Search results for: mechanical strength prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8324

Search results for: mechanical strength prediction

6074 Optimization of the Mechanical Performance of Fused Filament Fabrication Parts

Authors: Iván Rivet, Narges Dialami, Miguel Cervera, Michele Chiumenti

Abstract:

Process parameters in Additive Manufacturing (AM) play a critical role in the mechanical performance of the final component. In order to find the input configuration that guarantees the optimal performance of the printed part, the process-performance relationship must be found. Fused Filament Fabrication (FFF) is the selected demonstrative AM technology due to its great popularity in the industrial manufacturing world. A material model that considers the different printing patterns present in a FFF part is used. A voxelized mesh is built from the manufacturing toolpaths described in the G-Code file. An Adaptive Mesh Refinement (AMR) based on the octree strategy is used in order to reduce the complexity of the mesh while maintaining its accuracy. High-fidelity and cost-efficient Finite Element (FE) simulations are performed and the influence of key process parameters in the mechanical performance of the component is analyzed. A robust optimization process based on appropriate failure criteria is developed to find the printing direction that leads to the optimal mechanical performance of the component. The Tsai-Wu failure criterion is implemented due to the orthotropy and heterogeneity constitutive nature of FFF components and because of the differences between the strengths in tension and compression. The optimization loop implements a modified version of an Anomaly Detection (AD) algorithm and uses the computed metrics to obtain the optimal printing direction. The developed methodology is verified with a case study on an industrial demonstrator.

Keywords: additive manufacturing, optimization, printing direction, mechanical performance, voxelization

Procedia PDF Downloads 63
6073 Development of Zero-Cement Binder Activated by Carbonation

Authors: Young Cheol Choi, Eun-Jin Moon, Sung-Won Yoo, Sang-Hwa Jung, In-Hwan Yang

Abstract:

Stainless steel slag (STS) is a by-product generated from the stainless steel refining process. The recycling of STS produced in Korea for construction applications is limited due to its poor hydraulic properties. On the other hand, STS has high carbonation reactivity to CO2 as it contains gamma-C2S content. This material is ideal for mineral carbonation which is one of the techniques proposed for carbon emission reduction. The objective of this study is to investigate the feasibility of developing a zero-cement STS binder activated by carbonation as alternative cementitious material. The quantitative analyses for CO2 uptake of STS powder and STS blended cement were investigated using thermogravimetric analysis (TGA), X-ray diffraction (XRD). In addition, the compressive strength and microstructure of STS pastes after CO2 curing were evaluated. Test results showed that STS can be activated by carbonation to gain a sufficient strength as alternative cementitious material.

Keywords: gamma-C2S, CO2 uptake, carbonation, stainless steel slag

Procedia PDF Downloads 464
6072 Evaluation of Durability Performance for Bio-Energy Co-Product

Authors: Bo Yang, Hali̇l Ceylan, Ali Ulvi̇ Uzer

Abstract:

This experimental study was performed to investigate the effect of biofuel co-products (BCPs) with sulfur-free lignin addition on the unconsolidated on strength and durability behavior in pavement soil stabilization subjected to freezing–thawing cycles. For strength behavior, a series of unconfined compression tests were conducted. Mass losses were also calculated after freezing–thawing cycles as criteria for durability behavior. To investigate the effect of the biofuel co-products on the durability behavior of the four type’s soils, mass losses were calculated after 12 freezing–thawing cycles. The co-products tested are promising additives for improving durability under freeze-thaw conditions, and each type has specific advantages.

Keywords: durability, mass lose, freezing–thawing test, bio-energy co-product, soil stabilization

Procedia PDF Downloads 375
6071 Synthesis and Characterisation of Bio-Based Acetals Derived from Eucalyptus Oil

Authors: Kirstin Burger, Paul Watts, Nicole Vorster

Abstract:

Green chemistry focuses on synthesis which has a low negative impact on the environment. This research focuses on synthesizing novel compounds from an all-natural Eucalyptus citriodora oil. Eight novel plasticizer compounds are synthesized and optimized using flow chemistry technology. A precursor to one novel compound can be synthesized from the lauric acid present in coconut oil. Key parameters, such as catalyst screening and loading, reaction time, temperature, residence time using flow chemistry techniques is investigated. The compounds are characterised using GC-MS, FT-IR, 1H and 13C-NMR techniques, X-ray crystallography. The efficiency of the compounds is compared to two commercial plasticizers, i.e. Dibutyl phthalate and Eastman 168. Several PVC-plasticized film formulations are produced using the bio-based novel compounds. Tensile strength, stress at fracture and percentage elongation are tested. The property of having increasing plasticizer percentage in the film formulations is investigated, ranging from 3, 6, 9 and 12%. The diastereoisomers of each compound are separated and formulated into PVC films, and differences in tensile strength are measured. Leaching tests, flexibility, and change in glass transition temperatures for PVC-plasticized films is recorded. Research objective includes using these novel compounds as a green bio-plasticizer alternative in plastic products for infants. The inhibitory effect of the compounds on six pathogens effecting infants are studied, namely; Escherichia coli, Staphylococcus aureus, Shigella sonnei, Pseudomonas putida, Salmonella choleraesuis and Klebsiella oxytoca.

