Search results for: cognitive radio network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6908

Search results for: cognitive radio network

4598 Evaluation of Kabul BRT Route Network with Application of Integrated Land-use and Transportation Model

Authors: Mustafa Mutahari, Nao Sugiki, Kojiro Matsuo

Abstract:

The four decades of war, lack of job opportunities, poverty, lack of services, and natural disasters in different provinces of Afghanistan have contributed to a rapid increase in the population of Kabul, the capital city of Afghanistan. Population census has not been conducted since 1979, the first and last population census in Afghanistan. However, according to population estimations by Afghan authorities, the population of Kabul has been estimated at more than 4 million people, whereas the city was designed for two million people. Although the major transport mode of Kabul residents is public transport, responsible authorities within the country failed to supply the required means of transportation systems for the city. Besides, informal resettlement, lack of intersection control devices, presence of illegal vendors on streets, presence of illegal and unstandardized on-street parking and bus stops, driver`s unprofessional behavior, weak traffic law enforcement, and blocked roads and sidewalks have contributed to the extreme traffic congestion of Kabul. In 2018, the government of Afghanistan approved the Kabul city Urban Design Framework (KUDF), a vision towards the future of Kabul, which provides strategies and design guidance at different scales to direct urban development. Considering traffic congestion of the city and its budget limitations, the KUDF proposes a BRT route network with seven lines to reduce the traffic congestion, and it is said to facilitate more than 50% of Kabul population to benefit from this service. Based on the KUDF, it is planned to increase the BRT mode share from 0% to 17% and later to 30% in medium and long-term planning scenarios, respectively. Therefore, a detailed research study is needed to evaluate the proposed system before the implementation stage starts. The integrated land-use transport model is an effective tool to evaluate the Kabul BRT because of its future assessment capabilities that take into account the interaction between land use and transportation. This research aims to analyze and evaluate the proposed BRT route network with the application of an integrated land-use and transportation model. The research estimates the population distribution and travel behavior of Kabul within small boundary scales. The actual road network and land-use detailed data of the city are used to perform the analysis. The BRT corridors are evaluated not only considering its impacts on the spatial interactions in the city`s transportation system but also on the spatial developments. Therefore, the BRT are evaluated with the scenarios of improving the Kabul transportation system based on the distribution of land-use or spatial developments, planned development typology and population distribution of the city. The impacts of the new improved transport system on the BRT network are analyzed and the BRT network is evaluated accordingly. In addition, the research also focuses on the spatial accessibility of BRT stops, corridors, and BRT line beneficiaries, and each BRT stop and corridor are evaluated in terms of both access and geographic coverage, as well.

Keywords: accessibility, BRT, integrated land-use and transport model, travel behavior, spatial development

Procedia PDF Downloads 222
4597 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band

Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman

Abstract:

In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.

Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite

Procedia PDF Downloads 235
4596 Attention Treatment for People With Aphasia: Language-Specific vs. Domain-General Neurofeedback

Authors: Yael Neumann

Abstract:

Attention deficits are common in people with aphasia (PWA). Two treatment approaches address these deficits: domain-general methods like Play Attention, which focus on cognitive functioning, and domain-specific methods like Language-Specific Attention Treatment (L-SAT), which use linguistically based tasks. Research indicates that L-SAT can improve both attentional deficits and functional language skills, while Play Attention has shown success in enhancing attentional capabilities among school-aged children with attention issues compared to standard cognitive training. This study employed a randomized controlled cross-over single-subject design to evaluate the effectiveness of these two attention treatments over 25 weeks. Four PWA participated, undergoing a battery of eight standardized tests measuring language and cognitive skills. The treatments were counterbalanced. Play Attention used EEG sensors to detect brainwaves, enabling participants to manipulate items in a computer game while learning to suppress theta activity and increase beta activity. An algorithm tracked changes in the theta-to-beta ratio, allowing points to be earned during the games. L-SAT, on the other hand, involved hierarchical language tasks that increased in complexity, requiring greater attention from participants. Results showed that for language tests, Participant 1 (moderate aphasia) aligned with existing literature, showing L-SAT was more effective than Play Attention. However, Participants 2 (very severe) and 3 and 4 (mild) did not conform to this pattern; both treatments yielded similar outcomes. This may be due to the extremes of aphasia severity: the very severe participant faced significant overall deficits, making both approaches equally challenging, while the mild participant performed well initially, leaving limited room for improvement. In attention tests, Participants 1 and 4 exhibited results consistent with prior research, indicating Play Attention was superior to L-SAT. Participant 2, however, showed no significant improvement with either program, although L-SAT had a slight edge on the Visual Elevator task, measuring switching and mental flexibility. This advantage was not sustained at the one-month follow-up, likely due to the participant’s struggles with complex attention tasks. Participant 3's results similarly did not align with prior studies, revealing no difference between the two treatments, possibly due to the challenging nature of the attention measures used. Regarding participation and ecological tests, all participants showed similar mild improvements with both treatments. This limited progress could stem from the short study duration, with only five weeks allocated for each treatment, which may not have been enough time to achieve meaningful changes affecting life participation. In conclusion, the performance of participants appeared influenced by their level of aphasia severity. The moderate PWA’s results were most aligned with existing literature, indicating better attention improvement from the domain-general approach (Play Attention) and better language improvement from the domain-specific approach (L-SAT).

