Search results for: broadband wireless networks
1062 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach
Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib
Abstract:
A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation
Procedia PDF Downloads 891061 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data
Authors: S. Nickolas, Shobha K.
Abstract:
The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing
Procedia PDF Downloads 2741060 Dynamics of the Coupled Fitzhugh-Rinzel Neurons
Authors: Sanjeev Kumar Sharma, Arnab Mondal, Ranjit Kumar Upadhyay
Abstract:
Excitable cells often produce different oscillatory activities that help us to understand the transmitting and processing of signals in the neural system. We consider a FitzHugh-Rinzel (FH-R) model and studied the different dynamics of the model by considering the parameter c as the predominant parameter. The model exhibits different types of neuronal responses such as regular spiking, mixed-mode bursting oscillations (MMBOs), elliptic bursting, etc. Based on the bifurcation diagram, we consider the three regimes (MMBOs, elliptic bursting, and quiescent state). An analytical treatment for the occurrence of the supercritical Hopf bifurcation is studied. Further, we extend our study to a network of a hundred neurons by considering the bi-directional synaptic coupling between them. In this article, we investigate the alternation of spiking propagation and bursting phenomena of an uncoupled and coupled FH-R neurons. We explore that the complete graph of heterogenous desynchronized neurons can exhibit different types of bursting oscillations for certain coupling strength. For higher coupling strength, all the neurons in the network show complete synchronization.Keywords: excitable neuron model, spiking-bursting, stability and bifurcation, synchronization networks
Procedia PDF Downloads 1261059 Individuals’ Inner Wellbeing during the COVID-19 Pandemic: A Quantitative Comparison of Social Connections and Close Relationships between the UK and India
Authors: Maria Spanoudaki, Pauldy C. J. Otermans, Dev Aditya
Abstract:
Relationships form an integral part of our everyday wellbeing. In this study, the focus is on Inner Wellbeing which can be described as an individuals' thoughts and feelings about what they can do and be. Relationships can come in many forms and can be divided into Social Connections (thoughts and feelings about the social network people can establish and rely on), and Close Relationships (thoughts and feeling about the emotional support people can receive from significant others or their close, intimate circle). The purpose of this study is to compare the Social Connections and Close Relationship dimensions of Inner Wellbeing during the COVID-19 pandemic between the UK and India. 392 participants in the UK and 205 participants India completed an online questionnaire using the Inner Wellbeing scale. Factor analyses showed that the construct of Inner Wellbeing can be described as one factor for the UK sample whereas it can be described as two factors (one focusing on positive items and one focusing on negative items) for the Indian sample. Results showed that Social Connections were significantly during COVID-19 in the UK compared to India, whereas there is no significant difference for Close Relationships. The implications on relationships and wellbeing are discussed in detail.Keywords: social networks, relationship maintenance, relationship satisfaction, COVID-19
Procedia PDF Downloads 1621058 Optimization of Agricultural Water Demand Using a Hybrid Model of Dynamic Programming and Neural Networks: A Case Study of Algeria
Authors: M. Boudjerda, B. Touaibia, M. K. Mihoubi
Abstract:
In Algeria agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. Economic development in the last decade has weighed heavily on water resources which are relatively limited and gradually decreasing to the detriment of agriculture. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Foum El-Gherza dam’s reservoir system in south of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 12.32% to 55%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.Keywords: water management, agricultural demand, dam and reservoir operation, Foum el-Gherza dam, dynamic programming, artificial neural network
Procedia PDF Downloads 1141057 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on time-controlled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSP algorithm outperformed the others and is a versatile management model for the operation of real-world water distribution system.Keywords: JPSO, operation, optimization, water distribution system
Procedia PDF Downloads 2441056 Female Entrepreneurship in the Creative Industry: The Antecedents of Their Ventures' Performance
Authors: Naoum Mylonas, Eugenia Petridou
Abstract:
Objectives: The objectives of this research are firstly, to develop an integrated model of predicting factors to new ventures performance, taking into account certain issues and specificities related to creative industry and female entrepreneurship based on the prior research; secondly, to determine the appropriate measures of venture performance in a creative industry context, drawing upon previous surveys; thirdly, to illustrate the importance of entrepreneurial orientation, networking ties, environment dynamism and access to financial capital on new ventures performance. Prior Work: An extant review of the creative industry literature highlights the special nature of entrepreneurship in this field. Entrepreneurs in creative industry share certain specific characteristics and intensions, such as to produce something aesthetic, to enrich their talents and their creativity, and to combine their entrepreneurial with their artistic orientation. Thus, assessing venture performance and success in creative industry entails an examination of how creative people or artists conceptualize success. Moreover, female entrepreneurs manifest more positive attitudes towards sectors primarily based on creativity, rather than innovation in which males outbalance. As creative industry entrepreneurship based mainly on the creative personality of the creator / artist, a high interest is accrued to examine female entrepreneurship in the creative industry. Hypotheses development: H1a: Female entrepreneurs who are more entrepreneurially-oriented show a higher financial performance. H1b: Female entrepreneurs who are more artistically-oriented show a higher creative performance. H2: Female entrepreneurs who have personality that is more creative perform better. H3: Female entrepreneurs who participate in or belong to networks perform better. H4: Female entrepreneurs who have been consulted by a mentor perform better. Η5a: Female entrepreneurs who are motivated more by pull-factors perform better. H5b: Female entrepreneurs who are motivated more by push-factors perform worse. Approach: A mixed method triangulation design has been adopted for the collection and analysis of data. The data are collected through a structured questionnaire for the quantitative part and through semi-structured interviews for the qualitative part as well. The sample is 293 Greek female entrepreneurs in the creative industry. Main findings: All research hypotheses are accepted. The majority of creative industry entrepreneurs evaluate themselves in creative performance terms rather than financial ones. The individuals who are closely related to traditional arts sectors have no EO but also evaluate themselves highly in terms of venture performance. Creative personality of creators is appeared as the most important predictor of venture performance. Pull factors in accordance with our hypothesis lead to higher levels of performance compared to push factors. Networking and mentoring are viewed as very important, particularly now during the turbulent economic environment in Greece. Implications-Value: Our research provides an integrated model with several moderating variables to predict ventures performance in the creative industry, taking also into account the complicated nature of arts and the way artists and creators define success. At the end, the findings may be used for the appropriate design of educational programs in creative industry entrepreneurship. This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.Keywords: venture performance, female entrepreneurship, creative industry, networks
Procedia PDF Downloads 2621055 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm
Authors: Haozhe Xiang
Abstract:
With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.Keywords: deep learning, graph convolutional network, attention mechanism, LSTM
Procedia PDF Downloads 691054 Travel Planning in Public Transport Networks Applying the Algorithm A* for Metropolitan District of Quito
Authors: M. Fernanda Salgado, Alfonso Tierra, Wilbert Aguilar
Abstract:
The present project consists in applying the informed search algorithm A star (A*) to solve traveler problems, applying it by urban public transportation routes. The digitization of the information allowed to identify 26% of the total of routes that are registered within the Metropolitan District of Quito. For the validation of this information, data were taken in field on the travel times and the difference with respect to the times estimated by the program, resulting in that the difference between them was not greater than 2:20 minutes. We validate A* algorithm with the Dijkstra algorithm, comparing nodes vectors based on the public transport stops, the validation was established through the student t-test hypothesis. Then we verified that the times estimated by the program using the A* algorithm are similar to those registered on field. Furthermore, we review the performance of the algorithm generating iterations in both algorithms. Finally, with these iterations, a hypothesis test was carried out again with student t-test where it was concluded that the iterations of the base algorithm Dijsktra are greater than those generated by the algorithm A*.Keywords: algorithm A*, graph, mobility, public transport, travel planning, routes
Procedia PDF Downloads 2391053 SEM Image Classification Using CNN Architectures
Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran
Abstract:
A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope
Procedia PDF Downloads 1241052 An Integration of Life Cycle Assessment and Techno-Economic Optimization in the Supply Chains
Authors: Yohanes Kristianto
Abstract:
The objective of this paper is to compose a sustainable supply chain that integrates product, process and networks design. An integrated life cycle assessment and techno-economic optimization is proposed that might deliver more economically feasible operations, minimizes environmental impacts and maximizes social contributions. Closed loop economy of the supply chain is achieved by reusing waste to be raw material of final products. Societal benefit is given by the supply chain by absorbing waste as source of raw material and opening new work opportunities. A case study of ethanol supply chain from rice straws is considered. The modeling results show that optimization within the scope of LCA is capable of minimizing both CO₂ emissions and energy and utility consumptions and thus enhancing raw materials utilization. Furthermore, the supply chain is capable of contributing to local economy through jobs creation. While the model is quite comprehensive, the future research recommendation on energy integration and global sustainability is proposed.Keywords: life cycle assessment, techno-economic optimization, sustainable supply chains, closed loop economy