Keywords: bio-based compounds, plasticizer, tensile strength, microbiological inhibition , synthesis

Procedia PDF Downloads 186
6070 On Compression Properties of Honeycomb Structures Using Flax/PLA Composite as Core Material

Authors: S. Alsubari, M. Y. M. Zuhri, S. M. Sapuan, M. R. Ishaks

Abstract:

Sandwich structures based on cellular cores are increasingly being utilized as energy-absorbing components in the industry. However, determining ideal structural configurations remains challenging. This chapter compares the compression properties of flax fiber-reinforced polylactic acid (PLA) of empty honeycomb core, foam-filled honeycomb and double cell wall square interlocking core sandwich structure under quasi-static compression loading. The square interlocking core is fabricated through a slotting technique, whereas the honeycomb core is made using a corrugated mold that was initially used to create the corrugated core composite profile, which is then cut into corrugated webs and assembled to form the honeycomb core. The sandwich structures are tested at a crosshead displacement rate of 2 mm/min. The experimental results showed that honeycomb outperformed the square interlocking core in terms of their strength capability and SEA by around 14% and 34%, respectively. It is observed that the foam-filled honeycomb collapse in a progressive mode, exhibiting noticeable advantages over the empty honeycomb; this is attributed to the interaction between the honeycomb wall and foam filler. Interestingly, the average SEAs of foam-filled and empty honeycomb cores have no significant difference, around 8.7kJ/kg and 8.2kJ/kg, respectively. In contrast, its strength capability is clearly pronounced, in which the foam-filled core outperforms the empty counterparts by around 33%. Finally, the results for empty and foam-filled cores were significantly superior to aluminum cores published in the literature.

Keywords: compressive strength, flax, honeycomb core, specific energy absorption

Procedia PDF Downloads 83
6069 Comparison of Tensile Strength and Folding Endurance of (FDM Process) 3D Printed ABS and PLA Materials

Authors: R. Devicharan

Abstract:

In a short span 3D Printing is expected to play a vital role in our life. The possibility of creativity and speed in manufacturing through various 3D printing processes is infinite. This study is performed on the FDM (Fused Deposition Modelling) method of 3D printing, which is one of the pre-dominant methods of 3D printing technologies. This study focuses on physical properties of the objects produced by 3D printing which determine the applications of the 3D printed objects. This paper specifically aims at the study of the tensile strength and the folding endurance of the 3D printed objects through the FDM (Fused Deposition Modelling) method using the ABS (Acronitirile Butadiene Styrene) and PLA (Poly Lactic Acid) plastic materials. The study is performed on a controlled environment and the specific machine settings. Appropriate tables, graphs are plotted and research analysis techniques will be utilized to analyse, verify and validate the experiment results.

Keywords: FDM process, 3D printing, ABS for 3D printing, PLA for 3D printing, rapid prototyping

Procedia PDF Downloads 599
6068 Hydration Behavior of Belitic Cement in the Presence of Na₂CO₃, NaOH, KOH, and Water Glass

Authors: F. Amor, A. Bouregba, N. El Fami, A. Diouri

Abstract:

This study provides insights into the role of alkalis in modifying the hydration kinetics and microstructural development of β-dicalcium silicate, highlighting potential pathways for enhancing the performance of belite-based cements in various construction applications. It investigates the behavior of β-dicalcium silicates (β-Ca₂SiO₄) when hydrated in various alkaline environments, including deionized water and solutions containing 2M concentrations of Na₂CO₃, NaOH, KOH, and water glass. The dicalcium silicate was synthesized with laboratory reagents, calcium carbonate, and gel silica. The hydration process was carried out over different periods, ranging from 7 to 90 days. The hydrated samples were characterized using X-ray diffraction, infrared spectroscopy, and scanning electron microscopy, while the mechanical strength tests were performed at 28 and 90 days. The results indicate that the presence of alkalis significantly influences the hydration of belite cement. Early hydration is accelerated, which is evident from the faster dissolution of C₂S, a decrease in C₂S peaks, and the formation of C-S-H products, including sodium-containing C-(N)-S-H and potassium-containing C-(K)-S-H.