Keywords: attention, language, cognitive rehabilitation, neurofeedback

Procedia PDF Downloads 17
4595 Design of a Telemetry, Tracking, and Command Radio-Frequency Receiver for Small Satellites Based on Commercial Off-The-Shelf Components

Authors: A. Lovascio, A. D’Orazio, V. Centonze

Abstract:

From several years till now the aerospace industry is developing more and more small satellites for Low-Earth Orbit (LEO) missions. Such satellites have a low cost of making and launching since they have a size and weight smaller than other types of satellites. However, because of size limitations, small satellites need integrated electronic equipment based on digital logic. Moreover, the LEOs require telecommunication modules with high throughput to transmit to earth a big amount of data in a short time. In order to meet such requirements, in this paper we propose a Telemetry, Tracking & Command module optimized through the use of the Commercial Off-The-Shelf components. The proposed approach exploits the major flexibility offered by these components in reducing costs and optimizing the performance. The method has been applied in detail for the design of the front-end receiver, which has a low noise figure (1.5 dB) and DC power consumption (smaller than 2 W). Such a performance is particularly attractive since it allows fulfilling the energy budget stringent constraints that are typical for LEO small platforms.

Keywords: COTS, LEO, small-satellite, TT&C

Procedia PDF Downloads 131
4594 Using Differentiated Instruction Applying Cognitive Approaches and Strategies for Teaching Diverse Learners

Authors: Jolanta Jonak, Sylvia Tolczyk

Abstract:

Educational systems are tasked with preparing students for future success in academic or work environments. Schools strive to achieve this goal, but often it is challenging as conventional teaching approaches are often ineffective in increasingly diverse educational systems. In today’s ever-increasing global society, educational systems become increasingly diverse in terms of cultural and linguistic differences, learning preferences and styles, ability and disability. Through increased understanding of disabilities and improved identification processes, students having some form of disabilities tend to be identified earlier than in the past, meaning that more students with identified disabilities are being supported in our classrooms. Also, a large majority of students with disabilities are educated in general education environments. Due to cognitive makeup and life experiences, students have varying learning styles and preferences impacting how they receive and express what they are learning. Many students come from bi or multilingual households and with varying proficiencies in the English language, further impacting their learning. All these factors need to be seriously considered when developing learning opportunities for student's. Educators try to adjust their teaching practices as they discover that conventional methods are often ineffective in reaching each student’s potential. Many teachers do not have the necessary educational background or training to know how to teach students whose learning needs are more unique and may vary from the norm. This is further complicated by the fact that many classrooms lack consistent access to interventionists/coaches that are adequately trained in evidence-based approaches to meet the needs of all students, regardless of what their academic needs may be. One evidence-based way for providing successful education for all students is by incorporating cognitive approaches and strategies that tap into affective, recognition, and strategic networks in the student's brain. This can be done through Differentiated Instruction (DI). Differentiated Instruction is increasingly recognized model that is established on the basic principles of Universal Design for Learning. This form of support ensures that regardless of the students’ learning preferences and cognitive learning profiles, they have opportunities to learn through approaches that are suitable to their needs. This approach improves the educational outcomes of students with special needs and it benefits other students as it accommodates learning styles as well as the scope of unique learning needs that are evident in the typical classroom setting. Differentiated Instruction also is recognized as an evidence-based best practice in education and is highly effective when it is implemented within the tiered system of the Response to Intervention (RTI) model. Recognition of DI becomes more common; however, there is still limited understanding of the effective implementation and use of strategies that can create unique learning environments for each student within the same setting. Through employing knowledge of a variety of instructional strategies, general and special education teachers can facilitate optimal learning for all students, with and without a disability. A desired byproduct of DI is that it can eliminate inaccurate perceptions about the students’ learning abilities, unnecessary referrals for special education evaluations, and inaccurate decisions about the presence of a disability.

