Search results for: deep soil mixing column
4054 Evaluating of Chemical Extractants for Assessment of Bioavailable Heavy Metals in Polluted Soils
Authors: Violina Angelova, Krasimir Ivanov, Stefan Krustev, Dimitar Dimitrov
Abstract:
Availability of a metal is characterised by its quantity transgressing from soil into different extractants or by its content in plants. In literature, the terms 'available forms of compounds' and 'mobile' are often considered as equivalents of the term 'accessible' to plants. Rapid and a sufficiently reliable method for defining the accessible for plants forms turns out to be their extraction through different extractants, imitating the functioning of the root system. As a criterion for the pertinence of the extractant to this purpose usually serves the significant statistic correlation between the extracted quantities of the element from soil and its content in plants. The aim of this work was to evaluate the effectiveness of various extractions (DTPA-TEA, AB-DTPA, Mehlich 3, 0.01 M CaCl₂, 1M NH₄NO₃) for the determination of bioavailability of heavy metals in industrially polluted soils from the metallurgical activity near Plovdiv and Kardjali, Bulgaria. Quantity measurements for contents of heavy metals were performed with ICP-OES. The results showed that extraction capacity was as follows: Mehlich 3>ABDTPA>DTPA-TEA>CaCl₂>NaNO₃. The content of the mobile form of heavy metals depends on the nature of metal ion, the nature of extractant and pH. The obtained results show that CaCl₂ extracts a greater quantity of mobile forms of heavy metals than NH₄NO₃. DTPA-TEA and AB-DTPA are capable of extracting from the soil not only the heavy metals participating in the exchange processes but also the heavy metals bound in carbonates and organic complexes, as well as bound and occluded in oxide and secondary clay minerals. AB-DTPA extracts a bit more heavy metals than DTPA-TEA. The darker color of the solutions obtained with AB-DTPA indicates that considerable quantities organic matter are being destructed. A comparison of the mobile forms of heavy metals extracted from clean and highly polluted soils has revealed that in the polluted soils the greater portion of heavy metals exists in a mobile form. High correlation coefficients are obtained between the metals extracted with different extractants and their total content in soil (r=0.9). A positive correlation between the pH, soil organic matter and the extracted quantities of heavy metals has been found. The results of correlation analysis revealed that the heavy metals extracted by DTPA-TEA, AB-DTPA, Mehlich 3, CaCl₂ and NaNO₃ correlated significantly with plant uptake. Significant correlation was found between DTPA-TEA, AB-DTPA, and CaCl₂ with heavy metals concentration in plants. Application of extracting methods contains chelating agents would be recommended in the future research onthe availabilityof heavy metals in polluted soils.Keywords: availability, chemical extractants, heavy metals, mobile forms
Procedia PDF Downloads 3584053 Potential of Pyrolytic Tire Char Use in Agriculture
Authors: M. L. Moyo
Abstract:
Concerns about climate change, food productivity, and the ever-increasing cost of commercial fertilizer products is forcing have spurred interest in the production of alternatives or substitutes for commercial fertilizer products. In this study, the potential of pyrolytic tire char (PT-char) to improve soil productivity was investigated. The use of carbonized biomass, which is commonly termed biochar or biofertilizer and exhibits similar properties to PT-char in agriculture is not new, with historical evidence pointing to the use of charcoal for soil improvement by indigenous Amazon people for several centuries. Due to minimal market value or use of PT-char, huge quantities are currently stockpiled in South Africa. This successively reduces revenue and decreases investments in waste tire recycling efforts as PT-char constitutes 40 % weight of the total waste tire pyrolysis products. The physicochemical analysis results reported in this study showed that PT-char contains a low concentration of essential plant elements (P and K) and, therefore, cannot be used for increasing nutrient availability in soils. A low presence of heavy metals (Ni, Pb, and Cd), which may be harmful to the environment at high application rates was also observed. In addition, the results revealed that PT-char contains very high levels of Zn, a widely known phytotoxicity causing agents in plants. However, the study also illustrated that PT-char is made up of a highly aromatic and condensed carbon structure. PT-char is therefore highly stable, less prone to microbial degradation, and has a low chemical reactivity in soils. Considering these characteristics, PT-char meets the requirements for use as a carbon sequestration agent, which may be useful in mitigating climate change.Keywords: agriculture, carbon sequestration, physicochemical analysis, pyrolytic tire char, soil amendment.