Keywords: dicalcium silicate, alkali activator, hydration, water glass, Na₂CO₃, NaOH, KOH

Procedia PDF Downloads 13
6067 In situ Polymerization and Properties of Biobased Polyurethane/Epoxy Interpenetrating Network Nanocomposites

Authors: Aiswarea Mathew, Smita Mohanty, Jr., S. K. Nayak

Abstract:

Polyurethane networks based on castor oil (CO) as a renewable resource polyol were synthesized. Polyurethane/epoxy resin interpenetrating network nanocomposites containing modified montmorillonite organoclay (C30B-PU/EP nanocomposites) were prepared by an in situ intercalation method. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed castor oil based PU structure and also showed that strong interactions existed between C30B and EP/PU matrix. The dispersion degree of C30B in EP/PU matrix was characterized by X-Ray diffraction (XRD) method. Scanning electronic microscopy analysis showed that the interpenetrating process of PU and EP increases the exfoliation degree of C30B, and it improves the compatibility and the phase structure of polyurethane/epoxy resin interpenetrating polymer networks (PU/EP IPNs). The thermal stability improves compared to the polyurethane when the PU/EP IPN is formed. Mechanical properties including the Young’s modulus and tensile strength reflected marked improvement with addition of C30B.

Keywords: castor oil, epoxy, montmorillonite, polyurethane

Procedia PDF Downloads 400
6066 Mechanical Investigation Approach to Optimize the High-Velocity Oxygen Fuel Fe-Based Amorphous Coatings Reinforced by B4C Nanoparticles

Authors: Behrooz Movahedi

Abstract:

Fe-based amorphous feedstock powders are used as the matrix into which various ratios of hard B4C nanoparticles (0, 5, 10, 15, 20 vol.%) as reinforcing agents were prepared using a planetary high-energy mechanical milling. The ball-milled nanocomposite feedstock powders were also sprayed by means of high-velocity oxygen fuel (HVOF) technique. The characteristics of the powder particles and the prepared coating depending on their microstructures and nanohardness were examined in detail using nanoindentation tester. The results showed that the formation of the Fe-based amorphous phase was noticed over the course of high-energy ball milling. It is interesting to note that the nanocomposite coating is divided into two regions, namely, a full amorphous phase region and homogeneous dispersion of B4C nanoparticles with a scale of 10–50 nm in a residual amorphous matrix. As the B4C content increases, the nanohardness of the composite coatings increases, but the fracture toughness begins to decrease at the B4C content higher than 20 vol.%. The optimal mechanical properties are obtained with 15 vol.% B4C due to the suitable content and uniform distribution of nanoparticles. Consequently, the changes in mechanical properties of the coatings were attributed to the changes in the brittle to ductile transition by adding B4C nanoparticles.

Keywords: Fe-based amorphous, B₄C nanoparticles, nanocomposite coating, HVOF

Procedia PDF Downloads 135
6065 A Study on Temperature and Drawing Speed for Diffusion Bonding Enhancement in Drawing of Hot Lined Pipes by FEM Analysis

Authors: M. T. Ahn, J. H. Park, S. H. Park, S. H. Ha

Abstract:

Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in hot drawing even if the reduction in the section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision.

Keywords: diffusion bonding, temperature, pressure, drawing speed

Procedia PDF Downloads 373
6064 On the Fatigue Behavior of a Triphasic Composite

Authors: G. Minak, D. Ghelli, A. Zucchelli

Abstract:

This paper presents the results of an experimental characterization of a glass fibre-epoxy composite. The behavior of the traditional two-phase composite has been compared with the one of a new three-phase composite where the epoxy matrix was modified by addition of a 3% weight fraction of montmorillonite nano-particles. Two different types of nano-clays, Cloisite® 30B and RXG7000, produced by Southern Clay Products Inc., have been considered. Three-point bending tests, both monotonic and cyclic, were carried out. A strong reduction of the ultimate flexural strength upon nano-modification has been observed in quasi-static tests. Fatigue tests yielded a smaller strength loss. In both quasi-static and fatigue tests a more pronounced tendency to delamination has been noticed in three-phase composites, especially in the case of 30B nano-clay, with respect to the standard two-phase glass fiber composite.

Keywords: bending fatigue, epoxy resin, glass fiber, montmorillonite

Procedia PDF Downloads 446
6063 Suitability Verification of Cellulose Nanowhisker as a Scaffold for Bone Tissue Engineering

Authors: Moon Hee Jung, Dae Seung Kim, Sang-Myung Jung, Gwang Heum Yoon, Hoo Cheol Lee, Hwa Sung Shin

Abstract:

Scaffolds are an important part to support growth and differentiation of osteoblast for regeneration of injured bone in bone tissue engineering. We utilized tunicate cellulose nanowhisker (CNW) as scaffold and developed complex system that can enhance differentiation of osteoblast by applying mechanical stimulation. CNW, a crystal form of cellulose, has high stiffness with a large surface area and is useful as a biomedical material due to its biodegradability and biocompatibility. In this study, CNW was obtained from tunicate extraction and was confirmed for its adhesion, differentiation, growth of osteoblast without cytotoxicity. In addition, osteoblast was successfully differentiated under mechanical stimulation, followed by calcium dependent signaling. In conclusion, we verified suitability of CNW as scaffold and possibility of bone substitutes.