Keywords: differentiated instruction, universal design for learning, special education, diversity

Procedia PDF Downloads 219
4593 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: texture classification, texture descriptor, SIFT, SURF, ORB

Procedia PDF Downloads 369
4592 EEG Neurofeedback Training – Healing the Wounded Brain

Authors: Jamuna Rajeswaran

Abstract:

In the past two decades, with a population of more than a billion. India is passing through a major socio-demographic and epidemiological transition with consequent changes in health scenario. TBI constitute significant burden on health care resources in India The impact on a person and family can be devastating. Patients with TBI experience persistent cognitive deficits, emotional changes, which contribute to the disruption of life activities. The recovery of TBI would be maximized by appropriate rehabilitation. Neurofeedback is an emerging neuroscience-based clinical application. Sixty patients were recruited for this study after obtaining informed consent. Rivermead Head Injury Follow-up Questionnaire, Rivermead Post Concussion Symptoms Questionnaire and Visual Analog Scale were used to assess the behavioral and symptomotolgy associated with post TBI. Neuropsychological assessment was carried out using NIMHANS neuropsychological battery 2004. The Intervention group received neurofeedback training and the waitlist group did not receive any treatment during this phase. Patients were allocated to intervention and waitlist group at random. There were 30 patients in each group. Patients were given 20 sessions of NFT Patients were trained on the O1 and O2 channels for alpha theta training. Each session was of 40 minutes duration with 5-6 sessions per week. The post-training assessment was carried out for the intervention group after 20 sessions of NFT. The waitlist group underwent assessment after one month. Results showed neurofeedback training is effective in ameliorating deficits in cognitive functions and quality of life in patients with TBI. Improvements were corroborated by the clinical interview with patients and significant others post NFT.

Keywords: assessment, rehabilitation, cognition, EEG neurofeedback

Procedia PDF Downloads 265
4591 Study of ANFIS and ARIMA Model for Weather Forecasting

Authors: Bandreddy Anand Babu, Srinivasa Rao Mandadi, C. Pradeep Reddy, N. Ramesh Babu

Abstract:

In this paper quickly illustrate the correlation investigation of Auto-Regressive Integrated Moving and Average (ARIMA) and daptive Network Based Fuzzy Inference System (ANFIS) models done by climate estimating. The climate determining is taken from University of Waterloo. The information is taken as Relative Humidity, Ambient Air Temperature, Barometric Pressure and Wind Direction utilized within this paper. The paper is carried out by analyzing the exhibitions are seen by demonstrating of ARIMA and ANIFIS model like with Sum of average of errors. Versatile Network Based Fuzzy Inference System (ANFIS) demonstrating is carried out by Mat lab programming and Auto-Regressive Integrated Moving and Average (ARIMA) displaying is produced by utilizing XLSTAT programming. ANFIS is carried out in Fuzzy Logic Toolbox in Mat Lab programming.

Keywords: ARIMA, ANFIS, fuzzy surmising tool stash, weather forecasting, MATLAB

Procedia PDF Downloads 419
4590 Quranic Recitation Listening Relate to Memory Processing, Language Selectivity and Attentional Process

Authors: Samhani Ismail, Tahamina Begum, Faruque Reza, Zamzuri Idris, Hafizan Juahir, Jafri Malin Abdullah

Abstract:

Holy Quran, a rhymed prosed scripture has a complete literary structure that exemplifies the peak of literary beauty. Memorizing of its verses could enhance one’s memory capacity and cognition while those who are listening to its recitation it is also believed that the Holy Quran alter brainwave producing neuronal excitation engaging with cognitive processes. 28 normal healthy subjects (male =14 & female = 14) were recruited and EEG recording was done using 128-electrode sensor net (Electrical Geosics, Inc.) with the impedance of ≤ 50kΩ. They listened to Sura Fatiha recited by Sheikh Qari Abdul Basit bin Abdus Samad. Arabic news and no sound were chosen as positive and negative control, respectively. The waveform was analysed by Fast Fourier Transform (FFT) to get the power in frequency bands. Bilateral frontal (F7, F8) and temporal region (T7, T8) showed decreased power significantly in alpha wave band in respondent stimulated by Sura Fatihah recitation reflects acoustic attention processing. However, decreased in alpha power in selective attention to memorized, and in familial but not memorized language, reveals the memorial processing in long-term memory. As a conclusion, Quranic recitation relates both cognitive element of memory and language in its listeners and memorizers.

