is binary (dichotomous). Arguments and findings of many researchers focused on the overview of Cox and Logistic regression models and their different applications in different areas. In this work, the analysis is done on secondary data whose source is SPSS exercise data on BREAST CANCER with a sample size of 1121 women where the main objective is to show the application difference between Cox regression model and logistic regression model based on factors that cause women to die due to breast cancer. Thus we did some analysis manually i.e. on lymph nodes status, and SPSS software helped to analyze the mentioned data. This study found out that there is an application difference between Cox and Logistic regression models which is Cox regression model is used if one wishes to analyze data which also include the follow-up time whereas Logistic regression model analyzes data without follow-up-time. Also, they have measurements of association which is different: hazard ratio and odds ratio for Cox and logistic regression models respectively. A similarity between the two models is that they are both applicable in the prediction of the upshot of a categorical variable i.e. a variable that can accommodate only a restricted number of categories. In conclusion, Cox regression model differs from logistic regression by assessing a rate instead of proportion. The two models can be applied in many other researches since they are suitable methods for analyzing data but the more recommended is the Cox, regression model.

Keywords: logistic regression model, Cox regression model, survival analysis, hazard ratio

Procedia PDF Downloads 455
24625 Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis

Authors: Sidi Yang, Haiyi Zhang

Abstract:

Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields.

Keywords: text mining, Twitter, topic model, sentiment analysis

Procedia PDF Downloads 179
24624 Effects of Temperature Dryer on Allicin and Pirvic Acid Measurments Garlic Powder after Drying Process

Authors: Rezvani Aghdam Ali, Aleemrani Nejad Seyed Mohammad Hossein

Abstract:

Introduction: Dryed Garlic has plentiful health and medicinal value and is used in industrial food the forms of flakes or powders. Many health and medicinal properties of Garlic are attributed to allicin. This substance is produced enzymatically after crushing. Since temperature affected on enzymatic action, then is important factor on pirovic acid and allicin retention. Materials and Methods: This study investigated the effects of temperature on qualitative characteristics such as color of powder and pirovic acid and alicin retention in a convective hot-air dryer. For this reason, half cloves of Shushtar Garlics (Allium sativum L.) were dried at air temperatures of 50 and 70°C. Results: Results showed that increasing temperature was resulted changing color. Pirovic acid increased when half cloves Garlic were dried at 70°C. Allicin of half cloves also increased with increasing temperature. Conclusions: According to findings of this research, half cloves which dried in 70 degree centigrade can be introduced the best conditions for producing Garlic powder.

Keywords: garlic, drying, pirovic acid, allicin

Procedia PDF Downloads 333
24623 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning

Authors: Kwaku Damoah

Abstract:

This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.

Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.

Procedia PDF Downloads 70
24622 Design, Synthesis, and Evaluation of Small Peptides for Managing Inflammation: Inhibition to Substrate Approach

Authors: Palwinder Singh, Baljit Kaur, Sukhmeet Kaur

Abstract:

Amongst a library of rationally designed small peptides, (H)Gly-Gly-Phe-Leu(OMe) was identified, reducing prostaglandin production of COX-2 with IC50 60 nM vs. 6000 nM for COX-1. The 5 mg Kg-1 dose of this compound rescued albino mice by 80% from capsaicin-induced paw licking and recovered it by 60% from carrageenan-induced inflammation. The mode of action of the compound for targeting COX-2, iNOS, and VGSC was investigated by using substances P, L-arginine, and veratrine, respectively, as the biomarkers. The interactions of the potent compound with COX-2 were supported by the isothermal calorimetry experiments showing Ka 6.10±1.10x104 mol-1 and ΔG -100.3 k J mol-1 in comparison to Ka 0.41x103 ±0.09 mol-1 and ΔG -19.2±0.06 k J mol-1 for COX-1. This compound did not show toxicity up to 2000 mg Kg-1 dose. Furthermore, beyond the conventional mode of working with anti-inflammatory agents through enzyme inhibition, COX-2 was provided with a peptide-based alternate substrate. Proline-centered pentapeptide iso-conformational to arachidonic acid exhibited appreciable selectivity for COX-2 overcoming acetic acid and formalin-induced pain in rats to almost 80% and was treated as a substrate by the enzyme. Hence, we suggest small peptides as highly potent and promising candidates for their further development into an anti-inflammatory drug.