Keywords: osteoblast, cellulose nanowhisker, CNW, mechanical stimulation, bone tissue engineering, bone substitute

Procedia PDF Downloads 367
6062 Investigation of Physical Performance of Denim Fabrics Washed with Sustainable Foam Washing Process

Authors: Hazal Yılmaz, Hale Karakaş

Abstract:

In the scope of the study, it is aimed to investigate and review the performance of denim fabrics that are foam washed. Foam washing was compared as an alternative to stone washing in terms of sustainability and performance parameters. For this purpose, seven different denim fabrics, which are both stone washed and foam washed separately in 3 different washing durations (30-60-90 mins), were compared. In the study, the same fabrics were processed with both foam and stone separately. The washing process steps were reviewed, and their water consumption values were compared. After washing, a total of 42 fabric samples were obtained, and tensile strength, tear strength, abrasion, weight loss after abrasion, rubbing fastness, color fastness tests were carried out on the fabric samples. The obtained test results were reviewed and evaluated. As a result of tests, it has been observed that the performance of foam washed fabrics in terms of tensile, tear strength and rubbing fastness test results are better than stone washed fabrics, and it has been seen that foam washed fabrics' color fastness test results are as stone washed. As a result of all these tests, it can be seen that foam washing is an alternative to stone washing due to its performance parameters and its sustainability performance with less water usage.

Keywords: denim fabrics, denim washing, foam washing, performance properties, stone washing, sustainability

Procedia PDF Downloads 71
6061 Color Image Enhancement Using Multiscale Retinex and Image Fusion Techniques

Authors: Chang-Hsing Lee, Cheng-Chang Lien, Chin-Chuan Han

Abstract:

In this paper, an edge-strength guided multiscale retinex (EGMSR) approach will be proposed for color image contrast enhancement. In EGMSR, the pixel-dependent weight associated with each pixel in the single scale retinex output image is computed according to the edge strength around this pixel in order to prevent from over-enhancing the noises contained in the smooth dark/bright regions. Further, by fusing together the enhanced results of EGMSR and adaptive multiscale retinex (AMSR), we can get a natural fused image having high contrast and proper tonal rendition. Experimental results on several low-contrast images have shown that our proposed approach can produce natural and appealing enhanced images.

Keywords: image enhancement, multiscale retinex, image fusion, EGMSR

Procedia PDF Downloads 458
6060 Determination of Johnson-Cook Material and Failure Model Constants for High Tensile Strength Tendon Steel in Post-Tensioned Concrete Members

Authors: I. Gkolfinopoulos, N. Chijiwa

Abstract:

To evaluate the remaining capacity in concrete tensioned members, it is important to accurately estimate damage in precast concrete tendons. In this research Johnson-Cook model and damage parameters of high-strength steel material were calculated by static and dynamic uniaxial tensile tests. Replication of experimental results was achieved through finite element analysis for both single 8-noded three-dimensional element as well as the full-scale dob-bone shaped model and relevant model parameters are proposed. Finally, simulation results in terms of strain and deformation were verified using digital image correlation analysis.

Keywords: DIC analysis, Johnson-Cook, quasi-static, dynamic, rupture, tendon

Procedia PDF Downloads 147
6059 A Quick Prediction for Shear Behaviour of RC Membrane Elements by Fixed-Angle Softened Truss Model with Tension-Stiffening

Authors: X. Wang, J. S. Kuang

Abstract:

The Fixed-angle Softened Truss Model with Tension-stiffening (FASTMT) has a superior performance in predicting the shear behaviour of reinforced concrete (RC) membrane elements, especially for the post-cracking behaviour. Nevertheless, massive computational work is inevitable due to the multiple transcendental equations involved in the stress-strain relationship. In this paper, an iterative root-finding technique is introduced to FASTMT for solving quickly the transcendental equations of the tension-stiffening effect of RC membrane elements. This fast FASTMT, which performs in MATLAB, uses the bisection method to calculate the tensile stress of the membranes. By adopting the simplification, the elapsed time of each loop is reduced significantly and the transcendental equations can be solved accurately. Owing to the high efficiency and good accuracy as compared with FASTMT, the fast FASTMT can be further applied in quick prediction of shear behaviour of complex large-scale RC structures.