Keywords: auditory stimulation, cognition, EEG, linguistic, memory, Quranic recitation

Procedia PDF Downloads 341
4589 Pomegranates Attenuates Cognitive and Behavioural Deficts and reduces inflammation in a Transgenic Mice Model of Alzheimer's Disease

Authors: M. M. Essa, S. Subash, M. Akbar, S. Al-Adawi, A. Al-Asmi, G. J. Guillemein

Abstract:

Objective: Transgenic (tg) mice which contain an amyloid precursor protein (APP) gene mutation, develop extracellular amyloid beta (Aβ) deposition in the brain, and severe memory and behavioural deficits with age. These mice serve as an important animal model for testing the efficacy of novel drug candidates for the treatment and management of symptoms of Alzheimer's disease (AD). Several reports have suggested that oxidative stress is the underlying cause of Aβ neurotoxicity in AD. Pomegranates contain very high levels of antioxidants and several medicinal properties that may be useful for improving the quality of life in AD patients. In this study, we investigated the effect of dietary supplementation of Omani pomegranate extract on the memory, anxiety and learning skills along with inflammation in an AD mouse model containing the double Swedish APP mutation (APPsw/Tg2576). Methods: The experimental groups of APP-transgenic mice from the age of 4 months were fed custom-mix diets (pellets) containing 4% pomegranate. We assessed spatial memory and learning ability, psychomotor coordination, and anxiety-related behavior in Tg and wild-type mice at the age of 4-5 months and 18-19 months using the Morris water maze test, rota rod test, elevated plus maze test, and open field test. Further, inflammatory parameters also analysed. Results: APPsw/Tg2576 mice that were fed a standard chow diet without pomegranates showed significant memory deficits, increased anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability and motor coordination along with increased inflammation compared to the wild type mice on the same diet, at the age of 18-19 months In contrast, APPsw/Tg2576 mice that were fed a diet containing 4% pomegranates showed a significant improvements in memory, learning, locomotor function, and anxiety with reduced inflammatory markers compared to APPsw/Tg2576 mice fed the standard chow diet. Conclusion: Our results suggest that dietary supplementation with pomegranates may slow the progression of cognitive and behavioural impairments in AD. The exact mechanism is still unclear and further extensive research needed.

Keywords: Alzheimer's disease, pomegranates, oman, cognitive decline, memory loss, anxiety, inflammation

Procedia PDF Downloads 528
4588 Development and Validation of First Derivative Method and Artificial Neural Network for Simultaneous Spectrophotometric Determination of Two Closely Related Antioxidant Nutraceuticals in Their Binary Mixture”

Authors: Mohamed Korany, Azza Gazy, Essam Khamis, Marwa Adel, Miranda Fawzy

Abstract:

Background: Two new, simple and specific methods; First, a Zero-crossing first-derivative technique and second, a chemometric-assisted spectrophotometric artificial neural network (ANN) were developed and validated in accordance with ICH guidelines. Both methods were used for the simultaneous estimation of the two closely related antioxidant nutraceuticals ; Coenzyme Q10 (Q) ; also known as Ubidecarenone or Ubiquinone-10, and Vitamin E (E); alpha-tocopherol acetate, in their pharmaceutical binary mixture. Results: For first method: By applying the first derivative, both Q and E were alternatively determined; each at the zero-crossing of the other. The D1 amplitudes of Q and E, at 285 nm and 235 nm respectively, were recorded and correlated to their concentrations. The calibration curve is linear over the concentration range of 10-60 and 5.6-70 μg mL-1 for Q and E, respectively. For second method: ANN (as a multivariate calibration method) was developed and applied for the simultaneous determination of both analytes. A training set (or a concentration set) of 90 different synthetic mixtures containing Q and E, in wide concentration ranges between 0-100 µg/mL and 0-556 µg/mL respectively, were prepared in ethanol. The absorption spectra of the training sets were recorded in the spectral region of 230–300 nm. A Gradient Descend Back Propagation ANN chemometric calibration was computed by relating the concentration sets (x-block) to their corresponding absorption data (y-block). Another set of 45 synthetic mixtures of the two drugs, in defined range, was used to validate the proposed network. Neither chemical separation, preparation stage nor mathematical graphical treatment were required. Conclusions: The proposed methods were successfully applied for the assay of Q and E in laboratory prepared mixtures and combined pharmaceutical tablet with excellent recoveries. The ANN method was superior over the derivative technique as the former determined both drugs in the non-linear experimental conditions. It also offers rapidity, high accuracy, effort and money saving. Moreover, no need for an analyst for its application. Although the ANN technique needed a large training set, it is the method of choice in the routine analysis of Q and E tablet. No interference was observed from common pharmaceutical additives. The results of the two methods were compared together

Keywords: coenzyme Q10, vitamin E, chemometry, quantitative analysis, first derivative spectrophotometry, artificial neural network

Procedia PDF Downloads 446
4587 Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather

Authors: Patience Muchini, Electdom Matandiroya, Emmanuel Mashonjowa

Abstract:

A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Geomagnetically induced currents have been studied in other regions and have been noted to affect the power grid network. In Zimbabwe, grid failures have been experienced, but it is yet to be proven if these failures have been due to GICs. The purpose of this paper is to characterize geomagnetically induced currents with a power grid network. This paper analyses data collected, which is geomagnetic data, which includes the Kp index, DST index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs.