Keywords: small peptides, cyclooxygenase, inflammation, substrate

Procedia PDF Downloads 88
24621 Value Chain Based New Business Opportunity

Authors: Seonjae Lee, Sungjoo Lee

Abstract:

Excavation is necessary to remain competitive in the current business environment. The company survived the rapidly changing industry conditions by adapting new business strategy and reducing technology challenges. Traditionally, the two methods are conducted excavations for new businesses. The first method is, qualitative analysis of expert opinion, which is gathered through opportunities and secondly, new technologies are discovered through quantitative data analysis of method patents. The second method increases time and cost. Patent data is restricted for use and the purpose of discovering business opportunities. This study presents the company's characteristics (sector, size, etc.), of new business opportunities in customized form by reviewing the value chain perspective and to contributing to creating new business opportunities in the proposed model. It utilizes the trademark database of the Korean Intellectual Property Office (KIPO) and proprietary company information database of the Korea Enterprise Data (KED). This data is key to discovering new business opportunities with analysis of competitors and advanced business trademarks (Module 1) and trading analysis of competitors found in the KED (Module 2).

Keywords: value chain, trademark, trading analysis, new business opportunity

Procedia PDF Downloads 372
24620 Towards Addressing the Cultural Snapshot Phenomenon in Cultural Mapping Libraries

Authors: Mousouris Spiridon, Kavakli Evangelia

Abstract:

This paper focuses on Digital Libraries (DLs) that contain and geovisualise cultural data, highlighting the need to define them as a separate category termed Cultural Mapping Libraries, based on their inherent connection of culture with geographic location and their design requirements in support of visual representation of cultural data on the map. An exploratory analysis of DLs that conform to the above definition brought forward the observation that existing Cultural Mapping Libraries fail to geovisualise the entirety of cultural data per point of interest thus resulting in a Cultural Snapshot phenomenon. The existence of this phenomenon was reinforced by the results of a systematic bibliographic research. In order to address the Cultural Snapshot, this paper proposes the use of the Semantic Web principles to efficiently interconnect spatial cultural data through time, per geographic location. In this way points of interest are transformed into scenery where culture evolves over time. This evolution is expressed as occurrences taking place chronologically, in an event oriented approach, a conceptualization also endorsed by the CIDOC Conceptual Reference Model (CIDOC CRM). In particular, we posit the use of CIDOC CRM as the baseline for defining the logic of Cultural Mapping Libraries as part of the Culture Domain in accordance with the Digital Library Reference Model, in order to define the rules of cultural data management by the system. Our future goal is to transform this conceptual definition in to inferencing rules that resolve the Cultural Snapshot and lead to a more complete geovisualisation of cultural data.

Keywords: digital libraries, semantic web, geovisualization, CIDOC-CRM

Procedia PDF Downloads 109
24619 Tourism and Sport: The Acknowledgment of a Strong Relationship for the Environment Framed in a Literature Review

Authors: Rute Martins, Margarida Mascarenhas, Elsa Pereira

Abstract:

The importance between sport and the natural environment was researched through a systematic literature in order to analyse the available scientific articles on the association of sport -angling also the physical activity, active leisure and recreation- and environmental behaviour. The collected data were gathered within the last five years (from 2013 to April 2018) in the Scopus, Web of Science, ScienceDirect, Sage, Green Leaf Online Library, GreenFile (EBSCO) and Wiley online Library databases. The content analysis based on the qualitative methods employed in this study was made with Nvivo software. Regarding only the inclusion of scientific articles, more than half of the collected papers highlighted tourism as the main area where sports is being researched with regard to the environmental theme. Thus, it is possible to extract a perspective of the orientations of the ecological concerns in the sports tourism industry. As such, in the winter sports, the climate change is already an identified issue, wondering about the impact of the environment on the sports practice. In this context, there is a focus on the possible adaptative strategies, researching the characteristics of the sports tourist and the winter sports industry. Regarding the natural parks and protected areas (such as reefs), most of the research is on the environmental impact of the sports tourism, choosing the conservation and the protection of nature as the core topics. The research of the sports tourist profile is addressed by many articles, where the motives for practice and the environmental values are being scanned, and relations to the recreation specialization, environmental responsibility, environmental education, and place-attachment concepts are being made. Regarding the sustainable management, the sports tourism study area is approaching the research in a more holistic way; exploring the stakeholder’s interconnection, focusing on landscape planning and environmentally sustainable practices of sport tourism organizations. The natural parks, protected areas, coral reefs, and snow areas serve as the preferred case-studies for investigating the environmental impact and the ecotourism, in particular, studied through hiking and diving in the great majority. The results of the study are a valuable resource to understand the importance of the sports tourism in the environmental and sustainable action along with the need of embracing all stakeholders within the relationship between the sport and the natural environment.