Procedia PDF Downloads 1491051 Secure Hashing Algorithm and Advance Encryption Algorithm in Cloud Computing
Authors: Jaimin Patel
Abstract:
Cloud computing is one of the most sharp and important movement in various computing technologies. It provides flexibility to users, cost effectiveness, location independence, easy maintenance, enables multitenancy, drastic performance improvements, and increased productivity. On the other hand, there are also major issues like security. Being a common server, security for a cloud is a major issue; it is important to provide security to protect user’s private data, and it is especially important in e-commerce and social networks. In this paper, encryption algorithms such as Advanced Encryption Standard algorithms, their vulnerabilities, risk of attacks, optimal time and complexity management and comparison with other algorithms based on software implementation is proposed. Encryption techniques to improve the performance of AES algorithms and to reduce risk management are given. Secure Hash Algorithms, their vulnerabilities, software implementations, risk of attacks and comparison with other hashing algorithms as well as the advantages and disadvantages between hashing techniques and encryption are given.Keywords: Cloud computing, encryption algorithm, secure hashing algorithm, brute force attack, birthday attack, plaintext attack, man in middle attack
Procedia PDF Downloads 2781050 The Exploration of Sustainable Landscape in Iran: From Persian Garden to Modern Park
Authors: Honey Fadaie, Vahid Parhoodeh
Abstract:
This paper concentrates on the result of research based on studies on parameters of sustainability in Persian Garden design as a traditional Iranian landscape and in a contemporary park, Jamshidieh in Iran as a new experience of re-creation of Persian Gardens’ sustainable design. Since, sustainable development has three parts: social, economic and environmental. The complexities of each part are too great to discuss in a paper of this length, thus the authors decided to analyze the design of Persian garden by considering their environmental sustainability. By the analysis of sustainable features and characteristics of traditional gardens, and exploration of parameters of sustainability in Iranian modern landscape, Such as Jamshideh Park, the main objective of this research is to identify the strategies for sustainable landscaping and parameters of creating sustainable green spaces for contemporary cities. The results demonstrate that in Persian Gardens, sustainable parameters such as productive networks and local renewable materials have been used to achieve sustainable development. At the conclusion, guidelines and recommendations for sustainable landscaping are presented.Keywords: Jamshidieh park, Persian garden, sustainable landscape, urban green space
Procedia PDF Downloads 4741049 Prediction of Extreme Precipitation in East Asia Using Complex Network
Authors: Feng Guolin, Gong Zhiqiang
Abstract:
In order to study the spatial structure and dynamical mechanism of extreme precipitation in East Asia, a corresponding climate network is constructed by employing the method of event synchronization. It is found that the area of East Asian summer extreme precipitation can be separated into two regions: one with high area weighted connectivity receiving heavy precipitation mostly during the active phase of the East Asian Summer Monsoon (EASM), and another one with low area weighted connectivity receiving heavy precipitation during both the active and the retreat phase of the EASM. Besides,a way for the prediction of extreme precipitation is also developed by constructing a directed climate networks. The simulation accuracy in East Asia is 58% with a 0-day lead, and the prediction accuracy is 21% and average 12% with a 1-day and an n-day (2≤n≤10) lead, respectively. Compare to the normal EASM year, the prediction accuracy is lower in a weak year and higher in a strong year, which is relevant to the differences in correlations and extreme precipitation rates in different EASM situations. Recognizing and identifying these effects is good for understanding and predicting extreme precipitation in East Asia.Keywords: synchronization, climate network, prediction, rainfall
Procedia PDF Downloads 4421048 Tourism Challenges and Prospects: The Nigerian Experience: A Case Study of Benin City
Authors: Olawale-Olakunle Olajumoke Elizabeth
Abstract:
There are many challenges which are been encountered in the area of tourism in Nigeria. This research work on Tourism Challenges and Prospects: The Nigerian Experience with a case study of Benin City, was carried out so as to identify the various challenges. Questionnaires were designed and administered in the various locations of Benin City, using the designed objectives and hypothesis. Use is made of both primary and secondary data collections, to gather information. The obtained data were subjected to statistical analysis where results were obtained for discussion. The results obtained showed that Tourism in the area is grossly affected by factors such as lack of preferred destination, lack of consistency in policy, erratic power-supply, bad road networks, insecurity in the city and perennial conflicts, no enabling environment for investors or tourists among others. It was revealed that touristic activities in the area are at low level due to economic hardship and this is rubbing the city of its contribution to the national economy. It is however recommended that the government should create an enabling environment for both investors and tourists, as this will fasten the development of tourism in the city.Keywords: destination, network, tourists and investors, Nigeria, industry