Keywords: adverse space weather, DST index, geomagnetically induced currents, KP index, reactive power

Procedia PDF Downloads 114
4586 Implementing Mindfulness into Wellness Plans: Assisting Individuals with Substance Abuse and Addiction

Authors: Michele M. Mahr

Abstract:

The purpose of this study is to educate, inform, and facilitate scholarly conversation and discussion regarding the implementation of mindfulness techniques when working with individuals with substance use disorder (SUD) or addictive behaviors in mental health. Mindfulness can be recognized as the present moment, non-judgmental awareness, initiated by concentrated attention that is non-reactive and as openheartedly as possible. Individuals with SUD or addiction typically are challenged with triggers, environmental situations, cravings, or social pressures which may deter them from remaining abstinent from their drug of choice or addictive behavior. Also, mindfulness is recognized as one of the cognitive and behavioral treatment approaches and is both a physical and mental practice that encompasses individuals to become aware of internal situations and experiences with undivided attention. That said, mindfulness may be an effective strategy for individuals to employ during these experiences. This study will reveal how mental health practitioners and addiction counselors may find mindfulness to be an essential component of increasing wellness when working with individuals seeking mental health treatment. To this end, mindfulness is simply the ability individuals have to know what is actually happening as it is occurring and what they are experiencing at the moment. In the context of substance abuse and addiction, individuals may employ breathing techniques, meditation, and cognitive restructuring of the mind to become aware of present moment experiences. Furthermore, the notion of mindfulness has been directly connected to the development of neuropathways. The creation of the neural pathways then leads to creating thoughts which leads to developing new coping strategies and adaptive behaviors. Mindfulness strategies can assist individuals in connecting the mind with the body, allowing the individual to remain centered and focused. All of these mentioned above are vital components to recovery during substance abuse and addiction treatment. There are a variety of therapeutic modalities applying the key components of mindfulness, such as Mindfulness-Based Stress Reduction (MBSR) and Mindfulness-Based Cognitive Therapy for depression (MBCT). This study will provide an overview of both MBSR and MBCT in relation to treating individuals with substance abuse and addiction. The author will also provide strategies for readers to employ when working with clients. Lastly, the author will create and foster a safe space for discussion and engaging conversation among participants to ask questions, share perspectives, and be educated on the numerous benefits of mindfulness within wellness.

Keywords: mindfulness, wellness, substance abuse, mental health

Procedia PDF Downloads 77
4585 A Double Differential Chaos Shift Keying Scheme for Ultra-Wideband Chaotic Communication Technology Applied in Low-Rate Wireless Personal Area Network

Authors: Ghobad Gorji, Hasan Golabi

Abstract:

The goal of this paper is to describe the design of an ultra-wideband (UWB) system that is optimized for the low-rate wireless personal area network application. To this aim, we propose a system based on direct chaotic communication (DCC) technology. Based on this system, a 2-GHz wide chaotic signal is directly generated into the lower band of the UWB spectrum, i.e., 3.1–5.1 GHz. For this system, two simple modulation schemes, namely chaotic on-off keying (COOK) and differential chaos shift keying (DCSK), were studied before, and their performance was evaluated. We propose a modulation scheme, namely Double DCSK, to improve the performance of UWB DCC. Different characteristics of these systems, with Monte Carlo simulations based on the Additive White Gaussian Noise (AWGN) and the IEEE 802.15.4a standard channel models, are compared.

Keywords: UWB, DCC, IEEE 802.15.4a, COOK, DCSK

Procedia PDF Downloads 74
4584 Knowledge Based Behaviour Modelling and Execution in Service Robotics

Authors: Suraj Nair, Aravindkumar Vijayalingam, Alexander Perzylo, Alois Knoll

Abstract:

In the last decade robotics research and development activities have grown rapidly, especially in the domain of service robotics. Integrating service robots into human occupied spaces such as homes, offices, hospitals, etc. has become increasingly worked upon. The primary motive is to ease daily lives of humans by taking over some of the household/office chores. However, several challenges remain in systematically integrating such systems in human shared work-spaces. In addition to sensing and indoor-navigation challenges, programmability of such systems is a major hurdle due to the fact that the potential user cannot be expected to have knowledge in robotics or similar mechatronic systems. In this paper, we propose a cognitive system for service robotics which allows non-expert users to easily model system behaviour in an underspecified manner through abstract tasks and objects associated with them. The system uses domain knowledge expressed in the form of an ontology along with logical reasoning mechanisms to infer all the missing pieces of information required for executing the tasks. Furthermore, the system is also capable of recovering from failed tasks arising due to on-line disturbances by using the knowledge base and inferring alternate methods to execute the same tasks. The system is demonstrated through a coffee fetching scenario in an office environment using a mobile robot equipped with sensors and software capabilities for autonomous navigation and human-interaction through natural language.