Keywords: ecotourism, environmental behaviour, outdoor recreation, sport tourism

Procedia PDF Downloads 162
24618 An Evaluation of the Impact of E-Banking on Operational Efficiency of Banks in Nigeria

Authors: Ibrahim Rabiu Darazo

Abstract:

The research has been conducted on the impact of E-banking on the operational efficiency of Banks in Nigeria, A case of some selected banks (Diamond Bank Plc, GTBankPlc, and Fidelity Bank Plc) in Nigeria. The research is a quantitative research which uses both primary and secondary sources of data collection. Questionnaire were used to obtained accurate data, where 150 Questionnaire were distributed among staff and customers of the three Banks , and the data collected where analysed using chi-square, whereas the secondary data where obtained from relevant text books, journals and relevant web sites. It is clear from the findings that, the use of e-banking by the banks has improved the efficiency of these banks, in terms of providing efficient services to customers electronically, using Internet Banking, Telephone Banking ATMs, reducing time taking to serve customers, e-banking allow new customers to open an account online, customers have access to their account at all the time 24/7.E-banking provide access to customers information from the data base and cost of check and postage were eliminated using e-banking. The recommendation at the end of the research include; the Banks should try to update their electronic gadgets, e-fraud(internal & external) should also be controlled, Banks shall employ qualified man power, Biometric ATMs shall be introduce to reduce fraud using ATM Cards, as it is use in other countries like USA.

Keywords: banks, electronic banking, operational efficiency of banks, biometric ATMs

Procedia PDF Downloads 332
24617 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.

Keywords: data science, fraud detection, machine learning, supervised learning

Procedia PDF Downloads 196
24616 Suitability of Satellite-Based Data for Groundwater Modelling in Southwest Nigeria

Authors: O. O. Aiyelokun, O. A. Agbede

Abstract:

Numerical modelling of groundwater flow can be susceptible to calibration errors due to lack of adequate ground-based hydro-metrological stations in river basins. Groundwater resources management in Southwest Nigeria is currently challenged by overexploitation, lack of planning and monitoring, urbanization and climate change; hence to adopt models as decision support tools for sustainable management of groundwater; they must be adequately calibrated. Since river basins in Southwest Nigeria are characterized by missing data, and lack of adequate ground-based hydro-meteorological stations; the need for adopting satellite-based data for constructing distributed models is crucial. This study seeks to evaluate the suitability of satellite-based data as substitute for ground-based, for computing boundary conditions; by determining if ground and satellite based meteorological data fit well in Ogun and Oshun River basins. The Climate Forecast System Reanalysis (CFSR) global meteorological dataset was firstly obtained in daily form and converted to monthly form for the period of 432 months (January 1979 to June, 2014). Afterwards, ground-based meteorological data for Ikeja (1981-2010), Abeokuta (1983-2010), and Oshogbo (1981-2010) were compared with CFSR data using Goodness of Fit (GOF) statistics. The study revealed that based on mean absolute error (MEA), coefficient of correlation, (r) and coefficient of determination (R²); all meteorological variables except wind speed fit well. It was further revealed that maximum and minimum temperature, relative humidity and rainfall had high range of index of agreement (d) and ratio of standard deviation (rSD), implying that CFSR dataset could be used to compute boundary conditions such as groundwater recharge and potential evapotranspiration. The study concluded that satellite-based data such as the CFSR should be used as input when constructing groundwater flow models in river basins in Southwest Nigeria, where majority of the river basins are partially gaged and characterized with long missing hydro-metrological data.