Procedia PDF Downloads 1234052 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources
Authors: Mustafa Alhamdi
Abstract:
Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification
Procedia PDF Downloads 1524051 The Effect of Salinity on Symbiotic Nitrogen Fixation in Alfalfa and Faba Bean
Authors: Mouffok Ahlem, Belhamra Mohamed, Mouffok Sihem
Abstract:
The use of nitrogen fertilizers inevitable consequence, the increase in the nitrate content of water, which may contribute to the production of nitrite and the formation of carcinogenic nitrosamines. The nitrogen fertilizer may also affect the structure and function of the microbial community. And the fight against eutrophication of aquatic environments represents a cost to the student statements. The agronomic, ecological and economic legumes such as faba beans and alfalfa are not demonstrated, especially in the case of semi-arid and arid areas. Osmotic stress due to drought and / or salinity deficit, nutritional deficiencies is the major factors limiting symbiotic nitrogen fixation and productivity of pulses. To study the symbiotic nitrogen fixation in faba bean (Vicia faba L.) and alfalfa (Medicago sativa L.) in the region of Biskra, we used soil samples collected from 30 locations. This work has identified several issues of ecological and agronomic interest. Evaluation of symbiotic potential of soils in the region of Biskra; by trapping technique, show different levels of susceptibility to rhizobial microflora. The effectiveness of the rhizobial symbiosis in both legumes indicates that air dry biomass and the amount of nitrogen accumulated in the aerial part, depends mainly on the rate of nodulation and regardless of the species and locality. The correlation between symbiotic nitrogen fixation and some physico-chemical properties of soils shows that symbiotic nitrogen fixation in both legumes is strongly related to soil conditions of the soil. Salinity disrupts the physiological process of growth, development and more particularly that of the symbiotic fixation of atmospheric nitrogen. Against by phosphorus promotes rhizobial symbiosis.Keywords: rhizobia, faba bean, alfalfa, salinity
Procedia PDF Downloads 4604050 Deep Learning Prediction of Residential Radon Health Risk in Canada and Sweden to Prevent Lung Cancer Among Non-Smokers
Authors: Selim M. Khan, Aaron A. Goodarzi, Joshua M. Taron, Tryggve Rönnqvist
Abstract:
Indoor air quality, a prime determinant of health, is strongly influenced by the presence of hazardous radon gas within the built environment. As a health issue, dangerously high indoor radon arose within the 20th century to become the 2nd leading cause of lung cancer. While the 21st century building metrics and human behaviors have captured, contained, and concentrated radon to yet higher and more hazardous levels, the issue is rapidly worsening in Canada. It is established that Canadians in the Prairies are the 2nd highest radon-exposed population in the world, with 1 in 6 residences experiencing 0.2-6.5 millisieverts (mSv) radiation per week, whereas the Canadian Nuclear Safety Commission sets maximum 5-year occupational limits for atomic workplace exposure at only 20 mSv. This situation is also deteriorating over time within newer housing stocks containing higher levels of radon. Deep machine learning (LSTM) algorithms were applied to analyze multiple quantitative and qualitative features, determine the most important contributory factors, and predicted radon levels in the known past (1990-2020) and projected future (2021-2050). The findings showed gradual downwards patterns in Sweden, whereas it would continue to go from high to higher levels in Canada over time. The contributory factors found to be the basement porosity, roof insulation depthness, R-factor, and air dynamics of the indoor environment related to human window opening behaviour. Building codes must consider including these factors to ensure adequate indoor ventilation and healthy living that can prevent lung cancer in non-smokers.Keywords: radon, building metrics, deep learning, LSTM prediction model, lung cancer, canada, sweden
Procedia PDF Downloads 1144049 UBCSAND Model Calibration for Generic Liquefaction Triggering Curves
Authors: Jui-Ching Chou
Abstract:
Numerical simulation is a popular method used to evaluate the effects of soil liquefaction on a structure or the effectiveness of a mitigation plan. Many constitutive models (UBCSAND model, PM4 model, SANISAND model, etc.) were presented to model the liquefaction phenomenon. In general, inputs of a constitutive model need to be calibrated against the soil cyclic resistance before being applied to the numerical simulation model. Then, simulation results can be compared with results from simplified liquefaction potential assessing methods. In this article, inputs of the UBCSAND model, a simple elastic-plastic stress-strain model, are calibrated against several popular generic liquefaction triggering curves of simplified liquefaction potential assessing methods via FLAC program. Calibrated inputs can provide engineers to perform a preliminary evaluation of an existing structure or a new design project.Keywords: calibration, liquefaction, numerical simulation, UBCSAND Model
Procedia PDF Downloads 1754048 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms
Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios
Abstract:
Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction
Procedia PDF Downloads 1854047 Experimental Study on Shaft Grouting Bearing Capacity of Small Diameter Bored Piles
Authors: Trung Le Thanh
Abstract:
Bored piles are always the optimal solution for high-rise building foundations. They have many advantages, such as large diameter, large pile length and construction in all different geological conditions. However, due to construction characteristics, the load-bearing capacity of bored piles is not optimal because wall friction is reduced due to poor contact between the pile and the surrounding soil. Therefore, grouting technology along the pile body helps improve the load-bearing capacity of bored piles significantly through increasing the skin resistance of the pile and surrounding soil. The improvement of pile skin resistance depends on the parameters of grouting technology, especially grouting volume, mortar viscosity, mortar strength,... and different geological conditions. Studies show that the technology of grouting piles on sandy soil is more effective than on clay. This article presents an experimental model to determine the load-bearing capacity of bored piles with a diameter of 400 mm and a length of 3 m on sand with different slurry volume in Tan Uyen city, Binh Duong province. On that basis, analyze the correlation between the increase in load-bearing capacity of bored piles without and with shaft grouting pile. Research results show that the wall resistance of shaft grouted piles increases 2-3 times compared to piles without grouting, and the pile's load-bearing capacity increases significantly. The article's research provides scientific value for consulting work on the design of bored piles when grouted along the pile body.Keywords: bored pile, shaft grouting, bearing capacity, pile shaft resistance
Procedia PDF Downloads 684046 Carbon Dioxide (CO₂) and Methane (CH₄) Fluxes from Irrigated Wheat in a Subtropical Floodplain Soil Increased by Reduced Tillage, Residue Retention, and Nitrogen Application Rate
Authors: R. Begum, M. M. R. Jahangir, M. Jahiruddin, M. R. Islam, M. M. Rahman, M. B. Hossain, P. Hossain
Abstract:
Quantifying carbon (C) sequestration in soils is necessary to help better understand the effect of agricultural practices on the C cycle. The estimated contribution of agricultural carbon dioxide (CO₂) and methane (CH₄) to global warming potential (GWP) has a wide range. The underlying causes of this huge uncertainty are the difficulties to predict the regional CO₂ and CH₄ loss due to the lack of experimental evidence on CO₂ and CH₄ emissions and associated drivers. The CH₄ and CO₂ emissions were measured in irrigated wheat in subtropical floodplain soils which have been under two soil disturbance levels (strip vs. conventional tillage; ST vs. CT being both with 30% residue retention) and three N fertilizer rates (60, 100, and 140% of the recommended N fertilizer dose, RD) in annual wheat (Triticum aestivum)-mungbean (Vigna radiata)-rice (Oryza sativa L) for seven consecutive years. The highest CH₄ and CO₂ emission peak was observed on day 3 after urea application in both tillages except CO₂ flux in CT. Nitrogen fertilizer application rate significantly influenced mean and cumulative CH₄ and CO₂ fluxes. The CH₄ and CO₂ fluxes decreased in an optimum dose of N fertilizer except for ST for CH₄. The CO₂ emission significantly showed higher emission at minimum (60% of RD) fertilizer application at both tillages. Soil microbial biomass carbon (MBC), organic carbon (SOC), Particulate organic carbon (POC), permanganate oxidisable carbon (POXC), basal respiration (BR) were significantly higher in ST which were negative and significantly correlated with CO₂. However, POC and POXC were positively and significantly correlated with CH₄ emission.Keywords: carbon dioxide emissions, methane emission, nitrogen rate, tillage
Procedia PDF Downloads 1174045 Characterizing Compressive Strength of Compressed Stabilized Earth Blocks as a Function of Mix Design
Authors: Robert K. Hillyard, Jonathan Thomas, Brett A. Story
Abstract:
Compressed Stabilized Earth Blocks (CSEB) are masonry units that combine soil, sand, stabilizer, and water under pressure to form an earth block. These CSEB’s offer a cost-effective building solution for remote construction, using local resources and labor to minimize transportation and material costs. However, CSEB’s, and earthen construction generally have not been widely adopted as standardized construction materials. One shortcoming is the difficulty in standardizing strength values of CSEB units and systems due to the inherent variations in mix design, including production compression. This research presents findings on compressive strengths of full-scale CSEB’s from 60 different mix designs as a function of the amount of cement, sand, soil, and water added to the mixture. The full-scale results are compared with CSEB cylinder cores.Keywords: CSEB, compressive strength, earth construction, mix design
Procedia PDF Downloads 1004044 AgriInnoConnect Pro System Using Iot and Firebase Console
Authors: Amit Barde, Dipali Khatave, Vaishali Savale, Atharva Chavan, Sapna Wagaj, Aditya Jilla
Abstract:
AgriInnoConnect Pro is an advanced agricultural automation system designed to enhance irrigation efficiency and overall farm management through IoT technology. Using MIT App Inventor, Telegram, Arduino IDE, and Firebase Console, it provides a user-friendly interface for farmers. Key hardware includes soil moisture sensors, DHT11 sensors, a 12V motor, a solenoid valve, a stepdown transformer, Smart Fencing, and AC switches. The system operates in automatic and manual modes. In automatic mode, the ESP32 microcontroller monitors soil moisture and autonomously controls irrigation to optimize water usage. In manual mode, users can control the irrigation motor via a mobile app. Telegram bots enable remote operation of the solenoid valve and electric fencing, enhancing farm security. Additionally, the system upgrades conventional devices to smart ones using AC switches, broadening automation capabilities. AgriInnoConnect Pro aims to improve farm productivity and resource management, addressing the critical need for sustainable water conservation and providing a comprehensive solution for modern farm management. The integration of smart technologies in AgriInnoConnect Pro ensures precision farming practices, promoting efficient resource allocation and sustainable agricultural development.Keywords: agricultural automation, IoT, soil moisture sensor, ESP32, MIT app inventor, telegram bot, smart farming, remote control, firebase console
