Search results for: competitive capabilities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2434

Search results for: competitive capabilities

184 Attention Treatment for People With Aphasia: Language-Specific vs. Domain-General Neurofeedback

Authors: Yael Neumann

Abstract:

Attention deficits are common in people with aphasia (PWA). Two treatment approaches address these deficits: domain-general methods like Play Attention, which focus on cognitive functioning, and domain-specific methods like Language-Specific Attention Treatment (L-SAT), which use linguistically based tasks. Research indicates that L-SAT can improve both attentional deficits and functional language skills, while Play Attention has shown success in enhancing attentional capabilities among school-aged children with attention issues compared to standard cognitive training. This study employed a randomized controlled cross-over single-subject design to evaluate the effectiveness of these two attention treatments over 25 weeks. Four PWA participated, undergoing a battery of eight standardized tests measuring language and cognitive skills. The treatments were counterbalanced. Play Attention used EEG sensors to detect brainwaves, enabling participants to manipulate items in a computer game while learning to suppress theta activity and increase beta activity. An algorithm tracked changes in the theta-to-beta ratio, allowing points to be earned during the games. L-SAT, on the other hand, involved hierarchical language tasks that increased in complexity, requiring greater attention from participants. Results showed that for language tests, Participant 1 (moderate aphasia) aligned with existing literature, showing L-SAT was more effective than Play Attention. However, Participants 2 (very severe) and 3 and 4 (mild) did not conform to this pattern; both treatments yielded similar outcomes. This may be due to the extremes of aphasia severity: the very severe participant faced significant overall deficits, making both approaches equally challenging, while the mild participant performed well initially, leaving limited room for improvement. In attention tests, Participants 1 and 4 exhibited results consistent with prior research, indicating Play Attention was superior to L-SAT. Participant 2, however, showed no significant improvement with either program, although L-SAT had a slight edge on the Visual Elevator task, measuring switching and mental flexibility. This advantage was not sustained at the one-month follow-up, likely due to the participant’s struggles with complex attention tasks. Participant 3's results similarly did not align with prior studies, revealing no difference between the two treatments, possibly due to the challenging nature of the attention measures used. Regarding participation and ecological tests, all participants showed similar mild improvements with both treatments. This limited progress could stem from the short study duration, with only five weeks allocated for each treatment, which may not have been enough time to achieve meaningful changes affecting life participation. In conclusion, the performance of participants appeared influenced by their level of aphasia severity. The moderate PWA’s results were most aligned with existing literature, indicating better attention improvement from the domain-general approach (Play Attention) and better language improvement from the domain-specific approach (L-SAT).

Keywords: attention, language, cognitive rehabilitation, neurofeedback

Procedia PDF Downloads 23
183 Business Intelligent to a Decision Support Tool for Green Entrepreneurship: Meso and Macro Regions

Authors: Anishur Rahman, Maria Areias, Diogo Simões, Ana Figeuiredo, Filipa Figueiredo, João Nunes

Abstract:

The circular economy (CE) has gained increased awareness among academics, businesses, and decision-makers as it stimulates resource circularity in the production and consumption systems. A large epistemological study has explored the principles of CE, but scant attention eagerly focused on analysing how CE is evaluated, consented to, and enforced using economic metabolism data and business intelligent framework. Economic metabolism involves the ongoing exchange of materials and energy within and across socio-economic systems and requires the assessment of vast amounts of data to provide quantitative analysis related to effective resource management. Limited concern, the present work has focused on the regional flows pilot region from Portugal. By addressing this gap, this study aims to promote eco-innovation and sustainability in the regions of Intermunicipal Communities Região de Coimbra, Viseu Dão Lafões and Beiras e Serra da Estrela, using this data to find precise synergies in terms of material flows and give companies a competitive advantage in form of valuable waste destinations, access to new resources and new markets, cost reduction and risk sharing benefits. In our work, emphasis on applying artificial intelligence (AI) and, more specifically, on implementing state-of-the-art deep learning algorithms is placed, contributing to construction a business intelligent approach. With the emergence of new approaches generally highlighted under the sub-heading of AI and machine learning (ML), the methods for statistical analysis of complex and uncertain production systems are facing significant changes. Therefore, various definitions of AI and its differences from traditional statistics are presented, and furthermore, ML is introduced to identify its place in data science and the differences in topics such as big data analytics and in production problems that using AI and ML are identified. A lifecycle-based approach is then taken to analyse the use of different methods in each phase to identify the most useful technologies and unifying attributes of AI in manufacturing. Most of macroeconomic metabolisms models are mainly direct to contexts of large metropolis, neglecting rural territories, so within this project, a dynamic decision support model coupled with artificial intelligence tools and information platforms will be developed, focused on the reality of these transition zones between the rural and urban. Thus, a real decision support tool is under development, which will surpass the scientific developments carried out to date and will allow to overcome imitations related to the availability and reliability of data.

Keywords: circular economy, artificial intelligence, economic metabolisms, machine learning

Procedia PDF Downloads 77
182 Cyber-Med: Practical Detection Methodology of Cyber-Attacks Aimed at Medical Devices Eco-Systems

Authors: Nir Nissim, Erez Shalom, Tomer Lancewiki, Yuval Elovici, Yuval Shahar

Abstract:

Background: A Medical Device (MD) is an instrument, machine, implant, or similar device that includes a component intended for the purpose of the diagnosis, cure, treatment, or prevention of disease in humans or animals. Medical devices play increasingly important roles in health services eco-systems, including: (1) Patient Diagnostics and Monitoring; Medical Treatment and Surgery; and Patient Life Support Devices and Stabilizers. MDs are part of the medical device eco-system and are connected to the network, sending vital information to the internal medical information systems of medical centers that manage this data. Wireless components (e.g. Wi-Fi) are often embedded within medical devices, enabling doctors and technicians to control and configure them remotely. All these functionalities, roles, and uses of MDs make them attractive targets of cyber-attacks launched for many malicious goals; this trend is likely to significantly increase over the next several years, with increased awareness regarding MD vulnerabilities, the enhancement of potential attackers’ skills, and expanded use of medical devices. Significance: We propose to develop and implement Cyber-Med, a unique collaborative project of Ben-Gurion University of the Negev and the Clalit Health Services Health Maintenance Organization. Cyber-Med focuses on the development of a comprehensive detection framework that relies on a critical attack repository that we aim to create. Cyber-Med will allow researchers and companies to better understand the vulnerabilities and attacks associated with medical devices as well as providing a comprehensive platform for developing detection solutions. Methodology: The Cyber-Med detection framework will consist of two independent, but complementary detection approaches: one for known attacks, and the other for unknown attacks. These modules incorporate novel ideas and algorithms inspired by our team's domains of expertise, including cyber security, biomedical informatics, and advanced machine learning, and temporal data mining techniques. The establishment and maintenance of Cyber-Med’s up-to-date attack repository will strengthen the capabilities of Cyber-Med’s detection framework. Major Findings: Based on our initial survey, we have already found more than 15 types of vulnerabilities and possible attacks aimed at MDs and their eco-system. Many of these attacks target individual patients who use devices such pacemakers and insulin pumps. In addition, such attacks are also aimed at MDs that are widely used by medical centers such as MRIs, CTs, and dialysis engines; the information systems that store patient information; protocols such as DICOM; standards such as HL7; and medical information systems such as PACS. However, current detection tools, techniques, and solutions generally fail to detect both the known and unknown attacks launched against MDs. Very little research has been conducted in order to protect these devices from cyber-attacks, since most of the development and engineering efforts are aimed at the devices’ core medical functionality, the contribution to patients’ healthcare, and the business aspects associated with the medical device.