Keywords: boundary condition, goodness of fit, groundwater, satellite-based data

Procedia PDF Downloads 130
24615 Developing a Performance Measurement System for Arts-Based Initiatives: Action Research on Italian Corporate Museums

Authors: Eleonora Carloni, Michela Arnaboldi

Abstract:

In academia, the investigation of the relationship between cultural heritage and corporations is ubiquitous in several fields of studies. In practice corporations are more and more integrating arts and cultural heritage in their strategies for disparate benefits, such as: to foster customer’s purchase intention with authentic and aesthetic experiences, to improve their reputation towards local communities, and to motivate employees with creative thinking. There are diverse forms under which corporations set these artistic interventions, from sponsorships to arts-based training centers for employees, but scholars agree that the maximum expression of this cultural trend are corporate museums, growing in number and relevance. Corporate museums are museum-like settings, hosting artworks of corporations’ history and interests. In academia they have been ascribed as strategic asset and they have been associated with diverse uses for corporations’ benefits, from place for preservation of cultural heritage, to tools for public relations and cultural flagship stores. Previous studies have thus extensively but fragmentally studied the diverse benefits of corporate museum opening to corporations, with a lack of comprehensive approach and a digression on how to evaluate and report corporate museum’s performances. Stepping forward, the present study aims to investigate: 1) what are the key performance measures corporate museums need to report to the associated corporations; 2) how are the key performance measures reported to the concerned corporations. This direction of study is not only suggested as future direction in academia but it has solid basis in practice, aiming to answer to the need of corporate museums’ directors to account for corporate museum’s activities to the concerned corporation. Coherently, at an empirical level the study relies on action research method, whose distinctive feature is to develop practical knowledge through a participatory process. This paper indeed relies on the experience of a collaborative project between the researchers and a set of corporate museums in Italy, aimed at co-developing a performance measurement system. The project involved two steps: a first step, in which researchers derived the potential performance measures from literature along with exploratory interviews; a second step, in which researchers supported the pool of corporate museums’ directors in co-developing a set of key performance indicators for reporting. Preliminary empirical findings show that while scholars insist on corporate museums’ capability to develop networking relations, directors insist on the role of museums as internal supplier of knowledge for innovation goals. Moreover, directors stress museums’ cultural mission and outcomes as potential benefits for corporation, by remarking to include both cultural and business measures in the final tool. In addition, they give relevant attention to the wording used in humanistic terms while struggling to express all measures in economic terms. The paper aims to contribute to corporate museums’ and more broadly to arts-based initiatives’ literature in two directions. Firstly, it elaborates key performance measures with related indicators to report on cultural initiatives for corporations. Secondly, it provides evidence of challenges and practices to handle reporting on these initiatives, because of tensions arising from the co-existence of diverse perspectives, namely arts and business worlds.

Keywords: arts-based initiative, corporate museum, hybrid organization, performance measurement

Procedia PDF Downloads 176
24614 Character Strengths and Military Leadership

Authors: Lobna Cherif, Valerie Wood

Abstract:

The importance of both character and resilience for military members has been emphasized at the highest levels of military leadership. Initial research suggests that the presence of character strengths might be relevant in predicting success and well-being for some military populations (e.g., recruits). In this presentation, we will first review our research investigating the perceived importance of character strengths for Canadian military cadet (N = 134) success, the top strengths endorsed by cadets, and, in a subset of cadets (n = 94), the relationships among core strengths and resilience. Participants first completed a survey comprised of a resilience measure and demographic items, then one month later completed a Values in Action (VIA) character strengths profile, questions related to character strengths (their personal top-five character strengths, and strengths they believed were important for military-related stressors and leadership, academic success, resilience, and completion of the military challenge). Findings indicated that military cadets consider (among others), perseverance, judgment, and teamwork to be most critical for bouncing back from stressors. However, the most frequently endorsed strengths that characterized cadets were bravery, honesty, and perseverance. Finally, perseverance, bravery, and humor were positively correlated with cadet resilience, while endorsement of love was negatively correlated with resilience.