Procedia PDF Downloads 464043 Towards a Large Scale Deep Semantically Analyzed Corpus for Arabic: Annotation and Evaluation
Authors: S. Alansary, M. Nagi
Abstract:
This paper presents an approach of conducting semantic annotation of Arabic corpus using the Universal Networking Language (UNL) framework. UNL is intended to be a promising strategy for providing a large collection of semantically annotated texts with formal, deep semantics rather than shallow. The result would constitute a semantic resource (semantic graphs) that is editable and that integrates various phenomena, including predicate-argument structure, scope, tense, thematic roles and rhetorical relations, into a single semantic formalism for knowledge representation. The paper will also present the Interactive Analysis tool for automatic semantic annotation (IAN). In addition, the cornerstone of the proposed methodology which are the disambiguation and transformation rules, will be presented. Semantic annotation using UNL has been applied to a corpus of 20,000 Arabic sentences representing the most frequent structures in the Arabic Wikipedia. The representation, at different linguistic levels was illustrated starting from the morphological level passing through the syntactic level till the semantic representation is reached. The output has been evaluated using the F-measure. It is 90% accurate. This demonstrates how powerful the formal environment is, as it enables intelligent text processing and search.Keywords: semantic analysis, semantic annotation, Arabic, universal networking language
Procedia PDF Downloads 5834042 Integrating AI into Breast Cancer Diagnosis: Aligning Perspectives for Effective Clinical Practice
Authors: Mehrnaz Mostafavi, Mahtab Shabani, Alireza Azani, Fatemeh Ghafari
Abstract:
Artificial intelligence (AI) can transform breast cancer diagnosis and therapy by providing sophisticated solutions for screening, imaging interpretation, histopathological analysis, and treatment planning. This literature review digs into the many uses of AI in breast cancer treatment, highlighting the need for collaboration between AI scientists and healthcare practitioners. It emphasizes advances in AI-driven breast imaging interpretation, such as computer-aided detection and diagnosis (CADe/CADx) systems and deep learning algorithms. These have shown significant potential for improving diagnostic accuracy and lowering radiologists' workloads. Furthermore, AI approaches such as deep learning have been used in histopathological research to accurately predict hormone receptor status and categorize tumor-associated stroma from regular H&E stains. These AI-powered approaches simplify diagnostic procedures while providing insights into tumor biology and prognosis. As AI becomes more embedded in breast cancer care, it is crucial to ensure its ethical, efficient, and patient-focused implementation to improve outcomes for breast cancer patients ultimately.Keywords: breast cancer, artificial intelligence, cancer diagnosis, clinical practice
Procedia PDF Downloads 734041 The Effect of Potassium Hydroxide on Fine Soil Treated with Olivine
Authors: Abdelmaoula Mahamoud Tahir, Sedat Sert
Abstract:
The possibility of improving the shear strength of unsaturated clayey soil with the addition of olivine was investigated in this paper. Unconsolidated undrained triaxial tests (UU), under different cell pressures (namely: 100 kPa and 200 kPa), with varying percentages of olivine (10% and 20% by weight) and with one day, 28 days, and 56 days curing times, were performed to determine the shear strength of the soil. The increase in strength was observed as a function of the increase in olivine content. An olivine content of 25% was determined as the optimum value to achieve the targeted improvement for both cure times. A comparative study was also conducted between clay samples treated with only olivine and others in the presence of potassium hydroxide (KOH). Clay samples treated with olivine and activated with potassium hydroxide (KOH) had higher shear strength than non-activated olivine-treated samples. It was determined that the strength of the clay samples treated with only olivine did not increase over time and added resistance only with the high specific gravity of olivine. On the other hand, the samples activated with potassium hydroxide (KOH) added to the resistance with high specific gravity and the chemical bonds of olivine. Morphological and mineralogical analyzes were carried out in this study to see and analyze the chemical bonds formed after the reaction. The main components of this improvement were the formation of magnesium-aluminate-hydrate and magnesium-silicate-hydrate. Compared to older methods such as cement addition, these results show that in stabilizing clayey soils, olivine additive offers an energy-efficient alternative for reducing carbon dioxide emissions.Keywords: ground stabilization, clay, olivine additive, KOH, microstructure
Procedia PDF Downloads 1184040 Different Tillage Possibilities for Second Crop in Green Bean Farming
Authors: Yilmaz Bayhan, Emin Güzel, Ömer Barış Özlüoymak, Ahmet İnce, Abdullah Sessiz
Abstract:
In this study, determining of reduced tillage techniques in green bean farming as a second crop after harvesting wheat was targeted. To this aim, four different soil tillage methods namely, heavy-duty disc harrow (HD), rotary tiller (ROT), heavy-duty disc harrow plus rotary tiller (HD+ROT) and no-tillage (NT) (seeding by direct drill) were examined. Experiments were arranged in a randomized block design with three replications. The highest green beans yields were obtained in HD+ROT and NT as 5,862.1 and 5,829.3 Mg/ha, respectively. The lowest green bean yield was found in HD as 3,076.7 Mg/ha. The highest fuel consumption was measured 30.60 L ha-1 for HD+ROT whereas the lowest value was found 7.50 L ha-1 for NT. No tillage method gave the best results for fuel consumption and effective power requirement. It is concluded that no-tillage method can be used in second crop green bean in the Thrace Region due to economic and erosion conditions.Keywords: green bean, soil tillage, yield, vegetative