Keywords: medical device, cyber security, attack, detection, machine learning

Procedia PDF Downloads 361
181 ExactData Smart Tool For Marketing Analysis

Authors: Aleksandra Jonas, Aleksandra Gronowska, Maciej Ścigacz, Szymon Jadczak

Abstract:

Exact Data is a smart tool which helps with meaningful marketing content creation. It helps marketers achieve this by analyzing the text of an advertisement before and after its publication on social media sites like Facebook or Instagram. In our research we focus on four areas of natural language processing (NLP): grammar correction, sentiment analysis, irony detection and advertisement interpretation. Our research has identified a considerable lack of NLP tools for the Polish language, which specifically aid online marketers. In light of this, our research team has set out to create a robust and versatile NLP tool for the Polish language. The primary objective of our research is to develop a tool that can perform a range of language processing tasks in this language, such as sentiment analysis, text classification, text correction and text interpretation. Our team has been working diligently to create a tool that is accurate, reliable, and adaptable to the specific linguistic features of Polish, and that can provide valuable insights for a wide range of marketers needs. In addition to the Polish language version, we are also developing an English version of the tool, which will enable us to expand the reach and impact of our research to a wider audience. Another area of focus in our research involves tackling the challenge of the limited availability of linguistically diverse corpora for non-English languages, which presents a significant barrier in the development of NLP applications. One approach we have been pursuing is the translation of existing English corpora, which would enable us to use the wealth of linguistic resources available in English for other languages. Furthermore, we are looking into other methods, such as gathering language samples from social media platforms. By analyzing the language used in social media posts, we can collect a wide range of data that reflects the unique linguistic characteristics of specific regions and communities, which can then be used to enhance the accuracy and performance of NLP algorithms for non-English languages. In doing so, we hope to broaden the scope and capabilities of NLP applications. Our research focuses on several key NLP techniques including sentiment analysis, text classification, text interpretation and text correction. To ensure that we can achieve the best possible performance for these techniques, we are evaluating and comparing different approaches and strategies for implementing them. We are exploring a range of different methods, including transformers and convolutional neural networks (CNNs), to determine which ones are most effective for different types of NLP tasks. By analyzing the strengths and weaknesses of each approach, we can identify the most effective techniques for specific use cases, and further enhance the performance of our tool. Our research aims to create a tool, which can provide a comprehensive analysis of advertising effectiveness, allowing marketers to identify areas for improvement and optimize their advertising strategies. The results of this study suggest that a smart tool for advertisement analysis can provide valuable insights for businesses seeking to create effective advertising campaigns.

Keywords: NLP, AI, IT, language, marketing, analysis

Procedia PDF Downloads 91
180 Nurse Participation for the Economical Effectiveness in Medical Organizations

Authors: Alua Masalimova, Dameli Sulubecova, Talgat Isaev, Raushan Magzumova

Abstract:

The usual relation to nurses of heads of medical organizations in Kazakhstan is to use them only for per performing medical manipulations, but new economic conditions require the introduction of nursing innovations. There is an increasing need for managers of hospital departments and regions of ambulatory clinics to ensure comfortable conditions for doctors, nurses, aides, as well as monitoring marketing technology (the needs and satisfaction of staff work, the patient satisfaction of the department). It is going to the past the nursing activities as physician assistant performing his prescriptions passively. We are suggesting a model for the developing the head nurse as the manager on the example of Blood Service. We have studied in the scientific-production center of blood transfusion head nurses by the standard method of interviewing for involvement in coordinating the flow of information, promoting the competitiveness of the department. Results: the average age of the respondents 43,1 ± 9,8, female - 100%; manager in the Organization – 9,3 ± 10,3 years. Received positive responses to the knowledge of the nearest offices in providing similar medical service - 14,2%. The cost of similar medical services in other competitive organizations did not know 100%, did a study of employee satisfaction Division labour-85,7% answered negatively, the satisfaction donors work staff studied in 50.0% of cases involved in attracting paid Services Division showed a 28.5% of the respondent. Participation in management decisions medical organization: strategic planning - 14,2%, forming analysis report for the year – 14,2%, recruitment-30.0%, equipment-14.2%. Participation in the social and technical designing workplaces Division staff showed 85,0% of senior nurses. Participate in the cohesion of the staff of the Division method of the team used the 10.0% of respondents. Further, we have studied the behavioral competencies for senior sisters: customer focus – 20,0% of respondents have attended, the ability to work in a team – 40,0%. Personal qualities senior nurses were apparent: sociability – 80,0%, the ability to manage information – 40,0%, to make their own decisions - 14,2%, 28,5% creativity, the desire to improve their professionalism – 50,0%. Thus, the modern market conditions dictate this organization, which works for the rights of economic management; include the competence of the post of the senior nurse knowledge and skills of Marketing Management Department. Skills to analyses the information collected and use of management offers superior medical leadership organization. The medical organization in the recruitment of the senior nurse offices take into account personal qualities: flexibility, fluency of thinking, communication skills and ability to work in a team. As well as leadership qualities, ambition, high emotional and social intelligence, that will bring out the medical unit on competitiveness within the country and abroad.

Keywords: blood service, head nurse, manager, skills

Procedia PDF Downloads 245
179 Geographic Information Systems and a Breath of Opportunities for Supply Chain Management: Results from a Systematic Literature Review

Authors: Anastasia Tsakiridi

Abstract:

Geographic information systems (GIS) have been utilized in numerous spatial problems, such as site research, land suitability, and demographic analysis. Besides, GIS has been applied in scientific fields like geography, health, and economics. In business studies, GIS has been used to provide insights and spatial perspectives in demographic trends, spending indicators, and network analysis. To date, the information regarding the available usages of GIS in supply chain management (SCM) and how these analyses can benefit businesses is limited. A systematic literature review (SLR) of the last 5-year peer-reviewed academic literature was conducted, aiming to explore the existing usages of GIS in SCM. The searches were performed in 3 databases (Web of Science, ProQuest, and Business Source Premier) and reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. The analysis resulted in 79 papers. The results indicate that the existing GIS applications used in SCM were in the following domains: a) network/ transportation analysis (in 53 of the papers), b) location – allocation site search/ selection (multiple-criteria decision analysis) (in 45 papers), c) spatial analysis (demographic or physical) (in 34 papers), d) combination of GIS and supply chain/network optimization tools (in 32 papers), and e) visualization/ monitoring or building information modeling applications (in 8 papers). An additional categorization of the literature was conducted by examining the usage of GIS in the supply chain (SC) by the business sectors, as indicated by the volume of the papers. The results showed that GIS is mainly being applied in the SC of the biomass biofuel/wood industry (33 papers). Other industries that are currently utilizing GIS in their SC were the logistics industry (22 papers), the humanitarian/emergency/health care sector (10 papers), the food/agro-industry sector (5 papers), the petroleum/ coal/ shale gas sector (3 papers), the faecal sludge sector (2 papers), the recycle and product footprint industry (2 papers), and the construction sector (2 papers). The results were also presented by the geography of the included studies and the GIS software used to provide critical business insights and suggestions for future research. The results showed that research case studies of GIS in SCM were conducted in 26 countries (mainly in the USA) and that the most prominent GIS software provider was the Environmental Systems Research Institute’s ArcGIS (in 51 of the papers). This study is a systematic literature review of the usage of GIS in SCM. The results showed that the GIS capabilities could offer substantial benefits in SCM decision-making by providing key insights to cost minimization, supplier selection, facility location, SC network configuration, and asset management. However, as presented in the results, only eight industries/sectors are currently using GIS in their SCM activities. These findings may offer essential tools to SC managers who seek to optimize the SC activities and/or minimize logistic costs and to consultants and business owners that want to make strategic SC decisions. Furthermore, the findings may be of interest to researchers aiming to investigate unexplored research areas where GIS may improve SCM.