Keywords: character strengths, leadership, positive psychology, resilience

Procedia PDF Downloads 191
24613 Superoxide Dismutase Activity of Male Rats after Administration of Extract and Nanoparticle of Ginger Torch Flower

Authors: Tresna Lestari, Tita Nofianti, Ade Yeni Aprilia, Lilis Tuslinah, Ruswanto Ruswanto

Abstract:

Nanoparticle formulation is often used to improve drug absorptivity, thus increasing the sharpness of the action. Ginger torch flower extract was formulated into nanoparticle form using poloxamer 1, 3 and 5%. The nanoparticle was then characterized by its particle size, polydispersity index, zeta potential, entrapment efficiency and morphological form by SEM. The result shows that nanoparticle formulations have particle size 134.7-193.1 nm, polydispersity index less than 0.5 for all formulations, zeta potential -41.0 - (-24.3) mV and entrapment efficiency 89.93-97.99 against flavonoid content with a soft surface and spherical form of particles. Methanolic extract of ginger torch flower could enhance superoxide dismutase activity by 1,3183 U/mL in male rats. Nanoparticle formulation of ginger torch extract is expected to increase the capability of the drug to enhance superoxide dismutase activity.

Keywords: superoxide dismutase, ginger torch flower, nanoparticle, poloxamer

Procedia PDF Downloads 159
24612 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 174
24611 Prediction of Embankment Fires at Railway Infrastructure Using Machine Learning, Geospatial Data and VIIRS Remote Sensing Imagery

Authors: Jan-Peter Mund, Christian Kind

Abstract:

In view of the ongoing climate change and global warming, fires along railways in Germany are occurring more frequently, with sometimes massive consequences for railway operations and affected railroad infrastructure. In the absence of systematic studies within the infrastructure network of German Rail, little is known about the causes of such embankment fires. Since a further increase in these hazards is to be expected in the near future, there is a need for a sound knowledge of triggers and drivers for embankment fires as well as methodical knowledge of prediction tools. Two predictable future trends speak for the increasing relevance of the topic: through the intensification of the use of rail for passenger and freight transport (e.g..: doubling of annual passenger numbers by 2030, compared to 2019), there will be more rail traffic and also more maintenance and construction work on the railways. This research project approach uses satellite data to identify historical embankment fires along rail network infrastructure. The team links data from these fires with infrastructure and weather data and trains a machine-learning model with the aim of predicting fire hazards on sections of the track. Companies reflect on the results and use them on a pilot basis in precautionary measures.

Keywords: embankment fires, railway maintenance, machine learning, remote sensing, VIIRS data

Procedia PDF Downloads 89
24610 Using Emerging Hot Spot Analysis to Analyze Overall Effectiveness of Policing Policy and Strategy in Chicago

Authors: Tyler Gill, Sophia Daniels

Abstract:

The paper examines how accessing the spatial-temporal constrains of data will help inform policymakers and law enforcement officials. The authors utilize Chicago crime data from 2006-2016 to demonstrate how the Emerging Hot Spot Tool is an ideal hot spot clustering approach to analyze crime data. Traditional approaches include density maps or creating a spatial weights matrix to include the spatial-temporal constrains. This new approach utilizes a space-time implementation of the Getis-Ord Gi* statistic to visualize the data more quickly to make better decisions. The research will help complement socio-cultural research to find key patterns to help frame future policies and evaluate the implementation of prior strategies. Through this analysis, homicide trends and patterns are found more effectively and recommendations for use by non-traditional users of GIS are offered for real life implementation.

Keywords: crime mapping, emerging hot spot analysis, Getis-Ord Gi*, spatial-temporal analysis

Procedia PDF Downloads 244
24609 Active Learning in Engineering Courses Using Excel Spreadsheet

Authors: Promothes Saha

Abstract:

Recently, transportation engineering industry members at the study university showed concern that students lacked the skills needed to solve real-world engineering problems using spreadsheet data analysis. In response to the concerns shown by industry members, this study investigated how to engage students in a better way by incorporating spreadsheet analysis during class - also, help them learn the course topics. Helping students link theoretical knowledge to real-world problems can be a challenge. In this effort, in-class activities and worksheets were redesigned to integrate with Excel to solve example problems using built-in tools including cell referencing, equations, data analysis tool pack, solver tool, conditional formatting, charts, etc. The effectiveness of this technique was investigated using students’ evaluations of the course, enrollment data, and students’ comments. Based on the data of those criteria, it is evident that the spreadsheet activities may increase student learning.