Procedia PDF Downloads 3754039 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils
Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul
Abstract:
In this study, an application was carried out to determine the Volcanic Soils by using remote sensing. The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils
Procedia PDF Downloads 3064038 Quantification of Effects of Structure-Soil-Structure Interactions on Urban Environment under Rayleigh Wave Loading
Authors: Neeraj Kumar, J. P. Narayan
Abstract:
The effects of multiple Structure-Soil-Structure Interactions (SSSI) on the seismic wave-field is generally disregarded by earthquake engineers, particularly the surface waves which cause more damage to buildings. Closely built high rise buildings exchange substantial seismic energy with each other and act as a full-coupled dynamic system. In this paper, SSI effects on the building responses and the free field motion due to a small city consisting 25- homogenous buildings blocks of 10-storey are quantified. The rocking and translational behavior of building under Rayleigh wave loading is studied for different dimensions of the building. The obtained dynamic parameters of buildings revealed a reduction in building roof drift with an increase in number of buildings ahead of the considered building. The strain developed by vertical component of Rayleigh may cause tension in structural components of building. A matching of fundamental frequency of building for the horizontal component of Rayleigh wave with that for vertically incident SV-wave is obtained. Further, the fundamental frequency of building for the vertical vibration is approximately twice to that for horizontal vibration. The city insulation has caused a reduction of amplitude of Rayleigh wave up to 19.3% and 21.6% in the horizontal and vertical components, respectively just outside the city. Further, the insulating effect of city was very large at fundamental frequency of buildings for both the horizontal and vertical components. Therefore, it is recommended to consider the insulating effects of city falling in the path of Rayleigh wave propagation in seismic hazard assessment for an area.Keywords: structure-soil-structure interactions, Rayleigh wave propagation, finite difference simulation, dynamic response of buildings
Procedia PDF Downloads 2184037 The Ideal for Building Reservior Under the Ground in Mekong Delta in Vietnam
Authors: Huu Hue Van
Abstract:
The Mekong Delta is the region in southwestern Vietnam where the Mekong River approaches and flow into the sea through a network of distributaries. The Climate Change Research Institute at University of Can Tho, in studying the possible consequences of climate change, has predicted that, many provinces in the Mekong Delta will be flooded by the year 2030. The Mekong Delta lacks fresh water in the dry season. Being served for daily life, industry and agriculture in the dry season, the water is mainly taken from layers of soil contained water under the ground (aquifers) depleted water; the water level in aquifers have decreased. Previously, the Mekong Delta can withstand two bad scenarios in the future: 1) The Mekong Delta will be submerged into the sea again: Due to subsidence of the ground (over-exploitation of groundwater), subsidence of constructions because of the low groundwater level (10 years ago, some of constructions were built on the foundation of Melaleuca poles planted in Mekong Delta, Melaleuca poles have to stay in saturated soil layer fully, if not, they decay easyly; due to the top of Melaleuca poles are higher than the groundwater level, the top of Melaleuca poles will decay and cause subsidence); erosion the river banks (because of the hydroelectric dams in the upstream of the Mekong River is blocking the flow, reducing the concentration of suspended substances in the flow caused erosion the river banks) and the delta will be flooded because of sea level rise (climate change). 2) The Mekong Delta will be deserted: People will migrate to other places to make a living because of no planting due to alum capillary (In Mekong Delta, there is a layer of alum soil under the ground, the elevation of groundwater level is lower than the the elevation of layer of alum soil, alum will be capillary to the arable soil layer); there is no fresh water for cultivation and daily life (because of saline intrusion and groundwater depletion in the aquifers below). Mekong Delta currently has about seven aquifers below with a total depth about 500 m. The water mainly has exploited in the middle - upper Pleistocene aquifer (qp2-3). The major cause of two bad scenarios in the future is over-exploitation of water in aquifers. Therefore, studying and building water reservoirs in seven aquifers will solve many pressing problems such as preventing subsidence, providing water for the whole delta, especially in coastal provinces, favorable to nature, saving land ( if we build the water lake on the surface of the delta, we will need a lot of land), pollution limitation (because when building some hydraulic structures for preventing the salt instrutions and for storing water in the lake on the surface, we cause polluted in the lake)..., It is necessary to build a reservoir under the ground in aquifers in the Mekong Delta. The super-sized reservoir will contribute to the existence and development of the Mekong Delta.Keywords: aquifers, aquifers storage, groundwater, land subsidence, underground reservoir