Keywords: supply chain management, logistics, systematic literature review, GIS

Procedia PDF Downloads 145
178 Electrical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: electrical disaggregation, DTW, general appliance modeling, event detection

Procedia PDF Downloads 82
177 Analysis of Taxonomic Compositions, Metabolic Pathways and Antibiotic Resistance Genes in Fish Gut Microbiome by Shotgun Metagenomics

Authors: Anuj Tyagi, Balwinder Singh, Naveen Kumar B. T., Niraj K. Singh

Abstract:

Characterization of diverse microbial communities in specific environment plays a crucial role in the better understanding of their functional relationship with the ecosystem. It is now well established that gut microbiome of fish is not the simple replication of microbiota of surrounding local habitat, and extensive species, dietary, physiological and metabolic variations in fishes may have a significant impact on its composition. Moreover, overuse of antibiotics in human, veterinary and aquaculture medicine has led to rapid emergence and propagation of antibiotic resistance genes (ARGs) in the aquatic environment. Microbial communities harboring specific ARGs not only get a preferential edge during selective antibiotic exposure but also possess the significant risk of ARGs transfer to other non-resistance bacteria within the confined environments. This phenomenon may lead to the emergence of habitat-specific microbial resistomes and subsequent emergence of virulent antibiotic-resistant pathogens with severe fish and consumer health consequences. In this study, gut microbiota of freshwater carp (Labeo rohita) was investigated by shotgun metagenomics to understand its taxonomic composition and functional capabilities. Metagenomic DNA, extracted from the fish gut, was subjected to sequencing on Illumina NextSeq to generate paired-end (PE) 2 x 150 bp sequencing reads. After the QC of raw sequencing data by Trimmomatic, taxonomic analysis by Kraken2 taxonomic sequence classification system revealed the presence of 36 phyla, 326 families and 985 genera in the fish gut microbiome. At phylum level, Proteobacteria accounted for more than three-fourths of total bacterial populations followed by Actinobacteria (14%) and Cyanobacteria (3%). Commonly used probiotic bacteria (Bacillus, Lactobacillus, Streptococcus, and Lactococcus) were found to be very less prevalent in fish gut. After sequencing data assembly by MEGAHIT v1.1.2 assembler and PROKKA automated analysis pipeline, pathway analysis revealed the presence of 1,608 Metacyc pathways in the fish gut microbiome. Biosynthesis pathways were found to be the most dominant (51%) followed by degradation (39%), energy-metabolism (4%) and fermentation (2%). Almost one-third (33%) of biosynthesis pathways were involved in the synthesis of secondary metabolites. Metabolic pathways for the biosynthesis of 35 antibiotic types were also present, and these accounted for 5% of overall metabolic pathways in the fish gut microbiome. Fifty-one different types of antibiotic resistance genes (ARGs) belonging to 15 antimicrobial resistance (AMR) gene families and conferring resistance against 24 antibiotic types were detected in fish gut. More than 90% ARGs in fish gut microbiome were against beta-lactams (penicillins, cephalosporins, penems, and monobactams). Resistance against tetracycline, macrolides, fluoroquinolones, and phenicols ranged from 0.7% to 1.3%. Some of the ARGs for multi-drug resistance were also found to be located on sequences of plasmid origin. The presence of pathogenic bacteria and ARGs on plasmid sequences suggested the potential risk due to horizontal gene transfer in the confined gut environment.

Keywords: antibiotic resistance, fish gut, metabolic pathways, microbial diversity

Procedia PDF Downloads 145
176 Analysis of Lesotho Wool Production and Quality Trends 2008-2018

Authors: Papali Maqalika

Abstract:

Lesotho farmers produce significant quantities of Merino wool of a quality competitive on the global market and make a substantial impact on the economy of Lesotho. However, even with the economic contribution, the production and quality information and trends of this fibre has been recognised nor documented. This is a sombre shortcoming as Lesotho wool is unknown on international markets. The situation is worsened by the fact that Lesotho wool is auction together with South African wool, trading and benchmarking Lesotho wool are difficult not to mention attempts to advance its production and quality. Based on the information above, available data on Lesotho wool for 10 years were collected and analysed for trends to used in benchmarking where applicable. The fibre properties analysed include fibre diameter (fineness), vegetable matter and yield, application and price. These were selected because they are fundamental in determining fibre quality and price. Production of wool in Lesotho has increased slightly over the ten years covered by this study. It also became apparent that production and quality trends of Lesotho wool are greatly influenced by the farming practices, breed of sheep and climatic conditions. Greater adoption of the merino sheep breed, sheds/barns and sheep coats are suggested as ways to reduce mortality rate (due to extremely cold temperatures), to reduce the vegetable matter on the fibre thus improving the quality and increase yield per sheep and production as a whole. Some farming practices such as the lack of barns, supplementary feeding and veterinary care present constraints in wool production. The districts in the Highlands region were found to have the highest production of mostly wool, this being ascribed to better pastures, climatic, social and other conditions conducive to wool production. The production of Lesotho wool and its quality can be improved further, possibly because of the interventions the Ministry of Agriculture introduced through the Small Agricultural and Development Project (SADP) and other appropriate initiatives by the National Wool and Mohair Growers Association (NWMGA). The challenge however, remains the lack of direct involvement of the wool growers (farmers) in decisions making and policy development, this potentially influences and may lead to the reluctance to adopt the strategies. In some cases, the wool growers do not receive the benefits associated with the interventions immediately. Based on these discoveries; it is recommended that the relevant educators and researchers in wool and textile science, as well as the local wool farmers in Lesotho, be represented in policy and other decision making forums relating to these interventions. In this way, educational campaigns and training workshops will be demand driven with a better chance of adoption and success. This is because the direct beneficiaries will have been involved at inception and they will have a sense of ownership as well as intent to see them through successfully.

Keywords: lesotho wool, wool quality, wool production, lesotho economy, global market, apparel wool, database, textile science, exports, animal farming practices, intimate apparel, interventions

Procedia PDF Downloads 103
175 The Origins of Representations: Cognitive and Brain Development

Authors: Athanasios Raftopoulos

Abstract:

In this paper, an attempt is made to explain the evolution or development of human’s representational arsenal from its humble beginnings to its modern abstract symbols. Representations are physical entities that represent something else. To represent a thing (in a general sense of “thing”) means to use in the mind or in an external medium a sign that stands for it. The sign can be used as a proxy of the represented thing when the thing is absent. Representations come in many varieties, from signs that perceptually resemble their representative to abstract symbols that are related to their representata through conventions. Relying the distinction among indices, icons, and symbols, it is explained how symbolic representations gradually emerged from indices and icons. To understand the development or evolution of our representational arsenal, the development of the cognitive capacities that enabled the gradual emergence of representations of increasing complexity and expressive capability should be examined. The examination of these factors should rely on a careful assessment of the available empirical neuroscientific and paleo-anthropological evidence. These pieces of evidence should be synthesized to produce arguments whose conclusions provide clues concerning the developmental process of our representational capabilities. The analysis of the empirical findings in this paper shows that Homo Erectus was able to use both icons and symbols. Icons were used as external representations, while symbols were used in language. The first step in the emergence of representations is that a sensory-motor purely causal schema involved in indices is decoupled from its normal causal sensory-motor functions and serves as a representation of the object that initially called it into play. Sensory-motor schemes are tied to specific contexts of the organism-environment interactions and are activated only within these contexts. For a representation of an object to be possible, this scheme must be de-contextualized so that the same object can be represented in different contexts; a decoupled schema loses its direct ties to reality and becomes mental content. The analysis suggests that symbols emerged due to selection pressures of the social environment. The need to establish and maintain social relationships in ever-enlarging groups that would benefit the group was a sufficient environmental pressure to lead to the appearance of the symbolic capacity. Symbols could serve this need because they can express abstract relationships, such as marriage or monogamy. Icons, by being firmly attached to what can be observed, could not go beyond surface properties to express abstract relations. The cognitive capacities that are required for having iconic and then symbolic representations were present in Homo Erectus, which had a language that started without syntactic rules but was structured so as to mirror the structure of the world. This language became increasingly complex, and grammatical rules started to appear to allow for the construction of more complex expressions required to keep up with the increasing complexity of social niches. This created evolutionary pressures that eventually led to increasing cranial size and restructuring of the brain that allowed more complex representational systems to emerge.