Keywords: civil, engineering, active learning, transportation

Procedia PDF Downloads 138
24608 Understanding Cruise Passengers’ On-board Experience throughout the Customer Decision Journey

Authors: Sabina Akter, Osiris Valdez Banda, Pentti Kujala, Jani Romanoff

Abstract:

This paper examines the relationship between on-board environmental factors and customer overall satisfaction in the context of the cruise on-board experience. The on-board environmental factors considered are ambient, layout/design, social, product/service and on-board enjoyment factors. The study presents a data-driven framework and model for the on-board cruise experience. The data are collected from 893 respondents in an application of a self-administered online questionnaire of their cruise experience. This study reveals the cruise passengers’ on-board experience through the customer decision journey based on the publicly available data. Pearson correlation and regression analysis have been applied, and the results show a positive and a significant relationship between the environmental factors and on-board experience. These data help understand the cruise passengers’ on-board experience, which will be used for the ultimate decision-making process in cruise ship design.

Keywords: cruise behavior, customer activities, on-board environmental factors, on-board experience, user or customer satisfaction

Procedia PDF Downloads 168
24607 Holistic Risk Assessment Based on Continuous Data from the User’s Behavior and Environment

Authors: Cinzia Carrodano, Dimitri Konstantas

Abstract:

Risk is part of our lives. In today’s society risk is connected to our safety and safety has become a major priority in our life. Each person lives his/her life based on the evaluation of the risk he/she is ready to accept and sustain, and the level of safety he/she wishes to reach, based on highly personal criteria. The assessment of risk a person takes in a complex environment and the impact of actions of other people’actions and events on our perception of risk are alements to be considered. The concept of Holistic Risk Assessment (HRA) aims in developing a methodology and a model that will allow us to take into account elements outside the direct influence of the individual, and provide a personalized risk assessment. The concept is based on the fact that in the near future, we will be able to gather and process extremely large amounts of data about an individual and his/her environment in real time. The interaction and correlation of these data is the key element of the holistic risk assessment. In this paper, we present the HRA concept and describe the most important elements and considerations.

Keywords: continuous data, dynamic risk, holistic risk assessment, risk concept

Procedia PDF Downloads 127
24606 Are the Organizations Prepared for Potential Crises? A Research Intended to Measure the Proactivity Level of Industrial Organizations

Authors: M. Tahir Demirsel, Mustafa Atsan

Abstract:

Many elements of the environment in which businesses operate today leave them faced with unexpected threats and opportunities. One of the major threats is business crisis. The crisis is a state of affairs in a business wherein the executives must take urgent and unprecedented action to try to save the business from failure. In order to survive in the business environment, organizations should be prepared for the potential crises. Technological developments, uncertainty in the market and the intense competition increase the probability of encountering a crisis for organizations. Therefore, by acting proactively to predict crisis, to detect signals of crisis and be prepared for a crisis by taking necessary precautions accordingly, is of great importance for businesses. In this context, the objective of this study is to reveal that how much organizations are proactive and can predict the future crises and investigate whether they are prepared for possible crises or not. The research was conducted on 222 business executives in one of the major industrial zones of Turkey, Konya Organized Industrial Zone (KOS). The findings are analyzed through descriptive statistics and multiple regression analysis. According to the results, it has been observed that organizations cannot predict the crisis signals and are not prepared for potential crises.

Keywords: crisis preparedness, crisis signals, industrial organizations, proactivity

Procedia PDF Downloads 516
24605 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance

Authors: Abdullah Al Farwan, Ya Zhang

Abstract:

In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.

Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance

Procedia PDF Downloads 166
24604 A Novel Framework for User-Friendly Ontology-Mediated Access to Relational Databases

Authors: Efthymios Chondrogiannis, Vassiliki Andronikou, Efstathios Karanastasis, Theodora Varvarigou

Abstract:

A large amount of data is typically stored in relational databases (DB). The latter can efficiently handle user queries which intend to elicit the appropriate information from data sources. However, direct access and use of this data requires the end users to have an adequate technical background, while they should also cope with the internal data structure and values presented. Consequently the information retrieval is a quite difficult process even for IT or DB experts, taking into account the limited contributions of relational databases from the conceptual point of view. Ontologies enable users to formally describe a domain of knowledge in terms of concepts and relations among them and hence they can be used for unambiguously specifying the information captured by the relational database. However, accessing information residing in a database using ontologies is feasible, provided that the users are keen on using semantic web technologies. For enabling users form different disciplines to retrieve the appropriate data, the design of a Graphical User Interface is necessary. In this work, we will present an interactive, ontology-based, semantically enable web tool that can be used for information retrieval purposes. The tool is totally based on the ontological representation of underlying database schema while it provides a user friendly environment through which the users can graphically form and execute their queries.

Keywords: ontologies, relational databases, SPARQL, web interface

Procedia PDF Downloads 272
24603 Anomaly Detection in Financial Markets Using Tucker Decomposition

Authors: Salma Krafessi

Abstract:

The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.

Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models

Procedia PDF Downloads 69
24602 Phytodiversity and Phytogeographic Characterization Stands of Pistacia lentiscus L. in the Coastal Region of Honaine, Tlemcen, Western Algeria

Authors: I. Benmehdi, O. Hasnaoui, N. Hachemi, M. Bouazza

Abstract:

The Understanding of the mechanisms structuring of plant diversity in the region of Tlemcen (western Algeria) is a related problem. The current floristic composition of different groups in Pistacia lentiscus L. resulting from the combination of human and climate action. This study is devoted to biodiversity inventory and phytogeographic characterization of Pistacia lentiscus groups in the Honaine coastal (western Algeria). The floristic inventory (150 levels) made in three stations of the study area allowed to count a 109 species belonging to 44 families of vascular plants. The biogeographical analysis of the Pistacia lentiscus groups reveals the most representative elements. The Mediterranean elements are numerically the most dominant with 39.45% represented by: Pistacia lentiscus, Cistus monspeliensis, Plantago lagopus, Linum strictum, Echium vulgare; followed by the western Mediterranean elements with 10.09% and are represented by: Chamaerops humilis, Lavandula dentata, Ampelodesma mauritanicum and Iris xyphium. However, this phytotaxonomic wealth is exposed to anthropogenic impact causing its disruption see its decline.

Keywords: Pistacia lentiscus L., phytodiversity, phytogeography, honaine, western Algeria

Procedia PDF Downloads 398
24601 Effects of Acute Exposure to WIFI Signals (2,45 GHz) on Heart Variability and Blood Pressure in Albinos Rabbit

Authors: Linda Saili, Amel Hanini, Chiraz Smirani, Iness Azzouz, Amina Azzouz, Hafedh Abdemelek, Zihad Bouslama

Abstract:

Electrocardiogram and arterial pressure measurements were studied under acute exposures to WIFI (2.45 GHz) during one hour in adult male rabbits. Antennas of WIFI were placed at 25 cm at the right side near the heart. Acute exposure of rabbits to WIFI increased heart frequency (+ 22%) and arterial blood pressure (+14%). Moreover, analysis of ECG revealed that WIFI induced a combined increase of PR and QT intervals. By contrast, the same exposure failed to alter the maximum amplitude and P waves. After intravenously injection of dopamine (0.50 ml/kg) and epinephrine (0.50ml/kg) under acute exposure to RF we found that WIFI alter catecholamines(dopamine, epinephrine) action on heart variability and blood pressure compared to control. These results suggest for the first time, as far as we know, that exposure to WIFI affect heart rhythm, blood pressure, and catecholamines efficacy on cardiovascular system; indicating that radio frequency can act directly and/or indirectly on the cardiovascular system.