Procedia PDF Downloads 3841047 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition
Authors: Jong Han Joo, Jung Hoon Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi
Abstract:
In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. We propose a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.Keywords: acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector
Procedia PDF Downloads 3711046 Genesis of Entrepreneur Business Models in New Ventures
Authors: Arash Najmaei, Jo Rhodes, Peter Lok, Zahra Sadeghinejad
Abstract:
In this article, we endeavor to explore how a new business model comes into existence in the Australian cloud-computing eco-system. Findings from multiple case study methodology reveal that to develop a business model new ventures adopt a three-phase approach. In the first phase, labelled as business model ideation (BMID) various ideas for a viable business model are generated from both internal and external networks of the entrepreneurial team and the most viable one is chosen. Strategic consensus and commitment are generated in the second phase. This phase is a business modelling strategic action phase. We labelled this phase as business model strategic commitment (BMSC) because through commitment and the subsequent actions of executives resources are pooled, coordinated and allocated to the business model. Three complementary sets of resources shape the business model: managerial (MnRs), marketing (MRs) and technological resources (TRs). The third phase is the market-test phase where the business model is reified through the delivery of the intended value to customers and conversion of revenue into profit. We labelled this phase business model actualization (BMAC). Theoretical and managerial implications of these findings will be discussed and several directions for future research will be illuminated.Keywords: entrepreneur business model, high-tech venture, resources, conversion of revenue
Procedia PDF Downloads 4441045 Mentoring in Translation: A Tool for Future Translators
Authors: Ana Sofia Saldanha
Abstract:
The globalization is changing the translation world day after day, year after year. The need to know more about new technologies, clients, companies and social networks is becoming more and more demanding and competitive. The recently graduated translators usually do not know where to go, what to do or even who to contact to start their careers in translation. It is well known that there are innumerous webinars, books, blogs, webpages and even Facebook pages indicating what to do, what not to do, rates, how your CV should look like, etc. but are these pieces of advice of real translators? Translators, who work daily with clients, who understand their demands, requests, questions? As far as today`s trends, the answer is NO. Most of these pieces of advice are just theoretical and far away from the real translation world. Therefore, mentoring is becoming a very important tool to help and guide new translators starting their career. An effective and well-oriented mentoring is a powerful way to orient these translators on how to create their CVs, where to send CVs, how to approach clients, how to answer emails and how to negotiate rates in an efficient way. Mentoring is crucial when properly delivered by professional and experienced translators, to help developing careers. The advice and orientation sessions are almost a 'weapon' to destroy the barriers created by opinions, by influences or even by universities. This new trend is the future path of new translators and is the future of the translation industry and professionals, however minds and spirits need to be opened and engaged in this new way of developing skills.Keywords: mentoring, translation, translators, orientation, professional path
Procedia PDF Downloads 1791044 Gender and Advertisements: A Content Analysis of Pakistani Prime Time Advertisements
Authors: Aaminah Hassan
Abstract:
Advertisements carry a great potential to influence our lives because they are crafted to meet particular ends. Stereotypical representation in advertisements is capable of forming unconscious attitudes among people towards any gender and their abilities. This study focuses on gender representation in Pakistani prime time advertisements. For this purpose, 13 advertisements were selected from three different categories of foods and beverages, cosmetics, cell phones and cellular networks from the prime time slots of one of the leading Pakistani entertainment channel, ‘Urdu 1’. Both quantitative and qualitative analyses are carried out for range of variables like gender, age, roles, activities, setting, appearance and voice overs. The results revealed that gender representation in advertisements is stereotypical. Moreover, in few instances, the portrayal of women is not only culturally inappropriate but is demeaning to the image of women as well. Their bodily charm is used to promote products. Comparing different entertainment channels for their prime time advertisements and broadening the scope of this research will yield greater implications for the researchers who want to carry out the similar research. It is hoped that the current study would help in the promotion of media literacy among the viewers and media authorities in Pakistan.Keywords: Advertisements, Content Analysis, Gender, Prime time