Keywords: mental representations, iconic representations, symbols, human evolution

Procedia PDF Downloads 63
174 Platform Virtual for Joint Amplitude Measurement Based in MEMS

Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana, Andres F. Ruiz-Olaya, Juan C. Alvarez

Abstract:

Motion capture (MC) is the construction of a precise and accurate digital representation of a real motion. Systems have been used in the last years in a wide range of applications, from films special effects and animation, interactive entertainment, medicine, to high competitive sport where a maximum performance and low injury risk during training and competition is seeking. This paper presents an inertial and magnetic sensor based technological platform, intended for particular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. Our platform particularities offer high social impact possibilities by making telerehabilitation accessible to large population sectors in marginal socio-economic sector, especially in underdeveloped countries that in opposition to developed countries specialist are scarce, and high technology is not available or inexistent. This platform integrates high-resolution low-cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a web or other communication networks available diagnosis service. The amplitude information is generated by sensors then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value. Amplitude measurements of the platform virtual system presented a good fit to its respective reference system. Analyzing the robotic arm results (estimation error RMSE 1=2.12° and estimation error RMSE 2=2.28°), it can be observed that during arm motion in any sense, the estimation error is negligible; in fact, error appears only during sense inversion what can easily be explained by the nature of inertial sensors and its relation to acceleration. Inertial sensors present a time constant delay which acts as a first order filter attenuating signals at large acceleration values as is the case for a change of sense in motion. It can be seen a damped response of platform virtual in other images where error analysis show that at maximum amplitude an underestimation of amplitude is present whereas at minimum amplitude estimations an overestimation of amplitude is observed. This work presents and describes the platform virtual as a motion capture system suitable for telerehabilitation with the cost - quality and precision - accessibility relations optimized. These particular characteristics achieved by efficiently using the state of the art of accessible generic technology in sensors and hardware, and adequate software for capture, transmission analysis and visualization, provides the capacity to offer good telerehabilitation services, reaching large more or less marginal populations where technologies and specialists are not available but accessible with basic communication networks.

Keywords: inertial sensors, joint amplitude measurement, MEMS, telerehabilitation

Procedia PDF Downloads 262
173 Empirical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;

Procedia PDF Downloads 84
172 Using Business Interactive Games to Improve Management Skills

Authors: Nuno Biga

Abstract:

Continuous processes’ improvement is a permanent challenge for managers of any organization. Lean management means that efficiency gains can be obtained through a systematic framework able to explore synergies between processes, eliminate waste of time, and other resources. Leaderships in organizations determine the efficiency of the teams through their influence on collaborators, their motivation, and consolidation of ownership (group) feeling. The “organization health” depends on the leadership style, which is directly influenced by the intrinsic characteristics of each personality and leadership ability (leadership competencies). Therefore, it’s important that managers can correct in advance any deviation from expected leadership exercises. Top management teams must assume themselves as regulatory agents of leadership within the organization, ensuring monitoring of actions and the alignment of managers in accordance with the humanist standards anchored in a visible Code of Ethics and Conduct. This article is built around an innovative model of “Business Interactive Games” (BI GAMES) that simulates a real-life management environment. It shows that the strategic management of operations depends on a complex set of endogenous and exogenous variables to the intervening agents that require specific skills and a set of critical processes to monitor. BI GAMES are designed for each management reality and have already been applied successfully in several contexts over the last five years comprising the educational and enterprise ones. Results from these experiences are used to demonstrate how serious games in working living labs contributed to improve the organizational environment by focusing on the evaluation of players’ (agents’) skills, empower its capabilities, and the critical factors that create value in each context. The implementation of the BI GAMES simulator highlights that leadership skills are decisive for the performance of teams, regardless of the sector of activity and the specificities of each organization whose operation is intended to simulate. The players in the BI GAMES can be managers or employees of different roles in the organization or students in the learning context. They interact with each other and are asked to decide/make choices in the presence of several options for the follow-up operation, for example, when the costs and benefits are not fully known but depend on the actions of external parties (e.g., subcontracted enterprises and actions of regulatory bodies). Each team must evaluate resources used/needed in each operation, identify bottlenecks in the system of operations, assess the performance of the system through a set of key performance indicators, and set a coherent strategy to improve efficiency. Through the gamification and the serious games approach, organizational managers will be able to confront the scientific approach in strategic decision-making versus their real-life approach based on experiences undertaken. Considering that each BI GAME’s team has a leader (chosen by draw), the performance of this player has a direct impact on the results obtained. Leadership skills are thus put to the test during the simulation of the functioning of each organization, allowing conclusions to be drawn at the end of the simulation, including its discussion amongst participants.

Keywords: business interactive games, gamification, management empowerment skills, simulation living labs

Procedia PDF Downloads 117
171 Brand Building in Higher Education: A Grounded Theory Investigation of the Impact of the ‘Positive-Visualization-Course in Brand Identity’ upon Freshmen Student's Perception

Authors: Maria Kountouridou, Dino Domic

Abstract:

Within an increasingly competitive and dynamic environment, the higher education sector is becoming more commodified, with the concept of branding to become exceedingly imperative and an inextricable ingredient for the university’s success. Branding in higher education has proven to be an effective strategy that managed to receive considerable attention in the recent few years, and a growing number of articles have begun to appear in the literature. However, a clear void in the literature confirms that the concept of students’ perceptions towards the university’s brand image has not been researched extensively. An investigation on this central concept is of paramount importance since it will facilitate the development of an inductively generated theoretical model concerning branding in higher education. This research focuses on examining the impact of the ‘positive-visualization-course in brand identity’ upon the perception of freshmen students towards a university’s brand image. A grounded theory methodology has been selected, consisting of semi-structured interviews. Forty-two students have participated in the research, among which twenty-five women and seventeen men. The identification of the sample emerged through the use of the snowball sampling technique. The participants were divided into two groups (experimental and control group) after the researcher had taken into consideration the factor ‘program of study’, to eliminate any possible interaction between the participants of each group. An experiment was carried out where a ‘positive-visualization-course in brand identity’ was conducted among the participants of the experimental group, while the participants of the control group have not been exposed to the course. For the purpose of this research, the term ‘positive-visualization-course in brand identity’ refers to a course where brand history, past achievements/recognitions/awards, its values, and its mission are presented. Prior to the course implementation, face-to-face semi-structured interviews were carried out among the participants of both groups, with the aim of examining the freshmen students’ perceptions towards the university’s brand image. One week after the course implementation, the researcher carried out semi-structured interviews with the participants of the experimental group only in order to identify whether students’ perceptions had been affected after the course completion. Four months after the course completion, semi-structured interviews were carried out among the participants of both groups. Eight months after the course completion, semi-structured interviews were conducted with the aim of identifying the freshmen students’ updated perceptions. Data has been analyzed using substantive coding (open and selective coding), theoretical coding, field memos, and constant comparative analysis. The findings strongly suggest that the ‘positive-visualization-course in brand identity’ can positively affect freshmen students’ perceptions towards a university’s brand image. Additionally, other factors conduce to the formation of perception throughout the months. This study contributes and expands upon the existing literature by presenting an inductively generated theoretical model to guide future research in the links between ‘positive-visualization-course in brand identity’ and the perception of freshmen students towards a university’s brand image.