Keywords: cognitive robotics, reasoning, service robotics, task based systems

Procedia PDF Downloads 243
4583 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics

Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.

Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network

Procedia PDF Downloads 18
4582 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 174
4581 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model

Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok

Abstract:

The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.

Keywords: functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity

Procedia PDF Downloads 151
4580 Design Of High Sensitivity Transceiver for WSN

Authors: A. Anitha, M. Aishwariya

Abstract:

The realization of truly ubiquitous wireless sensor networks (WSN) demands Ultra-low power wireless communication capability. Because the radio transceiver in a wireless sensor node consumes more power when compared to the computation part it is necessary to reduce the power consumption. Hence, a low power transceiver is designed and implemented in a 120 nm CMOS technology for wireless sensor nodes. The power consumption of the transceiver is reduced still by maintaining the sensitivity. The transceiver designed combines the blocks including differential oscillator, mixer, envelope detector, power amplifiers, and LNA. RF signal modulation and demodulation is carried by On-Off keying method at 2.4 GHz which is said as ISM band. The transmitter demonstrates an output power of 2.075 mW while consuming a supply voltage of range 1.2 V-5.0 V. Here the comparison of LNA and power amplifier is done to obtain an amplifier which produces a high gain of 1.608 dB at receiver which is suitable to produce a desired sensitivity. The multistage RF amplifier is used to improve the gain at the receiver side. The power dissipation of the circuit is in the range of 0.183-0.323 mW. The receiver achieves a sensitivity of about -95 dBm with data rate of 1 Mbps.

Keywords: CMOS, envelope detector, ISM band, LNA, low power electronics, PA, wireless transceiver

Procedia PDF Downloads 519
4579 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains

Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda

Abstract:

In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).

Keywords: features extraction, handwritten numeric chains, image processing, neural networks

Procedia PDF Downloads 265
4578 Modeling the Impact of Time Pressure on Activity-Travel Rescheduling Heuristics

Authors: Jingsi Li, Neil S. Ferguson

Abstract:

Time pressure could have an influence on the productivity, quality of decision making, and the efficiency of problem-solving. This has been mostly stemmed from cognitive research or psychological literature. However, a salient scarce discussion has been held for transport adjacent fields. It is conceivable that in many activity-travel contexts, time pressure is a potentially important factor since an excessive amount of decision time may incur the risk of late arrival to the next activity. The activity-travel rescheduling behavior is commonly explained by costs and benefits of factors such as activity engagements, personal intentions, social requirements, etc. This paper hypothesizes that an additional factor of perceived time pressure could affect travelers’ rescheduling behavior, thus leading to an impact on travel demand management. Time pressure may arise from different ways and is assumed here to be essentially incurred due to travelers planning their schedules without an expectation of unforeseen elements, e.g., transport disruption. In addition to a linear-additive utility-maximization model, the less computationally compensatory heuristic models are considered as an alternative to simulate travelers’ responses. The paper will contribute to travel behavior modeling research by investigating the following questions: how to measure the time pressure properly in an activity-travel day plan context? How do travelers reschedule their plans to cope with the time pressure? How would the importance of the activity affect travelers’ rescheduling behavior? What will the behavioral model be identified to describe the process of making activity-travel rescheduling decisions? How do these identified coping strategies affect the transport network? In this paper, a Mixed Heuristic Model (MHM) is employed to identify the presence of different choice heuristics through a latent class approach. The data about travelers’ activity-travel rescheduling behavior is collected via a web-based interactive survey where a fictitious scenario is created comprising multiple uncertain events on the activity or travel. The experiments are conducted in order to gain a real picture of activity-travel reschedule, considering the factor of time pressure. The identified behavioral models are then integrated into a multi-agent transport simulation model to investigate the effect of the rescheduling strategy on the transport network. The results show that an increased proportion of travelers use simpler, non-compensatory choice strategies instead of compensatory methods to cope with time pressure. Specifically, satisfying - one of the heuristic decision-making strategies - is adopted commonly since travelers tend to abandon the less important activities and keep the important ones. Furthermore, the importance of the activity is found to increase the weight of negative information when making trip-related decisions, especially route choices. When incorporating the identified non-compensatory decision-making heuristic models into the agent-based transport model, the simulation results imply that neglecting the effect of perceived time pressure may result in an inaccurate forecast of choice probability and overestimate the affectability to the policy changes.

Keywords: activity-travel rescheduling, decision making under uncertainty, mixed heuristic model, perceived time pressure, travel demand management

Procedia PDF Downloads 112
4577 Why is the Recurrence Rate of Residual or Recurrent Disease Following Endoscopic Mucosal Resection (EMR) of the Oesophageal Dysplasia’s and T1 Tumours Higher in the Greater Midlands Cancer Network?