Procedia PDF Downloads 874036 A Study on the Possibility of Utilizing the Converter Slag as the Cement Admixture
Authors: Choi Woo-Seok, Kim Eun-Sup, Ha Eun-Ryong
Abstract:
Converter slag is used as a low-value product like a construction fill material and soil stabilizer unlike electric furnace slag and blast furnace slag. This study is fundamental research for utilizing the converter slag as the cement admixture. Magnetic separation was conducted for quality improvement of the converter slag, and it was classified according to into 3 types; SA: pure slag, SB: separated slag, SC: remained slag after separating. In XRF result, SB slag was Fe₂CO₃ ratio was higher, and CaO ratio was lower than SA. SC slag was Fe₂CO₃ ratio was lower, and CaO ratio was higher than SA. In compressive strength test for soil cement using SA, SB, SC as the cement admixture, SC slag was more effective in terms of 28days compressive strength than SA, SB slag. In this result, it is considered that the remained material (SC) after magnetic separation is available as the cement admixture.Keywords: converter slag, magnetic separation, cement admixture, compressive strength
Procedia PDF Downloads 7854035 Carbon Stock of the Moist Afromontane Forest in Gesha and Sayilem Districts in Kaffa Zone: An Implication for Climate Change Mitigation
Authors: Admassu Addi, Sebesebe Demissew, Teshome Soromessa, Zemede Asfaw
Abstract:
This study measures the carbon stock of the Moist Afromontane Gesha-Sayilem forest found in Gesha and Sayilem District in southwest Ethiopia. A stratified sampling method was used to identify the number of sampling point through the Global Positioning System. A total of 90 plots having nested plots to collect tree species and soil data were demarcated. The results revealed that the total carbon stock of the forest was 362.4 t/ha whereas the above ground carbon stock was 174.95t/ha, below ground litter, herbs, soil, and dead woods were 34.3,1.27, 0.68, 128 and 23.2 t/ha (up to 30 cm depth) respectively. The Gesha- Sayilem Forest is a reservoir of high carbon and thus acts as a great sink of the atmospheric carbon. Thus conservation of the forest through introduction REDD+ activities is considered an appropriate action for mitigating climate change.Keywords: carbon sequestration, carbon stock, climate change, allometric, Ethiopia
Procedia PDF Downloads 1604034 Emotion Recognition Using Artificial Intelligence
Authors: Rahul Mohite, Lahcen Ouarbya
Abstract:
This paper focuses on the interplay between humans and computer systems and the ability of these systems to understand and respond to human emotions, including non-verbal communication. Current emotion recognition systems are based solely on either facial or verbal expressions. The limitation of these systems is that it requires large training data sets. The paper proposes a system for recognizing human emotions that combines both speech and emotion recognition. The system utilizes advanced techniques such as deep learning and image recognition to identify facial expressions and comprehend emotions. The results show that the proposed system, based on the combination of facial expression and speech, outperforms existing ones, which are based solely either on facial or verbal expressions. The proposed system detects human emotion with an accuracy of 86%, whereas the existing systems have an accuracy of 70% using verbal expression only and 76% using facial expression only. In this paper, the increasing significance and demand for facial recognition technology in emotion recognition are also discussed.Keywords: facial reputation, expression reputation, deep gaining knowledge of, photo reputation, facial technology, sign processing, photo type
Procedia PDF Downloads 1234033 Antagonist Study of Fungi Isolated from the Burned Forests of Region of Mila, Algeria
Authors: Abdelaziz Wided, Khiat Nawel, Khiat Inssaf
Abstract:
The present study was initiated to: Determine burned forest-inhabiting fungi in Zouagha, Terri Beinène, Mila and study the antagonistic activity of Trichoderma sp against Fusarium sp, Penicillium sp, Rhizoctonia sp, Alternaria sp. 18 fungal strains were isolated from Soil samples taken from the forest Zouagha (Burned) in the region Mila representing 6 genera: Trichoderma sp et Fusarium sp, Penicillium sp, Rhizoctonia sp, Alternaria sp, Rhizopus sp. The tests of dual culture method on culture medium (PDA) against Trichoderma sp et Fusarium sp, Penicillium sp, Rhizoctonia sp, Alternaria sp revealed that: Trichoderma sp could reduce l mycelium grouth of Fusarium sp23.13%, Penicillium sp33.13%, Rhizoctoniasp33.75 %and Alternaria sp 38.31% in comparaison with the witness after 6 days at room temperature. The strains of Fusarium sp ,Penicillium sp, Rhizoctonia sp et Alternaria sp showed differences sensibility to the antagoniste.Keywords: isolation, identification, molds, burned soil of zouagha, antagonism, trichoderma sp
Procedia PDF Downloads 2544032 Myers-Briggs Type Index Personality Type Classification Based on an Individual’s Spotify Playlists
Authors: Sefik Can Karakaya, Ibrahim Demir
Abstract:
In this study, the relationship between musical preferences and personality traits has been investigated in terms of Spotify audio analysis features. The aim of this paper is to build such a classifier capable of segmenting people into their Myers-Briggs Type Index (MBTI) personality type based on their Spotify playlists. Music takes an important place in the lives of people all over the world and online music streaming platforms make it easier to reach musical contents. In this context, the motivation to build such a classifier is allowing people to gain access to their MBTI personality type and perhaps for more reliably and more quickly. For this purpose, logistic regression and deep neural networks have been selected for classifier and their performances are compared. In conclusion, it has been found that musical preferences differ statistically between personality traits, and evaluated models are able to distinguish personality types based on given musical data structure with over %60 accuracy rate.Keywords: myers-briggs type indicator, music psychology, Spotify, behavioural user profiling, deep neural networks, logistic regression