Keywords: brand image, brand name, branding, higher education marketing, perception

Procedia PDF Downloads 181
170 Experiences of Youth in Learning About Healthy Intimate Relationships: An Institutional Ethnography

Authors: Anum Rafiq

Abstract:

Adolescence is a vulnerable period for youth across the world. It is a period of new learning with opportunities to understand and develop perspectives on health and well-being. With youth beginning to engage in intimate relationships at an earlier age in the 21st century, concentrating on the learning opportunity they have in school is paramount. The nature of what has been deemed important to teach in schools has changed throughout history, and the focus has shifted from home/family skills to teaching youth how to be competitive in the job market. Amidst this emphasis, opportunities for them exist to learn about building healthy intimate relationships, one of the foundational elements of most people’s lives. Using an Institutional Ethnography (IE), the lived experiences of youth in how they understand intimate relationships and how their learning experience is organized through the high school Health and Physical Education (H&PE) course is explored. An empirical inquiry into how the actual work of teachers and youth are socially organized by a biomedical, employment-related, and efficiency-based discourse is provided. Through thirty-two qualitative interviews with teachers and youth, a control of ruling relations such as institutional accountability circuits, performance reports, and timetabling over the experience of teachers and youth is found. One of the facets of the institutional accountability circuit is through the social organization of teaching and learning about healthy intimate relationships being framed through a biomedical discourse. In addition, the role of a hyper-focus on performance and evaluation is found as paramount in situating healthy intimacy discussions as inferior to neoliberally charged productivity measures such as employment skills. Lastly, due to the nature of institutional policies such as regulatory guidelines, teachers are largely influenced to avoid diving into discussions deemed risky or taboo by society, such as healthy intimacy in adolescence. The findings show how texts such as the H&PE curriculum, the Ontario College of Teachers (OCT) guidelines, Ministry of Education Performance Reports, and the timetable organize the day-to-day activities of teachers and students and reproduce different disjunctures for youth. This disjuncture includes some of their experiences being subordinated, difficulty relating to curriculum, and an experience of healthy living discussions being skimmed over across sites. The findings detail that the experience of youth in learning about healthy intimate relationships is not akin to the espoused vision outlined in policy documents such as the H&PE (2015) curriculum policy. These findings have implications for policymakers, activists, and school administration alike, which call for an investigation into who is in power when it comes to youth’s learning needs, as a pivotal period where youth can be equipped with life-changing knowledge is largely underutilized. A restructuring of existing institutional practices that allow for the social and institutional flexibility required to broach the topic of healthy intimacy in a comprehensive manner is required.

Keywords: health policy, intimate relationships, youth, education, ruling relations, sexual education, violence prevention

Procedia PDF Downloads 73
169 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes

Authors: Madushani Rodrigo, Banuka Athuraliya

Abstract:

In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.

Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16

Procedia PDF Downloads 130
168 India’s Foreign Policy toward its South Asian Neighbors: Retrospect and Prospect

Authors: Debasish Nandy

Abstract:

India’s foreign policy towards all of her neighbor countries is determinate on the basis of multi-dimensional factors. India’s relations with its South Asian neighbor can be classified into three categories. In the first category, there are four countries -Sri Lanka, Bangladesh, Nepal, and Afghanistan- whose bilateral relationships have encompassed cooperation, irritants, problems and crisis at different points in time. With Pakistan, the relationship has been perpetually adversarial. The third category includes Bhutan and Maldives whose relations are marked by friendship and cooperation, free of any bilateral problems. It is needless to say that Jawaharlal Nehru emphasized on friendly relations with the neighboring countries. The subsequent Prime Ministers of India especially I.K. Gujral had advocated in making of peaceful and friendly relations with the subcontinental countries. He had given a unique idea to foster bilateral relations with the neighbors. His idea is known as ‘Gujral Doctrine’. A dramatical change has been witnessed in Indian foreign policy since 1991.In the post-Cold War period, India’s national security has been vehemently threatened by terrorism, which originated from Pakistan-Afghanistan and partly Bangladesh. India has required a cooperative security, which can be made by mutual understanding among the South Asian countries. Additionally, the countries of South Asia need to evolve the concept of ‘Cooperative Security’ to explain the underlying logic of regional cooperation. According to C. Rajamohan, ‘cooperative security could be understood, as policies of governments, which see themselves as former adversaries or potential adversaries to shift from or avoid confrontationist policies.’ A cooperative security essentially reflects a policy of dealing peacefully with conflicts, not merely by abstention from violence or threats but by active engagement in negotiation, a search for practical solutions and with a commitment to preventive measures. Cooperative assumes the existence of a condition in which the two sides possess the military capabilities to harm each other. Establishing cooperative security runs into a complex process building confidence. South Asian nations often engaged with hostility to each other. Extra-regional powers have been influencing their powers in this region since a long time. South Asian nations are busy to purchase military equipment. In spite of weakened economic systems, these states are spending a huge amount of money for their security. India is the big power in this region in every aspect. The big states- small states syndrome is a negative factor in this respect. However, India will have to an initiative to extended ‘track II diplomacy’ or soft diplomacy for its security as well as the security of this region.Confidence building measures could help rejuvenate not only SAARC but also build trust and mutual confidence between India and its neighbors in South Asia. In this paper, I will focus on different aspects of India’s policy towards it, South-Asian neighbors. It will also be searched that how India is dealing with these countries by using a mixed type of diplomacy – both idealistic and realistic points of view. Security and cooperation are two major determinants of India’s foreign policy towards its South Asian neighbors.

Keywords: bilateral, diplomacy, infiltration, terrorism

Procedia PDF Downloads 541
167 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks

Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios

Abstract:

To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.

Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand

Procedia PDF Downloads 150
166 Enhanced Functional Production of a Crucial Biomolecule Human Serum Albumin in Escherichia coli

Authors: Ashima Sharma

Abstract:

Human Serum Albumin (HSA)- one of the most demanded therapeutic proteins with immense biotechnological applications- is a large multidomain protein containing 17 disulfide bonds. The current source of HSA is human blood plasma which is a limited and unsafe source. Thus, there exists an indispensable need to promote non-animal derived recombinant HSA (rHSA) production. Escherichia coli is one of the most convenient hosts which had contributed to the production of more than 30% of the FDA approved recombinant pharmaceuticals. It grows rapidly and reaches high cell density using inexpensive and simple substrates. E. coli derived recombinant products have more economic potential as fermentation processes are cheaper compared to the other expression hosts. The major bottleneck in exploiting E. coli as a host for a disulfide-rich multidomain protein is the formation of aggregates of overexpressed protein. The majority of the expressed HSA forms inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA from inclusion bodies is not preferred because it is difficult to obtain a large multidomain disulfide bond rich protein like rHSA in its functional native form. Purification is tedious, time-consuming, laborious and expensive. Because of such limitations, the E. coli host system was neglected for rHSA production for the past few decades despite its numerous advantages. In the present work, we have exploited the capabilities of E. coli as a host for the enhanced functional production of rHSA (~60% of the total expressed rHSA in the soluble fraction). Parameters like intracellular environment, temperature, induction type, duration of induction, cell lysis conditions etc. which play an important role in enhancing the level of production of the desired protein in its native form in vivo have been optimized. We have studied the effect of assistance of different types of exogenously employed chaperone systems on the functional expression of rHSA in the E. coli host system. Different aspects of cell growth parameters during the production of rHSA in presence and absence of molecular chaperones in E. coli have also been studied. Upon overcoming the difficulties to produce functional rHSA in E. coli, it has been possible to produce significant levels of functional protein through engineering the biological system of protein folding in the cell, the E. coli-derived rHSA has been purified to homogeneity. Its detailed physicochemical characterization has been performed by monitoring its conformational properties, secondary and tertiary structure elements, surface properties, ligand binding properties, stability issues etc. These parameters of the recombinant protein have been compared with the naturally occurring protein from the human source. The outcome of the comparison reveals that the recombinant protein resembles exactly the same as the natural one. Hence, we propose that the E. coli-derived rHSA is an ideal biosimilar for human blood plasma-derived serum albumin. Therefore, in the present study, we have introduced and promoted the E. coli- derived rHSA as an alternative to the preparation from a human source, pHSA.