Procedia PDF Downloads 2131043 [Keynote Speech]: Bridge Damage Detection Using Frequency Response Function
Authors: Ahmed Noor Al-Qayyim
Abstract:
During the past decades, the bridge structures are considered very important portions of transportation networks, due to the fast urban sprawling. With the failure of bridges that under operating conditions lead to focus on updating the default bridge inspection methodology. The structures health monitoring (SHM) using the vibration response appeared as a promising method to evaluate the condition of structures. The rapid development in the sensors technology and the condition assessment techniques based on the vibration-based damage detection made the SHM an efficient and economical ways to assess the bridges. SHM is set to assess state and expects probable failures of designated bridges. In this paper, a presentation for Frequency Response function method that uses the captured vibration test information of structures to evaluate the structure condition. Furthermore, the main steps of the assessment of bridge using the vibration information are presented. The Frequency Response function method is applied to the experimental data of a full-scale bridge.Keywords: bridge assessment, health monitoring, damage detection, frequency response function (FRF), signal processing, structure identification
Procedia PDF Downloads 3461042 Social Media Impact on Startup Entrepreneurial Intention: Evidence from Greece
Authors: Panagiotis I. Mallios, Vassilis S. Moustakis
Abstract:
The research reported herein presents a conceptual model that explores the relationship between social media factors and entrepreneurial intention, with a focus on the Greek startup ecosystem. The significance of the study is that social media have gained importance in explaining the entrepreneurial process, and through them, nascent and potential entrepreneurs seem to get inspired and motivated to initiate their businesses. The research methodology employed in this study included a qualitative research approach, utilizing in-depth interviews with a sample of 15 startup entrepreneurs providing valuable retrospective information. The data collected were analyzed using the content analysis method. The major findings of the study are that social media factors such as usefulness, influence, and credibility have a significant impact on entrepreneurial intention. We also found that social media can be a powerful tool for entrepreneurs to access resources, knowledge and networks that can help them in their venture creation. Overall, this research contributes to the entrepreneurship literature by uncovering the relationship between social media factors and entrepreneurial intention and has implications for entrepreneurial education, policymakers, and official partners, highlighting the potential of social media to enhance the startup ecosystem.Keywords: entrepreneurial intention, social media, start up ecosystem, entrepreneurship
Procedia PDF Downloads 1681041 Multi-Objective Four-Dimensional Traveling Salesman Problem in an IoT-Based Transport System
Authors: Arindam Roy, Madhushree Das, Apurba Manna, Samir Maity
Abstract:
In this research paper, an algorithmic approach is developed to solve a novel multi-objective four-dimensional traveling salesman problem (MO4DTSP) where different paths with various numbers of conveyances are available to travel between two cities. NSGA-II and Decomposition algorithms are modified to solve MO4DTSP in an IoT-based transport system. This IoT-based transport system can be widely observed, analyzed, and controlled by an extensive distribution of traffic networks consisting of various types of sensors and actuators. Due to urbanization, most of the cities are connected using an intelligent traffic management system. Practically, for a traveler, multiple routes and vehicles are available to travel between any two cities. Thus, the classical TSP is reformulated as multi-route and multi-vehicle i.e., 4DTSP. The proposed MO4DTSP is designed with traveling cost, time, and customer satisfaction as objectives. In reality, customer satisfaction is an important parameter that depends on travel costs and time reflects in the present model.Keywords: multi-objective four-dimensional traveling salesman problem (MO4DTSP), decomposition, NSGA-II, IoT-based transport system, customer satisfaction
Procedia PDF Downloads 1091040 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation
Authors: Hamed Alqahtani, Manolya Kavakli-Thorne
Abstract:
The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.Keywords: disentanglement, face detection, generative adversarial networks, video surveillance
Procedia PDF Downloads 1281039 Transformation of Industrial Policy towards Industry 4.0 and Its Impact on Firms' Competition
Authors: Arūnas Burinskas
Abstract:
Although Europe is on the threshold of a new industrial revolution called Industry 4.0, many believe that this will increase the flexibility of production, the mass adaptation of products to consumers and the speed of their service; it will also improve product quality and dramatically increase productivity. However, as expected, all the benefits of Industry 4.0 face many of the inevitable changes and challenges they pose. One of them is the inevitable transformation of current competition and business models. This article examines the possible results of competitive conversion from the classic Bertrand and Cournot models to qualitatively new competition based on innovation. Ability to deliver a new product quickly and the possibility to produce the individual design (through flexible and quickly configurable factories) by reducing equipment failures and increasing process automation and control is highly important. This study shows that the ongoing transformation of the competition model is changing the game. This, together with the creation of complex value networks, means huge investments that make it particularly difficult for small and medium-sized enterprises. In addition, the ongoing digitalization of data raises new concerns regarding legal obligations, intellectual property, and security.Keywords: Bertrand and Cournot Competition, competition model, industry 4.0, industrial organisation, monopolistic competition