Authors: Harshadkumar Rajgor, Jeff Butterworth

Abstract:

Background: Barretts oesophagus increases the risk of developing oesophageal adenocarcinoma. Over the last 40 years, there has been a 6 fold increase in the incidence of oesophageal adenocarcinoma in the western world and the incidence rates are increasing at a greater rate than cancers of the colon, breast and lung. Endoscopic mucosal resection (EMR) is a relatively new technique being used by 2 centres in the greater midlands cancer network. EMR can be used for curative or staging purposes, for high-grade dysplasia’s and T1 tumours of the oesophagus. EMR is also suitable for those who are deemed high risk for oesophagectomy. EMR has a recurrence rate of 21% according to the Wiesbaden data. Method: A retrospective study of prospectively collected data was carried out involving 24 patients who had EMR for curative or staging purposes. Complications of residual or recurrent disease following EMR that required further treatment were investigated. Results: In 54% of cases residual or recurrent disease was suspected. 96% of patients were given clear and concise information regarding their diagnosis of high-grade dysplasia or T1 tumours. All 24 patients consulted the same specialist healthcare team. Conclusion: EMR is a safe and effective treatment for patients who have high-grade dysplasia and T1NO tumours. In 54% of cases residual or recurrent disease was suspected. Initially, only single resections were undertaken. Multiple resections are now being carried out to reduce the risk of recurrence. Complications from EMR remain low in this series and consisted of a single episode of post procedural bleeding.

Keywords: endoscopic mucosal resection, oesophageal dysplasia, T1 tumours, cancer network

Procedia PDF Downloads 316
4576 Scientific Recommender Systems Based on Neural Topic Model

Authors: Smail Boussaadi, Hassina Aliane

Abstract:

With the rapid growth of scientific literature, it is becoming increasingly challenging for researchers to keep up with the latest findings in their fields. Academic, professional networks play an essential role in connecting researchers and disseminating knowledge. To improve the user experience within these networks, we need effective article recommendation systems that provide personalized content.Current recommendation systems often rely on collaborative filtering or content-based techniques. However, these methods have limitations, such as the cold start problem and difficulty in capturing semantic relationships between articles. To overcome these challenges, we propose a new approach that combines BERTopic (Bidirectional Encoder Representations from Transformers), a state-of-the-art topic modeling technique, with community detection algorithms in a academic, professional network. Experiences confirm our performance expectations by showing good relevance and objectivity in the results.

Keywords: scientific articles, community detection, academic social network, recommender systems, neural topic model

Procedia PDF Downloads 97
4575 Autobiographical Memory Functions and Perceived Control in Depressive Symptoms among Young Adults

Authors: Meenu S. Babu, K. Jayasankara Reddy

Abstract:

Depression is a serious mental health concern that leads to significant distress and dysfunction in an individual. Due to the high physical, psychological, social, and economic burden it causes, it is important to study various bio-psycho-social factors that influence the onset, course, duration, intensity of depressive symptoms. The study aims to explore relationship between autobiographical memory (AM) functions, perceived control over stressful events and depressive symptoms. AM functions and perceived control were both found to be protective factors for individuals against depression and were both modifiable to predict better behavioral and affective outcomes. An extensive review of literatur, with a systematic search on Google Scholar, JSTOR, Science Direct and Springer Journals database, was conducted for the purpose of this review paper. These were used for all the aforementioned databases. The time frame used for the search was 2010-2021. An additional search was conducted with no time bar to map the development of the theoretical concepts. The relevant studies with quantitative, qualitative, experimental, and quasi- experimental research designs were included for the review. Studies including a sample with a DSM- 5 or ICD-10 diagnosis of depressive disorders were excluded from the study to focus on the behavioral patterns in a non-clinical population. The synthesis of the findings that were obtained from the review indicates there is a significant relationship between cognitive variables of AM functions and perceived control and depressive symptoms. AM functions were found to be have significant effects on once sense of self, interpersonal relationships, decision making, self- continuity and were related to better emotion regulation and lower depressive symptoms. Not all the components of AM function were equally significant in their relationships with various depressive symptoms. While self and directive functions were more related to emotion regulation, anhedonia, motivation and hence mood and affect, the social function was related to perceived social support and social engagement. Perceived control was found to be another protective cognitive factor that provides individuals a sense of agency and control over one’s life outcomes which was found to be low in individuals with depression. This was also associated to the locus of control, competency beliefs, contingency beliefs and subjective well being in individuals and acted as protective factors against depressive symptoms. AM and perceived control over stressful events serve adaptive functions, hence it is imperative to study these variables more extensively. They can be imperative in planning and implementing therapeutic interventions to foster these cognitive protective factors to mitigate or alleviate depressive symptoms. Exploring AM as a determining factor in depressive symptoms along with perceived control over stress creates a bridge between biological and cognitive factors underlying depression and increases the scope of developing a more eclectic and effective treatment plan for individuals. As culture plays a crucial role in AM functions as well as certain aspects of control such as locus of control, it is necessary to study these variables keeping in mind the cultural context to tailor culture/community specific interventions for depression.