Keywords: bisection method, FASTMT, iterative root-finding technique, reinforced concrete membrane

Procedia PDF Downloads 271
6058 Influence of Silicon Carbide Particle Size and Thermo-Mechanical Processing on Dimensional Stability of Al 2124SiC Nanocomposite

Authors: Mohamed M. Emara, Heba Ashraf

Abstract:

This study is to investigation the effect of silicon carbide (SiC) particle size and thermo-mechanical processing on dimensional stability of aluminum alloy 2124. Three combinations of SiC weight fractions are investigated, 2.5, 5, and 10 wt. % with different SiC particle sizes (25 μm, 5 μm, and 100nm) were produced using mechanical ball mill. The standard testing samples were fabricated using powder metallurgy technique. Both samples, prior and after extrusion, were heated from room temperature up to 400ºC in a dilatometer at different heating rates, that is, 10, 20, and 40ºC/min. The analysis showed that for all materials, there was an increase in length change as temperature increased and the temperature sensitivity of aluminum alloy decreased in the presence of both micro and nano-sized silicon carbide. For all conditions, nanocomposites showed better dimensional stability compared to conventional Al 2124/SiC composites. The after extrusion samples showed better thermal stability and less temperature sensitivity for the aluminum alloy for both micro and nano-sized silicon carbide.

Keywords: aluminum 2124 metal matrix composite, SiC nano-sized reinforcements, powder metallurgy, extrusion mechanical ball mill, dimensional stability

Procedia PDF Downloads 526
6057 Comparison of Homogeneous and Micro-Mechanical Modelling Approach for Paper Honeycomb Materials

Authors: Yiğit Gürler, Berkay Türkcan İmrağ, Taylan Güçkıran, İbrahim Şimşek, Alper Taşdemirci

Abstract:

Paper honeycombs, which is a sandwich structure, consists of two liner faces and one paper honeycomb core. These materials are widely used in the packaging industry due to their low cost, low weight, good energy absorption capabilities and easy recycling properties. However, to provide maximum protection to the products in cases such as the drop of the packaged products, the mechanical behavior of these materials should be well known at the packaging design stage. In this study, the necessary input parameters for the modeling study were obtained by performing compression tests in the through-thickness and in-plane directions of paper-based honeycomb sandwich structures. With the obtained parameters, homogeneous and micro-mechanical numerical models were developed in the Ls-Dyna environment. The material card used for the homogeneous model is MAT_MODIFIED_HONEYCOMB, and the material card used for the micromechanical model is MAT_PIECEWISE_LINEAR_PLASTICITY. As a result, the effectiveness of homogeneous and micromechanical modeling approaches for paper-based honeycomb sandwich structure was investigated using force-displacement curves. Densification points and peak points on these curves will be compared.

Keywords: environmental packaging, mechanical characterization, Ls-Dyna, sandwich structure

Procedia PDF Downloads 200
6056 The Impact of One Session of Kumite Training, Speed Kata and Strength Kata on the Rate of Viscosity, Fibrinogen and Plasma Lipid Profile in Young Karate Player Women

Authors: Miesam Golzadeh Gangraj, Abbas Ganbari Niaki, Lila Bahrami

Abstract:

The main aim of this study is to investigate the effect of one session of Karate training (Kumite, speed Kata and strength Kata) on viscosity, fibrinogen and plasma lipid profile in young Karate player women. To this end, 40 individuals with required condition were selected and randomly placed in four groups. 10 mL forearm venous blood was taken before and immediately after a session of training for measuring variables. Data were analyzed using statistical methods (covariance, by consideration of group factor) and Bonfferoni post hoc test and the significant difference was determined in P ≤ 0.05. The variation of plasma fibrinogen concentration was not meaningful. The variation of plasma viscosity concentration was not meaningful in groups and between groups. The variation of cortisol concentration was meaningful before and after and between control and experimental groups; however, no difference was observed between three experimental groups. The variation of complete cholesterol, neither tri-glyceride nor intense lipoprotein, was meaningful and significant difference was just seen between control and Kumite groups. The results show that despite meaningful changes in fibrinogen levels, plasma viscosity has not been much affected that might be due to lack of variation in other effective variables such as TG, HDL and hematocrit. Based on the results of present study, it seems that the use of speed Kata seems to be more appropriate to increase the performance of Karate player than strength Karate.

Keywords: female karate player, viscosity, fibrinogen, cortisol, lactate di-dehydrogenase

Procedia PDF Downloads 184
6055 Mechanical and Thermal Stresses in A Functionally Graded Cylinders

Authors: Ali Kurşun, Emre Kara, Erhan Çetin, Şafak Aksoy, Ahmet Kesimli

Abstract:

In this study, thermal elastic stress distribution occurred on long hollow cylinders made of functionally graded material (FGM) was analytically defined under thermal, mechanical and thermo mechanical loads. In closed form solutions for elastic stresses and displacements are obtained analytically by using the infinitesimal deformation theory of elasticity. It was assumed that elasticity modulus, thermal expansion coefficient and density of cylinder materials could change in terms of an exponential function as for that Poisson’s ratio was constant. A gradient parameter n is chosen between - 1 and 1. When n equals to zero, the disc becomes isotropic. Circumferential, radial and longitudinal stresses in the FGMs cylinders are depicted in the figures. As a result, the gradient parameters have great effects on the stress systems of FGMs cylinders.