Procedia PDF Downloads 1381038 Study on the Transition to Pacemaker of Two Coupled Neurons
Authors: Sun Zhe, Ruggero Micheletto
Abstract:
The research of neural network is very important for the development of advanced next generation intelligent devices and the medical treatment. The most important part of the neural network research is the learning. The process of learning in our brain is essentially several adjustment processes of connection strength between neurons. It is very difficult to figure out how this mechanism works in the complex network and how the connection strength influences brain functions. For this reason, we made a model with only two coupled neurons and studied the influence of connection strength between them. To emulate the neuronal activity of realistic neurons, we prefer to use the Izhikevich neuron model. This model can simulate the neuron variables accurately and it’s simplicity is very suitable to implement on computers. In this research, the parameter ρ is used to estimate the correlation coefficient between spike train of two coupling neurons.We think the results is very important for figuring out the mechanism between synchronization of coupling neurons and synaptic plasticity. The result also presented the importance of the spike frequency adaptation in complex systems.Keywords: neural networks, noise, stochastic processes, coupled neurons, correlation coefficient, synchronization, pacemaker, synaptic plasticity
Procedia PDF Downloads 2841037 The Right to State Lands: A Case Study of a Squatter Community in Egypt
Authors: Salwa Salman
Abstract:
On February 2016, Egypt’s President Abdel Fattah Al-Sisi ordered the former Prime Minister, Ibrahim Mehleb, to establish a committee responsible for retrieving looted state lands or providing squatters with land titles according to their individual cases. The specificity of desert lands emerges from its unique position in both Islamic law and Egypt’s Civil Code. In Egypt, desert lands can be transferred to private ownership through peaceful occupation and cultivation. This study explores the (re-) conceptualization of land rights, state territoriality, and sovereignty as a part of an emerging narrative on informal land tenure. Through the lens of an informal settlement, the study employs methodological insights from studies in the anthropology of development and their interpretation of Foucauldian discourse analysis to examine official representations on squatting over state lands and put them in conversation with individual narratives on land ownership and dispossession. It also employs Bruno Latour’s actor-network theory to explore the development of social networks through primary land contracts and informal local resource management.Keywords: State lands, squatter community, Islamic law, Egypt’s Civil Code
Procedia PDF Downloads 1701036 Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach
Authors: Gorkem Algan, Ilkay Ulusoy, Saban Gonul, Banu Turgut, Berker Bakbak
Abstract:
Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.Keywords: deep learning, label noise, robust learning, meta-learning, retinopathy of prematurity
Procedia PDF Downloads 1591035 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion
Authors: Swarna Pundir, Prabuddha Hans
Abstract:
As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved. Procedia PDF Downloads 951034 A Survey on Requirements and Challenges of Internet Protocol Television Service over Software Defined Networking
Authors: Esmeralda Hysenbelliu
Abstract:
Over the last years, the demand for high bandwidth services, such as live (IPTV Service) and on-demand video streaming, steadily and rapidly increased. It has been predicted that video traffic (IPTV, VoD, and WEB TV) will account more than 90% of global Internet Protocol traffic that will cross the globe in 2016. Consequently, the importance and consideration on requirements and challenges of service providers faced today in supporting user’s requests for entertainment video across the various IPTV services through virtualization over Software Defined Networks (SDN), is tremendous in the highest stage of attention. What is necessarily required, is to deliver optimized live and on-demand services like Internet Protocol Service (IPTV Service) with low cost and good quality by strictly fulfill the essential requirements of Clients and ISP’s (Internet Service Provider’s) in the same time. The aim of this study is to present an overview of the important requirements and challenges of IPTV service with two network trends on solving challenges through virtualization (SDN and Network Function Virtualization). This paper provides an overview of researches published in the last five years.Keywords: challenges, IPTV service, requirements, software defined networking (SDN)
Procedia PDF Downloads 2711033 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network
Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan
Abstract:
The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG
Procedia PDF Downloads 181