Procedia PDF Downloads 1454031 Numerical Modeling of Geogrid Reinforced Soil Bed under Strip Footings Using Finite Element Analysis
Authors: Ahmed M. Gamal, Adel M. Belal, S. A. Elsoud
Abstract:
This article aims to study the effect of reinforcement inclusions (geogrids) on the sand dunes bearing capacity under strip footings. In this research experimental physical model was carried out to study the effect of the first geogrid reinforcement depth (u/B), the spacing between the reinforcement (h/B) and its extension relative to the footing length (L/B) on the mobilized bearing capacity. This paper presents the numerical modeling using the commercial finite element package (PLAXIS version 8.2) to simulate the laboratory physical model, studying the same parameters previously handled in the experimental work (u/B, L/B & h/B) for the purpose of validation. In this study the soil, the geogrid, the interface element and the boundary condition are discussed with a set of finite element results and the validation. Then the validated FEM used for studying real material and dimensions of strip foundation. Based on the experimental and numerical investigation results, a significant increase in the bearing capacity of footings has occurred due to an appropriate location of the inclusions in sand. The optimum embedment depth of the first reinforcement layer (u/B) is equal to 0.25. The optimum spacing between each successive reinforcement layer (h/B) is equal to 0.75 B. The optimum Length of the reinforcement layer (L/B) is equal to 7.5 B. The optimum number of reinforcement is equal to 4 layers. The study showed a directly proportional relation between the number of reinforcement layer and the Bearing Capacity Ratio BCR, and an inversely proportional relation between the footing width and the BCR.Keywords: reinforced soil, geogrid, sand dunes, bearing capacity
Procedia PDF Downloads 4234030 Incidences and Chemico-Mobility of Toxic Heavy Metals in Environmental Samples
Authors: I. Hilia, C. Hange, F. Hakala, M. Matheus, C. Jansen, J. Hidinwa, O. Awofolu
Abstract:
The article reports on the occurrences, level, and mobility of selected trace metals in environmental samples. The conceptual basis was to examine the possible influence of anthropogenic activities and the impact on human and environmental health. Environmental samples (soil, plant and lower animal) were randomly collected from stratified study/sampling areas, preserved and pre-treated before analysis. Mineral acid digestion procedure was employed for the isolation of metallic contents in samples, and elemental qualitative and quantitative analysis was by ICP-OES. Analytical protocol was validated through the quality assurance process and was found acceptable with quantitative metallic recoveries in the range of 85-90%; hence considered applicable for the analyses of environmental samples. The mean concentration of analysed metals in soil samples ranged from 53.2- 2532.8 mg/kg (Cu); 59.5- 2020.1 mg/kg (Zn); 1.80 – 21.26 mg/kg (Cd) and 19.6- 140.9 mg/kg (Pb). The mean level in grass samples ranged from 9.33 – 38.63 mg/kg (Cu); 64.20-105.18 mg/kg (Zn); 0.28–0.73 mg/kg (Cd) and 0.53 -16.26 mg/kg (Pb) while the mean level in lower animal sample (beetle) varied from 9.6 - 105.3 mg/kg (Cu); 134.1-297.2 mg/kg (Zn); 0.63 – 3.78 (Cd) and 8.0 – 29.1 mg/kg (Pb) across sample collection points (SCPs) 1-4 respectively. Metallic transfer factors (TFs) were in the order Zn >Cd > Cu > Pb with metal Pollution Indices (MPIs) in the order SCP1 > SCP2 > SCP3 > SCP4. About 60-70 % of analysed metals were above the maximum allowable limits (MALs) in soil and plant samples. Results obtained revealed the general prevalence of analysed metals at all sampled sites with indication of metallic mobility across the food chain which portrayed dire consequences for environmental and human health. Systematic environmental remediation and pollution abatement strategies are recommended.Keywords: trace metals, pollution, human health, Incidences, ICP-OES
Procedia PDF Downloads 1594029 Complex Learning Tasks and Their Impact on Cognitive Engagement for Undergraduate Engineering Students
Authors: Anastassis Kozanitis, Diane Leduc, Alain Stockless
Abstract:
This paper presents preliminary results from a two-year funded research program looking to analyze and understand the relationship between high cognitive engagement, higher order cognitive processes employed in situations of complex learning tasks, and the use of active learning pedagogies in engineering undergraduate programs. A mixed method approach was used to gauge student engagement and their cognitive processes when accomplishing complex tasks. Quantitative data collected from the self-report cognitive engagement scale shows that deep learning approach is positively correlated with high levels of complex learning tasks and the level of student engagement, in the context of classroom active learning pedagogies. Qualitative analyses of in depth face-to-face interviews reveal insights into the mechanisms influencing students’ cognitive processes when confronted with open-ended problem resolution. Findings also support evidence that students will adjust their level of cognitive engagement according to the specific didactic environment.Keywords: cognitive engagement, deep and shallow strategies, engineering programs, higher order cognitive processes
Procedia PDF Downloads 3244028 Effect of Cadmium on Oxidative Enzymes Activity in Persian Clover (Trifolium resupinatum L.)