Keywords: recombinant human serum albumin, Escherichia coli, biosimilar, chaperone assisted protein folding

Procedia PDF Downloads 214
165 Seismic Analysis of Vertical Expansion Hybrid Structure by Response Spectrum Method Concern with Disaster Management and Solving the Problems of Urbanization

Authors: Gautam, Gurcharan Singh, Mandeep Kaur, Yogesh Aggarwal, Sanjeev Naval

Abstract:

The present ground reality scenario of suffering of humanity shows the evidence of failure to take wrong decisions to shape the civilization with Irresponsibilities in the history. A strong positive will of right responsibilities make the right civilization structure which affects itself and the whole world. Present suffering of humanity shows and reflect the failure of past decisions taken to shape the true culture with right social structure of society, due to unplanned system of Indian civilization and its rapid disaster of population make the failure to face all kind of problems which make the society sufferer. Our India is still suffering from disaster like earthquake, floods, droughts, tsunamis etc. and we face the uncountable disaster of deaths from the beginning of humanity at the present time. In this research paper our focus is to make a Disaster Resistance Structure having the solution of dense populated urban cities area by high vertical expansion HYBRID STRUCTURE. Our efforts are to analyse the Reinforced Concrete Hybrid Structure at different seismic zones, these concrete frames were analyzed using the response spectrum method to calculate and compare the different seismic displacement and drift. Seismic analysis by this method generally is based on dynamic analysis of building. Analysis results shows that the Reinforced Concrete Building at seismic Zone V having maximum peak story shear, base shear, drift and node displacement as compare to the analytical results of Reinforced Concrete Building at seismic Zone III and Zone IV. This analysis results indicating to focus on structural drawings strictly at construction site to make a HYBRID STRUCTURE. The study case is deal with the 10 story height of a vertical expansion Hybrid frame structure at different zones i.e. zone III, zone IV and zone V having the column 0.45x0.36mt and beam 0.6x0.36mt. with total height of 30mt, to make the structure more stable bracing techniques shell be applied like mage bracing and V shape bracing. If this kind of efforts or structure drawings are followed by the builders and contractors then we save the lives during earthquake disaster at Bhuj (Gujarat State, India) on 26th January, 2001 which resulted in more than 19,000 deaths. This kind of Disaster Resistance Structure having the capabilities to solve the problems of densely populated area of cities by the utilization of area in vertical expansion hybrid structure. We request to Government of India to make new plans and implementing it to save the lives from future disasters instead of unnecessary wants of development plans like Bullet Trains.

Keywords: history, irresponsibilities, unplanned social structure, humanity, hybrid structure, response spectrum analysis, DRIFT, and NODE displacement

Procedia PDF Downloads 214
164 The Digital Desert in Global Business: Digital Analytics as an Oasis of Hope for Sub-Saharan Africa

Authors: David Amoah Oduro

Abstract:

In the ever-evolving terrain of international business, a profound revolution is underway, guided by the swift integration and advancement of disruptive technologies like digital analytics. In today's international business landscape, where competition is fierce, and decisions are data-driven, the essence of this paper lies in offering a tangible roadmap for practitioners. It is a guide that bridges the chasm between theory and actionable insights, helping businesses, investors, and entrepreneurs navigate the complexities of international expansion into sub-Saharan Africa. This practitioner paper distils essential insights, methodologies, and actionable recommendations for businesses seeking to leverage digital analytics in their pursuit of market entry and expansion across the African continent. What sets this paper apart is its unwavering focus on a region ripe with potential: sub-Saharan Africa. The adoption and adaptation of digital analytics are not mere luxuries but essential strategic tools for evaluating countries and entering markets within this dynamic region. With the spotlight firmly fixed on sub-Saharan Africa, the aim is to provide a compelling resource to guide practitioners in their quest to unearth the vast opportunities hidden within sub-Saharan Africa's digital desert. The paper illuminates the pivotal role of digital analytics in providing a data-driven foundation for market entry decisions. It highlights the ability to uncover market trends, consumer behavior, and competitive landscapes. By understanding Africa's incredible diversity, the paper underscores the importance of tailoring market entry strategies to account for unique cultural, economic, and regulatory factors. For practitioners, this paper offers a set of actionable recommendations, including the creation of cross-functional teams, the integration of local expertise, and the cultivation of long-term partnerships to ensure sustainable market entry success. It advocates for a commitment to continuous learning and flexibility in adapting strategies as the African market evolves. This paper represents an invaluable resource for businesses, investors, and entrepreneurs who are keen on unlocking the potential of digital analytics for informed market entry in Africa. It serves as a guiding light, equipping practitioners with the essential tools and insights needed to thrive in this dynamic and diverse continent. With these key insights, methodologies, and recommendations, this paper is a roadmap to prosperous and sustainable market entry in Africa. It is vital for anyone looking to harness the transformational potential of digital analytics to create prosperous and sustainable ventures in a region brimming with promise. In the ever-advancing digital age, this practitioner paper becomes a lodestar, guiding businesses and visionaries toward success amidst the unique challenges and rewards of sub-Saharan Africa's international business landscape.

Keywords: global analytics, digital analytics, sub-Saharan Africa, data analytics

Procedia PDF Downloads 79
163 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance

Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.

Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning

Procedia PDF Downloads 41
162 Decentralized Peak-Shaving Strategies for Integrated Domestic Batteries

Authors: Corentin Jankowiak, Aggelos Zacharopoulos, Caterina Brandoni

Abstract:

In a context of increasing stress put on the electricity network by the decarbonization of many sectors, energy storage is likely to be the key mitigating element, by acting as a buffer between production and demand. In particular, the highest potential for storage is when connected closer to the loads. Yet, low voltage storage struggles to penetrate the market at a large scale due to the novelty and complexity of the solution, and the competitive advantage of fossil fuel-based technologies regarding regulations. Strong and reliable numerical simulations are required to show the benefits of storage located near loads and promote its development. The present study was restrained from excluding aggregated control of storage: it is assumed that the storage units operate independently to one another without exchanging information – as is currently mostly the case. A computationally light battery model is presented in detail and validated by direct comparison with a domestic battery operating in real conditions. This model is then used to develop Peak-Shaving (PS) control strategies as it is the decentralized service from which beneficial impacts are most likely to emerge. The aggregation of flatter, peak- shaved consumption profiles is likely to lead to flatter and arbitraged profile at higher voltage layers. Furthermore, voltage fluctuations can be expected to decrease if spikes of individual consumption are reduced. The crucial part to achieve PS lies in the charging pattern: peaks depend on the switching on and off of appliances in the dwelling by the occupants and are therefore impossible to predict accurately. A performant PS strategy must, therefore, include a smart charge recovery algorithm that can ensure enough energy is present in the battery in case it is needed without generating new peaks by charging the unit. Three categories of PS algorithms are introduced in detail. First, using a constant threshold or power rate for charge recovery, followed by algorithms using the State Of Charge (SOC) as a decision variable. Finally, using a load forecast – of which the impact of the accuracy is discussed – to generate PS. A performance metrics was defined in order to quantitatively evaluate their operating regarding peak reduction, total energy consumption, and self-consumption of domestic photovoltaic generation. The algorithms were tested on load profiles with a 1-minute granularity over a 1-year period, and their performance was assessed regarding these metrics. The results show that constant charging threshold or power are far from optimal: a certain value is not likely to fit the variability of a residential profile. As could be expected, forecast-based algorithms show the highest performance. However, these depend on the accuracy of the forecast. On the other hand, SOC based algorithms also present satisfying performance, making them a strong alternative when the reliable forecast is not available.