Keywords: functionally graded materials, thermoelasticity, thermomechanical load, hollow cylinder.

Procedia PDF Downloads 458
6054 Thermally Stable Nanocrystalline Aluminum Alloys Processed by Mechanical Alloying and High Frequency Induction Heat Sintering

Authors: Hany R. Ammar, Khalil A. Khalil, El-Sayed M. Sherif

Abstract:

The as-received metal powders were used to synthesis bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys using mechanical alloying and high frequency induction heat sintering (HFIHS). The current study investigated the influence of milling time and ball-to-powder (BPR) weight ratio on the microstructural constituents and mechanical properties of the processed materials. Powder consolidation was carried out using a high frequency induction heat sintering where the processed metal powders were sintered into a dense and strong bulk material. The sintering conditions applied in this process were as follow: heating rate of 350°C/min; sintering time of 4 minutes; sintering temperature of 400°C; applied pressure of 750 Kgf/cm2 (100 MPa); cooling rate of 400°C/min and the process was carried out under vacuum of 10-3 Torr. The powders and the bulk samples were characterized using XRD and FEGSEM techniques. The mechanical properties were evaluated at various temperatures of 25°C, 100°C, 200°C, 300°C and 400°C to study the thermal stability of the processed alloys. The bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys displayed extremely high hardness values even at elevated temperatures. The Al-10%Cu-5%Ti alloy displayed the highest hardness values at room and elevated temperatures which are related to the presence of Ti-containing phases such as Al3Ti and AlCu2Ti, these phases are thermally stable and retain the high hardness values at elevated temperatures up to 400ºC.

Keywords: nanocrystalline aluminum alloys, mechanical alloying, hardness, elevated temperatures

Procedia PDF Downloads 454
6053 Synthesis and Characterization of Nanocellulose Based Bio-Composites

Authors: Krishnakant Bhole, Neerakallu D. Shivakumar, Shakti Singh Chauhan, Sanketh Tonannavar, Rajath S

Abstract:

Synthesis of natural-based composite materials is state of the art. This work discusses the preparation and characterization of cellulose nanofibers (CNF) extracted from the bamboo pulp using TEMPO-oxidization and high-pressure homogenization methods. Bio-composites are prepared using synthesized CNF and bamboo particles. Nanocellulose prepared is characterized using SEM and XRD for morphological and crystallinity analysis, and the formation of fibers at the nano level is ensured. Composite specimens are fabricated using these natural sources and subjected to tensile and flexural tests to characterize the mechanical properties such as modulus of elasticity (MOE), modulus of rupture (MOR), and interfacial strength. Further, synthesized nanocellulose is used as a binding agent to prepare particleboards using various natural sources like bamboo, areca nut, and banana in the form of fibers. From the results, it can be inferred that nanocellulose prepared from bamboo pulp acts as a binding agent for making bio-composites. Hence, the concept of using matrix and reinforcement derived from natural sources can be used to prepare green composites that are highly degradable.

Keywords: nanocellulose, biocomposite, CNF, bamboo

Procedia PDF Downloads 87
6052 Traumatic Osteoarthritis Induces Mechanical Hyperalgesia through IL-1β/TNF-α-Mediated Upregulation of the Sema4D Gene Expression

Authors: Hsiao-Chien Tsai, Yu-Pin Chen, Ruei-Ming Chen

Abstract:

Introduction: Osteoarthritis (OA) is characterized by joint destruction and causes chronic disability. One of the prominent symptoms is pain. Alleviating the pain is necessary and urgent for the therapy of OA patients. However, currently, understanding the mechanisms that drive OA-induced pain remains challenging, which hampers the optimistic management of pain in OA patients. Semaphorin 4D (Sema4D) participates in axon guidance pathway and bone remodeling, thus, may play a role in the regulation of pain in OA. In this study, we have established a rat model of OA to find out the mechanisms of OA-induced pain and to deliberate the roles of Sema4D. Methods: Behavioral changes and the pro-inflammatory cytokines (IL-1β, TNF-α, and IL-17) associated with pain were measured during the development of OA. Sema4D expression in cartilage and synovial membrane at 1, 4, and 12 weeks after inducing OA was analyzed. To assess if Sema4D is related to the neurogenesis in OA as an axon repellant, we analyzed the expression of PGP9.5 as well. Results: Synovitis and cartilage degradation were evident histologically during the development of OA. Mechanical hyperalgesia was most severe at week 1, then persisted thereafter. It was associated with stress coping strategies. Similar to the pain behavioral results, levels of IL-1β and TNF-α in synovial lavage fluid were significantly elevated in the OA group at weeks 1 and 4, respectively. Sema4D expression in cartilage and the synovial membrane was also enhanced in the OA group and was correlated with pain and pro-inflammatory cytokines. The marker of neurogenesis, PGP9.5, was also enhanced during the development of OA. Discussion: OA induced mechanical hyperalgesia, which might be through upregulating IL-1β/TNF-α-mediated Sema4D expressions. If anti-Sema4D treatment could reduce OA-induced mechanical hyperalgesia and prevent the subsequent progression of OA needs to be further investigated. Significance: OA can induce mechanical hyperalgesia through upregulation of IL-1β/TNF-α-mediated Sema4D and PGP9.5 expressions. And the upregulation of Sema4D may indicate the severity or active status of OA and OA-induced pain.