Keywords: autobiographical memories, autobiographical memory functions, perceived control, depressive symptoms, depression, young adults

Procedia PDF Downloads 103
4574 Intrusion Detection Using Dual Artificial Techniques

Authors: Rana I. Abdulghani, Amera I. Melhum

Abstract:

With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.

Keywords: IDS, SI, BP, NSL_KDD, PSO

Procedia PDF Downloads 382
4573 Language Learning Strategies to Improve English Speaking Skills among High School Students: A Case Study at Vo Minh Duc High School in Binh Duong Province, Viet Nam

Authors: Du T. Tran, Quyen T. L. Hoang

Abstract:

The role of language learning strategies in second language acquisition has received increased attention across several disciplines in recent years. Language learning strategies have been shown to occur in many studies over the passing years with the aim of improving the efficiency of language learning. Following previous studies, this study endeavors to scrutinize language learning strategies employed by the students at Vo Minh Duc high school and the effect of motivation on students’ learning strategy choices. The responses are examined quantitatively and qualitatively to enhance their validity and reliability. Data are collected from 342 students’ responses to the questionnaire, interviews with ten teachers and fifteen students, and classroom observations. The findings reveal that students’ motivation has an enormous impact on the choice of language learning strategies. The results simultaneously show that students use many language learning strategies to enhance their communicative competence, but the most frequently used ones are cognitive and affective ones. Significant correlations among types of learning strategies and the influence of motivation on the choices of language learning strategies were consistent with previous studies. The study’s results are expected to be beneficial to teachers of English and students in terms of narrowing the gap between the students' language learning strategies and their teaching methodologies preferences and sketching out the best strategies to enhance students’ speaking skills. The implications of these findings and the importance of viewing learners holistically are discussed, and recommendations are made for ongoing research.

Keywords: learning strategies, speaking skills, memorization strategies, cognitive strategies, affective strategies

Procedia PDF Downloads 104
4572 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 173
4571 Counterfeit Drugs Prevention in Pharmaceutical Industry with RFID: A Framework Based On Literature Review

Authors: Zeeshan Hamid, Asher Ramish

Abstract:

The purpose of this paper is to focus on security and safety issues facing by pharmaceutical industry globally when counterfeit drugs are in question. Hence, there is an intense need to secure and authenticate pharmaceutical products in the emerging counterfeit product market. This paper will elaborate the application of radio frequency identification (RFID) in pharmaceutical industry and to identify its key benefits for patient’s care. The benefits are: help to co-ordinate the stream of supplies, accuracy in chains of supplies, maintaining trustworthy information, to manage the operations in appropriate and timely manners and finally deliver the genuine drug to patient. It is discussed that how RFID supported supply chain information sharing (SCIS) helps to combat against counterfeit drugs. And a solution how to tag pharmaceutical products; since, some products prevent RFID implementation in this industry. In this paper, a proposed model for pharma industry distribution suggested to combat against the counterfeit drugs when they are in supply chain.

Keywords: supply chain, RFID, pharmaceutical industry, counterfeit drugs, patients care

Procedia PDF Downloads 313
4570 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini

Abstract:

In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.

Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor

Procedia PDF Downloads 146
4569 Development of Application Architecture for RFID Based Indoor Tracking Using Passive RFID Tag

Authors: Sumaya Ismail, Aijaz Ahmad Rehi

Abstract:

Abstract The location tracking and positioning systems have technologically grown exponentially in recent decade. In particular, Global Position system (GPS) has become a universal norm to be a part of almost every software application directly or indirectly for the location based modules. However major drawback of GPS based system is their inability of working in indoor environments. Researchers are thus focused on the alternative technologies which can be used in indoor environments for a vast range of application domains which require indoor location tracking. One of the most popular technology used for indoor tracking is radio frequency identification (RFID). Due to its numerous advantages, including its cost effectiveness, it is considered as a technology of choice in indoor location tracking systems. To contribute to the emerging trend of the research, this paper proposes an application architecture of passive RFID tag based indoor location tracking system. For the proof of concept, a test bed will be developed to in this study. In addition, various indoor location tracking algorithms will be used to assess their appropriateness in the proposed application architecture.

Keywords: RFID, GPS, indoor location tracking, application architecture, passive RFID tag

Procedia PDF Downloads 117