Keywords: decentralised control, domestic integrated batteries, electricity network performance, peak-shaving algorithm

Procedia PDF Downloads 122
161 Introduction of a New and Efficient Nematicide, Abamectin by Gyah Corporation, Iran, for Root-knot Nematodes Management Planning Programs

Authors: Shiva Mardani, Mehdi Nasr-Esfahani, Majid Olia, Hamid Molahosseini, Hamed Hassanzadeh Khankahdani

Abstract:

Plant-parasitic nematodes cause serious diseases on plants and effectively reduce food production in quality and quantity worldwide, with at least 17 nematode species in the three important and major genera, including Meloidogyne, Heterodera, and Pratylenchus. Root-knot nematodes (RKN), Meloidogyne spp. with the dominant species, Meloidogynejavanica, are considered as the important plant pathogens of agricultural products globally. The hosts range can be vegetables, bedding plants, grasses, shrubs, numerous weeds, and trees, including forests. In this study, chemical management was carried out on RKN, M. javanica, to investigate the efficacy of Iranian Abamectin insecticide product [acaricide Abamectin (Vermectin® 2% EC, Gyah Corp., Iran)] verses imported normal Abamectin available in the Iran markets [acaricide Abamectin (Vermectin® 1.8% EC, Cropstar Chemical Industry Co., Ltd.)] each of which at the rate of 8 L./ha, on Tomatoes, Solanumlycopersicum L., (No. 29-41, Dutch company Siemens) as a test plant, and the controls (infested to RKN and without any chemical pesticides treatments); and (sterile soil without any RKN and chemical pesticides treatments) at the greenhouse in Isfahan, Iran. The trails were repeated thrice. The results indicated a highly significant reduction in RKN population and an increase in biomass parameters at 1% level of significance, respectively. Relatively similar results were obtained in all the three experiments conducted on tomato root-knot nematodes. The treatments of Gyah-Abamectin (51.6%) and external Abamectin (40.4%) had the highest to least effect on reducing the number of larvae in the soil compared to the infected controls, respectively. Gyah-Abamectin by 44.1% and then external one by 31.9% had the highest effect on reducing the number of larvae and eggs in the root and 31.4% and 24.1% reduction in the number of galls compared to the infected controls, respectively. Based on priority, Gyah-Abamectin (47.4 % ) and external Abamectin (31.1 %) treatments had the highest effect on reducing the number of egg- masses in the root compared to the infected controls, with no significant difference between Gyah-Abamectin and external Abamectin. The highest reproduction of larvae and egg in the root was observed in the infected controls (75.5%) and the lowest in the healthy controls (0.0%). The highest reduction in the larval and egg reproduction in the roots compared to the infected controls was observed in Gyah-Abamectin and the lowest in the external one. Based on preference, Gyah-Abamectin (37.6%) and external Abamectin (26.9%) had the highest effect on the reduction of the larvae and egg reproduction in the root compared to the infected controls, respectively. Regarding growth parameters factors, the lowest stem length was observed in external Abamectin (51.9 cm), with nosignificantly different from Gyah-Abamectin and healthy controls. The highest root fresh weight was recorded in the infected controls (19.81 gr.) and the lowest in the healthy ones (9.81 gr.); the highest root length in the healthy controls (22.4 cm), and the lowest in the infected controls and external Abamectin (12.6 and 11.9 cm), respectively. Conclusively, the results of these three tests on tomato plants revealed that Gyah-Abamectin 2% compared to external Abamectin 1.8% is competitive in the chemical management of the root nematodes of these types of products and is a suitable alternative in this regard.

Keywords: solanum lycopersicum, vermectin, biomass, tomato

Procedia PDF Downloads 98
160 Longitudinal impact on Empowerment for Ugandan Women with Post-Primary Education

Authors: Shelley Jones

Abstract:

Assumptions abound that education for girls will, as a matter of course, lead to their economic empowerment as women; yet. little is known about the ways in which schooling for girls, who traditionally/historically would not have had opportunities for post-primary, or perhaps even primary education – such as the participants in this study based in rural Uganda - in reality, impacts their economic situations. There is a need forlongitudinal studies in which women share experiences, understandings, and reflections of their lives that can inform our knowledge of this. In response, this paper reports on stage four of a longitudinal case study (2004-2018) focused on education and empowerment for girls and women in rural Uganda, in which 13 of the 15 participants from the original study participated. This paper understands empowerment as not simply increased opportunities (e.g., employment) but also real gains in power, freedoms that enable agentive action, and authentic and viable choices/alternatives that offer ‘exit options’ from unsatisfactory situations. As with the other stages, this study used a critical, postmodernist, global feminist ethnographic methodology, multimodal and qualitative data collection. Participants participated in interviews, focus group discussions, and a two-day workshop, which explored their understandings of how/if they understood post-primary education to have contributed to their economic empowerment. A constructivist grounded theory approach was used for data analysis to capture major themes. Findings indicate that although all participants believe that post-primary education provided them with economic opportunities they would not have had otherwise, the parameters of their economic empowerment were severely constrained by historic and extant sociocultural, economic, political, and institutional structures that continue to disempower girls and women, as well as additional financial responsibilities that they assumed to support others. Even though the participants had post-primary education, and they were able to obtain employment or operate their own businesses that they would not likely have been able to do without post-primary education, the majority of the participants’ incomes were not sufficient to elevate them financially above the extreme poverty level, especially as many were single mothers and the sole income earners in their households. Furthermore, most deemed their working conditions unsatisfactory and their positions precarious; they also experienced sexual harassment and abuse in the labour force. Additionally, employment for the participants resulted in a double work burden: long days at work, surrounded by many hours of domestic work at home (which, even if they had spousal partners, still fell almost exclusively to women). In conclusion, although the participants seem to have experienced some increase in economic empowerment, largely due to skills, knowledge, and qualifications gained at the post-primary level, numerous barriers prevented them from maximizing their capabilities and making significant gains in empowerment. There is need, in addition to providing education (primary, secondary, and tertiary) to girls, to address systemic gender inequalities that mitigate against women’s empowerment, as well as opportunities and freedom for women to come together and demand fair pay, reasonable working conditions, and benefits, freedom from gender-based harassment and assault in the workplace, as well as advocate for equal distribution of domestic work as a cultural change.

Keywords: girls' post-primary education, women's empowerment, uganda, employment

Procedia PDF Downloads 150
159 Technology for Biogas Upgrading with Immobilized Algae Biomass

Authors: Marcin Debowski, Marcin Zielinski, Miroslaw Krzemieniewski, Agata Glowacka-Gil, Paulina Rusanowska, Magdalena Zielinska, Agnieszka Cydzik-Kwiatkowska

Abstract:

Technologies of biogas upgrading are now perceived as competitive solution combustion and production of electricity and heat. Biomethane production will ensure broader application as energy carrier than biogas. Biomethane can be used as fuel in internal combustion engines or introduced into the natural gas transmission network. Therefore, there is a need to search for innovative, economically and technically justified methods for biogas enrichment. The aim of this paper is to present a technology solution for biogas upgrading with immobilized algae biomass. Reactor for biogas upgrading with immobilized algae biomass can be used for removing CO₂ from the biogas, flue gases and the waste gases especially coming from different industry sectors, e.g. from the food industry from yeast production process, biogas production systems, liquid and gaseous fuels combustion systems, hydrocarbon processing technology. The basis for the technological assumptions of presented technology were laboratory works and analyses that tested technological variants of biogas upgrading. The enrichment of biogas with a methane content of 90-97% pointed to technological assumptions for installation on a technical scale. Reactor for biogas upgrading with algae biomass is characterized by a significantly lower cubature in relation to the currently used solutions which use CO₂ removal processes. The invention, by its structure, assumes achieving a very high concentration of biomass of algae through its immobilization in capsules. This eliminates the phenomenon of lowering the pH value, i.e. acidification of the environment in which algae grow, resulting from the introduction of waste gases at a high CO₂ concentration. The system for introducing light into algae capsules is characterized by a higher degree of its use, due to lower losses resulting from the phenomenon of absorption of light energy by water. The light from the light source is continuously supplied to the formed biomass of algae or cyanobacteria in capsules by the light tubes. The light source may be sunlight or a light generator of a different wavelength of light from 300 nm to 800 nm. A portion of gas containing CO₂, accumulated in the tank and conveyed by the pump is periodically introduced into the housing of the photobioreactor tank. When conveying the gas that contains CO₂, it penetrates the algal biomass in capsules through the outer envelope, displacing, from the algal biomass, gaseous metabolic products which are discharged by the outlet duct for gases. It contributes to eliminating the negative impact of this factor on CO₂ binding processes. As a result of the cyclic dosing of gases containing carbon dioxide, gaseous metabolic products of algae are displaced and removed outside the technological system. Technology for biogas upgrading with immobilized algae biomass is suitable for the small biogas plant. The advantages of this technology are high efficiency as well as useful algae biomass which can be used mainly as animal feed, fertilizers and in the power industry. The construction of the device allows effective removal of carbon dioxide from gases at a high CO₂ concentration.