Keywords: traumatic osteoarthritis, mechanical hyperalgesia, Sema4D, inflammatory cytokines

Procedia PDF Downloads 78
6051 Heat and Radiation Influence on Granite-Galena Concrete for Nuclear Shielding Applications

Authors: Mohamed A. Safan, Walid Khalil, Amro Fathalla

Abstract:

Advances in concrete technology and implementation of new materials made it possible to produce special types of concrete for different structural applications. In this research, granite and galena were incorporated in different concrete mixes to obtain high performance concrete for shielding against gamma radiations in nuclear facilities. Chemically prepared industrial galena was used to replace different volume fractions of the fine aggregate. The test specimens were exposed to different conditions of heating cycles and irradiation. The exposed specimens and counterpart unexposed specimens were tested to evaluate the density, the compressive strength and the attenuation coefficient. The proposed mixes incorporating galena showed better performance in terms of compressive strength and gamma attenuation capacity, especially after the exposure to different heating cycles.

Keywords: concrete, galena, shielding, attenuation, radiation

Procedia PDF Downloads 460
6050 Laser Additive Manufacturing of Carbon Nanotube-Reinforced Polyamide 12 Composites

Authors: Kun Zhou

Abstract:

Additive manufacturing has emerged as a disruptive technology that is capable of manufacturing products with complex geometries through an accumulation of material feedstock in a layer-by-layer fashion. Laser additive manufacturing such as selective laser sintering has excellent printing resolution, high printing speed and robust part strength, and has led to a widespread adoption in the aerospace, automotive and biomedical industries. This talk highlights and discusses the recent work we have undertaken in the development of carbon nanotube-reinforced polyamide 12 (CNT/PA12) composites printed using laser additive manufacturing. Numerical modelling studies have been conducted to simulate various processes within laser additive manufacturing of CNT/PA12 composites, and extensive experimental work has been carried out to investigate the mechanical and functional properties of the printed parts. The results from these studies grant a deeper understanding of the intricate mechanisms occurring within each process and enables an accurate optimization of process parameters for the CNT/PA12 and other polymer composites.

Keywords: CNT/PA12 composites, laser additive manufacturing, process parameter optimization, numerical modeling

Procedia PDF Downloads 153
6049 Experimental Investigation on the Mechanical Behaviour of Three-Leaf Masonry Walls under In-Plane Loading

Authors: Osama Amer, Yaser Abdel-Aty, Mohamed Abd El Hady

Abstract:

The present paper illustrates an experimental approach to provide understanding of the mechanical behavior and failure mechanisms of different typologies of unreinforced three-leaf masonry walls of historical Islamic architectural heritage in Egypt. The main objective of this study is to investigate the propagation of possible cracking, ultimate load, deformations and failure mechanisms. Experimental data on interface-shear and compression tests on large scale three-leaf masonry wallets are provided. The wallets were built basically of Egyptian limestone and modified lime mortar. External wallets were built of stone blocks while the inner leaf was built of rubble limestone. Different loading conditions and dimensions of core layer for two types of collar joints (with and without shear keys) are considered in the tests. Mechanical properties of the constituent materials of masonry were tested and a database of characteristic properties was created. The results of the experiments will highlight the properties, force-displacement curves, stress distribution of multiple-leaf masonry walls contributing to the derivation of rational design rules and validation of numerical models.

Keywords: masonry, three-leaf walls, mechanical behavior, testing, architectural heritage

Procedia PDF Downloads 293
6048 Production and Investigation of Ceramic-Metal Composite from Electroless Ni Plated AlN and Al Powders

Authors: Ahmet Yönetken

Abstract:

Al metal matrix composites reinforced with AlN have been fabricated by Tube furnace sintering at various temperatures. A uniform nickel layer on Al(%1AlN)%19Ni, Al(%2AlN)%18Ni, Al(%3AlN)%17Ni, Al(%4AlN)%16Ni, Al(%5AlN)%15Ni powders were deposited prior to sintering using electroless plating technique, allowing closer surface contact than can be achieved using conventional methods such as mechanical alloying. A composite consisting of quaternary additions, a ceramic phase, AlN, within a matrix of Al, AlN, Ni has been prepared at the temperature range between 550°C and 650°C under Ar shroud. X-Ray diffraction, SEM (Scanning Electron Microscope) density, and hardness measurements were employed to characterize the properties of the specimens. Experimental results carried out for 650°C suggest that the best properties as comprehension strength σmax and hardness 681.51(HV) were obtained at 650°C, and the tube furnace sintering of electroless Al plated (%5AlN)%15Ni powders is a promising technique to produce ceramic reinforced Al (%5AlN)%15Ni composites.