Keywords: heart rate (HR), arterial pressure (PA), electrocardiogram (ECG), the efficacy of catecholamines, dopamine, epinephrine

Procedia PDF Downloads 452
24600 Analyzing the Relationship between the Spatial Characteristics of Cultural Structure, Activities, and the Tourism Demand

Authors: Deniz Karagöz

Abstract:

This study is attempt to comprehend the relationship between the spatial characteristics of cultural structure, activities and the tourism demand in Turkey. The analysis divided into four parts. The first part consisted of a cultural structure and cultural activity (CSCA) index provided by principal component analysis. The analysis determined four distinct dimensions, namely, cultural activity/structure, accessing culture, consumption, and cultural management. The exploratory spatial data analysis employed to determine the spatial models of cultural structure and cultural activities in 81 provinces in Turkey. Global Moran I indices is used to ascertain the cultural activities and the structural clusters. Finally, the relationship between the cultural activities/cultural structure and tourism demand was analyzed. The raw/original data of the study official databases. The data on the cultural structure and activities gathered from the Turkish Statistical Institute and the data related to the tourism demand was provided by the Republic of Turkey Ministry of Culture and Tourism.

Keywords: cultural activities, cultural structure, spatial characteristics, tourism demand, Turkey

Procedia PDF Downloads 561
24599 The Synergistic Effects of Blockchain and AI on Enhancing Data Integrity and Decision-Making Accuracy in Smart Contracts

Authors: Sayor Ajfar Aaron, Sajjat Hossain Abir, Ashif Newaz, Mushfiqur Rahman

Abstract:

Investigating the convergence of blockchain technology and artificial intelligence, this paper examines their synergistic effects on data integrity and decision-making within smart contracts. By implementing AI-driven analytics on blockchain-based platforms, the research identifies improvements in automated contract enforcement and decision accuracy. The paper presents a framework that leverages AI to enhance transparency and trust while blockchain ensures immutable record-keeping, culminating in significantly optimized operational efficiencies in various industries.

Keywords: artificial intelligence, blockchain, data integrity, smart contracts

Procedia PDF Downloads 55
24598 Time-Series Load Data Analysis for User Power Profiling

Authors: Mahdi Daghmhehci Firoozjaei, Minchang Kim, Dima Alhadidi

Abstract:

In this paper, we present a power profiling model for smart grid consumers based on real time load data acquired smart meters. It profiles consumers’ power consumption behaviour using the dynamic time warping (DTW) clustering algorithm. Due to the invariability of signal warping of this algorithm, time-disordered load data can be profiled and consumption features be extracted. Two load types are defined and the related load patterns are extracted for classifying consumption behaviour by DTW. The classification methodology is discussed in detail. To evaluate the performance of the method, we analyze the time-series load data measured by a smart meter in a real case. The results verify the effectiveness of the proposed profiling method with 90.91% true positive rate for load type clustering in the best case.

Keywords: power profiling, user privacy, dynamic time warping, smart grid

Procedia PDF Downloads 149
24597 Evaluation of Dual Polarization Rainfall Estimation Algorithm Applicability in Korea: A Case Study on Biseulsan Radar

Authors: Chulsang Yoo, Gildo Kim

Abstract:

Dual polarization radar provides comprehensive information about rainfall by measuring multiple parameters. In Korea, for the rainfall estimation, JPOLE and CSU-HIDRO algorithms are generally used. This study evaluated the local applicability of JPOLE and CSU-HIDRO algorithms in Korea by using the observed rainfall data collected on August, 2014 by the Biseulsan dual polarization radar data and KMA AWS. A total of 11,372 pairs of radar-ground rain rate data were classified according to thresholds of synthetic algorithms into suitable and unsuitable data. Then, evaluation criteria were derived by comparing radar rain rate and ground rain rate, respectively, for entire, suitable, unsuitable data. The results are as follows: (1) The radar rain rate equation including KDP, was found better in the rainfall estimation than the other equations for both JPOLE and CSU-HIDRO algorithms. The thresholds were found to be adequately applied for both algorithms including specific differential phase. (2) The radar rain rate equation including horizontal reflectivity and differential reflectivity were found poor compared to the others. The result was not improved even when only the suitable data were applied. Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2013R1A1A2011012).

Keywords: CSU-HIDRO algorithm, dual polarization radar, JPOLE algorithm, radar rainfall estimation algorithm

Procedia PDF Downloads 214