Authors: Homayun Ghasemi, Mojtaba Yousefirad, Mozhgan Farzamisepehr
Abstract:
Heavy metals are among soil pollutant resources that in case of accumulation in the soil and absorption by the plant, enter into the food chain and poison the plants or the people who consume those plants. This research was performed in order to examine the role of cadmium as a heavy metal in the activity of catalase and peroxidase as well as protein concentration in Trifolium resupinatum L. based on a randomized block design with three repetitions. The used treatments included consumption of Cd (NO3)2 at four levels, namely, 0, 100, 200, and 300 ppm. The plants under study were treated for 10 days. The results of the study showed that catalase activity decreased by the increase of cadmium. Moreover, peroxidase activity increased by an increase inthe consumption of cadmium. The analysis of protein level showed that plantlet protein decreased in high cadmium concentrations. The findings also demonstrated that cadmium concentration in roots was higher than in shoots.Keywords: catalase, heavy metal, peroxidase, protein
Procedia PDF Downloads 2484027 Image Processing on Geosynthetic Reinforced Layers to Evaluate Shear Strength and Variations of the Strain Profiles
Authors: S. K. Khosrowshahi, E. Güler
Abstract:
This study investigates the reinforcement function of geosynthetics on the shear strength and strain profile of sand. Conducting a series of simple shear tests, the shearing behavior of the samples under static and cyclic loads was evaluated. Three different types of geosynthetics including geotextile and geonets were used as the reinforcement materials. An image processing analysis based on the optical flow method was performed to measure the lateral displacements and estimate the shear strains. It is shown that besides improving the shear strength, the geosynthetic reinforcement leads a remarkable reduction on the shear strains. The improved layer reduces the required thickness of the soil layer to resist against shear stresses. Consequently, the geosynthetic reinforcement can be considered as a proper approach for the sustainable designs, especially in the projects with huge amount of geotechnical applications like subgrade of the pavements, roadways, and railways.Keywords: image processing, soil reinforcement, geosynthetics, simple shear test, shear strain profile
Procedia PDF Downloads 2204026 Phytoextraction of Some Heavy Metals from Artificially Polluted soil
Authors: Kareem Kalo Qassim, Hassan A. M. Mezori
Abstract:
The bioaccumulation of heavy metals in the environment has become a matter of public interest because it persists in the soil longer than other components of the biosphere. Bioremediation has emerged as the ideal alternative environmentally friendly and ecological sound technology for removing pollutants from polluted sites. Phytoremediation is an attractive remediation technology that makes use of plants to remove contaminants from the environment. A pot experiment was conducted under lath house conditions to evaluate the ability of plants (H. Annuus, S. Bicolor, and Z. Mays) to phytoextract heavy metals from artificially polluted soils by different concentrations of Cadmium, Lead, and Copper (0, 100, 200, 200 + EDTA). The Seed germination was influenced by the presence of heavy metals and inhibition increased by increasing the heavy metals concentration. A significant difference was observed in the effect of lead and copper. Generally, the length of root, shoot, and intact plant was reduced by all the concentrations used in the experiments. The root system was affected more than the shoot system of the same plants. All heavy metals concentrations caused a reduction in the dry weight and chlorophyll content of all tested plant species; the reduction was increased by increasing the concentration of all heavy metals, especially when EDTA was added. The Bioaccumulation of heavy metals concentration of all the tested plants increased by increasing the concentration. The highest accumulation of cadmium was (81.77mg kg⁻¹), and copper was ( 65.07 mg kg⁻¹) in S. bicolor, while lead-in H. annuus was (60.74 mg kg⁻¹). The order of accumulation of heavy metals in all the tested plant species in the root system and the intact plant was as follows: H. annuus ˃ S. bicolor ˃ Z. mays and shoot system was: H. annuus ˃ Z. mays ˃ S. bicolor. The highest TF of cadmium was (0.41) in H. annuus; lead was (0.72) in Z. mays and S. bicolor, and copper was (0.44) in Z. mays. The tested plant species varied in their response to the heavy metals and the inhibition was concentration depended. In general, the roots system was more affected by heavy metals toxicity than the shoots system; the roots system accumulated more heavy metals in the roots than the shoots system. The addition of EDTA to the last concentration of heavy metals facilitated the availably and absorption of heavy metals from the polluted soil by all tested plant species.Keywords: phytoextyraction, phytoremediation, translocation, heavy metals, soil pollution
Procedia PDF Downloads 1494025 Optimizing Pavement Construction Procedures in the Southern Desert of Libya
Authors: Khlifa El Atrash, Gabriel Assaf
Abstract:
Libya uses a volumetric analysis in designing asphalt mixtures, which can also be upgraded in hot, arid weather. However, in order to be effective, it should include many important aspects which are materials, environment, and method of construction. However, the quality of some roads was below a satisfactory level. This paper examines the factors that contribute to low quality of road performance in Libya. To evaluate these factors, a questionnaire survey and a laboratory comparative study were performed for a few mixes under-represented of temperature and traffic load. In laboratory, rutting test conducted on two different asphalt mixture, these mixes included, an asphalt concrete mix using local aggregate and asphalt binder B(60/70) at the optimum Marshall asphalt content, another mixes designed using Superpave design procedure with the same materials and performance asphalt binder grade PG (70-10). In the survey, the questionnaire was distributed to 55 engineers and specialists in this field. The interview was conducted to a few others, and the factors that were leading to poor performance of asphalt roads were listed as; 1) Owner Experience and technical staff 2) Asphalt characteristics 3) Updating and development of Asphalt Mix Design methods 4) Lack of data collection by authorization Agency 5) Construction and compaction process 6) Mentoring and controlling mixing procedure. Considering and improving these factors will play an important role to improve the pavement performances, longer service life, and lower maintenance costs. This research summarized some recommendations for making asphalt mixtures used in hot, dry areas. Such asphalt mixtures should use asphalt binder which is less affected by pavement temperature change and traffic load. The properties of the mixture, such as durability, deformation, air voids, and performance, largely depend on the type of materials, environment, and mixing method. These properties, in turn, affect the pavement performance.Keywords: volumetric analysis, pavement performances, hot climate, traffic load, pavement temperature, asphalt mixture, environment, design and construction
Procedia PDF Downloads 274