Keywords: electroless nickel plating, ceramic-metal composites, powder metallurgy, sintering

Procedia PDF Downloads 237
6047 Environmentally Friendly Palm Oil-Based Polymeric Plasticiser for Poly (Vinyl Chloride)

Authors: Nur Zahidah Rozaki, Desmond Ang Teck Chye

Abstract:

Environment-friendly polymeric plasticisers for poly(vinyl chloride), PVC were synthesised using palm oil as the main raw material. The synthesis comprised of 2 steps: (i) transesterification of palm oil, followed by (ii) polycondensation between the products of transesterification with diacids. The synthesis involves four different formulations to produce plasticisers with different average molecular weight. Chemical structures of the plasticiser were studied using FTIR (Fourier-Transformed Infra-Red) and 1H-NMR (Proton-Nuclear Magnetic Resonance).The molecular weights of these palm oil-based polymers were obtained using GPC (Gel Permeation Chromatography). PVC was plasticised with the polymeric plasticisers through solvent casting technique using tetrahydrofuran, THF as the mutual solvent. Some of the tests conducted to evaluate the effectiveness of the plasticiser in the PVC film including thermal stability test using thermogravimetric analyser (TGA), differential scanning calorimetry (DSC) analysis to determine the glass transition temperature, Tg, and mechanical test to determine tensile strength, modulus and elongation at break of plasticised PVC using standard test method ASTM D882.

Keywords: alkyd, palm oil, plasticiser, pvc

Procedia PDF Downloads 288
6046 Foamability and Foam Stability of Gelatine-Sodium Dodecyl Sulfate Solutions

Authors: Virginia Martin Torrejon, Song Hang

Abstract:

Gelatine foams are widely explored materials due to their biodegradability, biocompatibility, and availability. They exhibit outstanding properties and are currently subject to increasing scientific research due to their potential use in different applications, such as biocompatible cellular materials for biomedical products or biofoams as an alternative to fossil-fuel-derived packaging. Gelatine is a highly surface-active polymer, and its concentrated solutions usually do not require surfactants to achieve low surface tension. Still, anionic surfactants like sodium dodecyl sulfate (SDS) strongly interact with gelatine, impacting its viscosity and rheological properties and, in turn, their foaming behaviour. Foaming behaviour is a key parameter for cellular solids produced by mechanical foaming as it has a significant effect on the processing and properties of cellular materials. Foamability mainly impacts the density and the mechanical properties of the foams, while foam stability is crucial to achieving foams with low shrinkage and desirable pore morphology. This work aimed to investigate the influence of SDS on the foaming behaviour of concentrated gelatine foams by using a dynamic foam analyser. The study of maximum foam height created, foam formation behaviour, drainage behaviour, and foam structure with regard to bubble size and distribution were carried out in 10 wt% gelatine solutions prepared at different SDS/gelatine concentration ratios. Comparative rheological and viscometry measurements provided a good correlation with the data from the dynamic foam analyser measurements. SDS incorporation at optimum dosages and gelatine gelation led to highly stable foams at high expansion ratios. The viscosity increase of the hydrogel solution at SDS content increased was a key parameter for foam stabilization. In addition, the impact of SDS content on gelling time and gel strength also considerably impacted the foams' stability and pore structure.

Keywords: dynamic foam analyser, gelatine foams stability and foamability, gelatine-surfactant foams, gelatine-SDS rheology, gelatine-SDS viscosity

Procedia PDF Downloads 153
6045 Thermoelastic Analysis of a Tube Subjected to Internal Heating with Temperature Dependent Material Properties

Authors: Yasemin Kaya, Ahmet N. Eraslan

Abstract:

In this study, the thermoelastic behavior of a long tube is studied by taking into account the temperature dependency of all mechanical and thermal properties. As the tube is heated slowly, an uncoupled solution procedure is adopted under free and radially constrained boundary conditions. The nonlinear heat conduction equation is solved by a finite element collocation procedure and the corresponding distributions of stress and strain are computed by shooting iterations. The computational model is verified in comparison to the analytical solution by shutting down the temperature dependency of physical properties. In the analysis, experimental data available in the literature is used to describe the coefficient of thermal expansion $\alpha$, the thermal conductivity $k$, the modulus of rigidity $G$, the yield strength $\sigma_{0}$, and the Poisson's ratio $\nu$ of Nickel. Results of the analysis are presented in comparison to those having constant physical properties. As a result of the calculations, the temperature dependency of the material properties should be taken into account at higher temperature ranges.

Keywords: thermoelasticity, long tube, temperature-dependent properties, internal heating

Procedia PDF Downloads 613