Keywords: biogas, carbon dioxide, immobilised biomass, microalgae, upgrading

Procedia PDF Downloads 161
158 Virtual Reality Applications for Building Indoor Engineering: Circulation Way-Finding

Authors: Atefeh Omidkhah Kharashtomi, Rasoul Hedayat Nejad, Saeed Bakhtiyari

Abstract:

Circulation paths and indoor connection network of the building play an important role both in the daily operation of the building and during evacuation in emergency situations. The degree of legibility of the paths for navigation inside the building has a deep connection with the perceptive and cognitive system of human, and the way the surrounding environment is being perceived. Human perception of the space is based on the sensory systems in a three-dimensional environment, and non-linearly, so it is necessary to avoid reducing its representations in architectural design as a two-dimensional and linear issue. Today, the advances in the field of virtual reality (VR) technology have led to various applications, and architecture and building science can benefit greatly from these capabilities. Especially in cases where the design solution requires a detailed and complete understanding of the human perception of the environment and the behavioral response, special attention to VR technologies could be a priority. Way-finding in the indoor circulation network is a proper example for such application. Success in way-finding could be achieved if human perception of the route and the behavioral reaction have been considered in advance and reflected in the architectural design. This paper discusses the VR technology applications for the way-finding improvements in indoor engineering of the building. In a systematic review, with a database consisting of numerous studies, firstly, four categories for VR applications for circulation way-finding have been identified: 1) data collection of key parameters, 2) comparison of the effect of each parameter in virtual environment versus real world (in order to improve the design), 3) comparing experiment results in the application of different VR devices/ methods with each other or with the results of building simulation, and 4) training and planning. Since the costs of technical equipment and knowledge required to use VR tools lead to the limitation of its use for all design projects, priority buildings for the use of VR during design are introduced based on case-studies analysis. The results indicate that VR technology provides opportunities for designers to solve complex buildings design challenges in an effective and efficient manner. Then environmental parameters and the architecture of the circulation routes (indicators such as route configuration, topology, signs, structural and non-structural components, etc.) and the characteristics of each (metrics such as dimensions, proportions, color, transparency, texture, etc.) are classified for the VR way-finding experiments. Then, according to human behavior and reaction in the movement-related issues, the necessity of scenario-based and experiment design for using VR technology to improve the design and receive feedback from the test participants has been described. The parameters related to the scenario design are presented in a flowchart in the form of test design, data determination and interpretation, recording results, analysis, errors, validation and reporting. Also, the experiment environment design is discussed for equipment selection according to the scenario, parameters under study as well as creating the sense of illusion in the terms of place illusion, plausibility and illusion of body ownership.

Keywords: virtual reality (VR), way-finding, indoor, circulation, design

Procedia PDF Downloads 78
157 Family Firm Internationalization: Identification of Alternative Success Pathways

Authors: Sascha Kraus, Wolfgang Hora, Philipp Stieg, Thomas Niemand, Ferdinand Thies, Matthias Filser

Abstract:

In most countries, small and medium-sized enterprises (SME) are the backbone of the economy due to their impact on job creation, innovation and wealth creation. Moreover, the ongoing globalization makes it inevitable – even for SME that traditionally focused on their domestic markets – to internationalize their business activities to realize further growth and survive in international markets. Thus, internationalization has become one of the most common growth strategies for SME and has received increasing scholarly attention over the last two decades. One the downside internationalization can be also regarded as the most complex strategy that a firm can undertake. Particularly for family firms, that are often characterized by limited financial capital, a risk-averse nature and limited growth aspirations, it could be argued that family firms are more likely to face greater challenges when taking the pathway to internationalization. Especially the triangulation of family, ownership, and management (so-called ‘familiness’) manifests in a unique behavior and decision-making process which is often characterized by the importance given to noneconomic goals and distinguishes a family firm from other businesses. Taking this into account, the concept of socio-emotional wealth (SEW) has been evolved to describe the behavior of family firms. In order to investigate how different internal and external firm characteristics shape internationalization success of family firms, we drew on a sample consisting of 297 small and medium-sized family firms from Germany, Austria, Switzerland, and Liechtenstein. Thus, we include SEW as essential family firm characteristic and added the two major intra-organizational characteristics, entrepreneurial orientation (EO), absorptive capacity (AC) as well as collaboration intensity (CI) and relational knowledge (RK) as two major external network characteristics. Based on previous research we assume that these characteristics are important to explain internationalization success of family firm SME. Regarding the data analysis, we applied a Fuzzy Set Qualitative Comparative Analysis (fsQCA), an approach that allows identifying configurations of firm characteristics, specifically used to study complex causal relationships where traditional regression techniques reach their limits. Results indicate that several combinations of these family firm characteristics can lead to international success, with no permanently required key characteristic. Instead, there are many roads to walk down for family firms to achieve internationalization success. Consequently, our data states that family owned SME are heterogeneous and internationalization is a complex and dynamic process. Results further show that network related characteristics occur in all sets, thus represent an essential element in the internationalization process of family owned SME. The contribution of our study is twofold, as we investigate different forms of international expansion for family firms and how to improve them. First, we are able to broaden the understanding of the intersection between family firm and SME internationalization with respect to major intra-organizational and network-related variables. Second, from a practical perspective, we offer family firm owners a basis for setting up internal capabilities to achieve international success.

Keywords: entrepreneurial orientation, family firm, fsQCA, internationalization, socio-emotional wealth

Procedia PDF Downloads 245
156 Budget Impact Analysis of a Stratified Treatment Cascade for Hepatitis C Direct Acting Antiviral Treatment in an Asian Middle-Income Country through the Use of Compulsory and Voluntary Licensing Options

Authors: Amirah Azzeri, Fatiha H. Shabaruddin, Scott A. McDonald, Rosmawati Mohamed, Maznah Dahlui

Abstract:

Objective: A scaled-up treatment cascade with direct-acting antiviral (DAA) therapy is necessary to achieve global WHO targets for hepatitis C virus (HCV) elimination in Malaysia. Recently, limited access to Sofosbuvir/Daclatasvir (SOF/DAC) is available through compulsory licensing, with future access to Sofosbuvir/Velpatasvir (SOF/VEL) expected through voluntary licensing due to recent agreements. SOF/VEL has superior clinical outcomes, particularly for cirrhotic stages, but has higher drug acquisition costs compared to SOF/DAC. It has been proposed that a stratified treatment cascade might be the most cost-efficient approach for Malaysia whereby all HCV patients are treated with SOF/DAC except for patients with cirrhosis who are treated with SOF/VEL. This study aimed to conduct a five-year budget impact analysis from the provider perspective of the proposed stratified treatment cascade for HCV treatment in Malaysia. Method: A disease progression model that was developed based on model-predicted HCV epidemiology data in Malaysia was used for the analysis, where all HCV patients in scenario A were treated with SOF/DAC for all disease stages while in scenario B, SOF/DAC was used only for non-cirrhotic patients and SOF/VEL was used for the cirrhotic patients. The model projections estimated the annual numbers of patients in care and the numbers of patients to be initiated on DAA treatment nationally. Healthcare costs associated with DAA therapy and disease stage monitoring was included to estimate the downstream cost implications. For scenario B, the estimated treatment uptake of SOF/VEL for cirrhotic patients were 25%, 50%, 75%, 100% and 100% for 2018, 2019, 2020, 2021 and 2022 respectively. Healthcare costs were estimated based on standard clinical pathways for DAA treatment described in recent guidelines. All costs were reported in US dollars (conversion rate US$1=RM4.09, the price year 2018). Scenario analysis was conducted for 5% and 10% reduction of SOF/VEL acquisition cost anticipated from the competitive market pricing of generic DAA in Malaysia. Results: The stratified treatment cascade with SOF/VEL in Scenario B was found to be cost-saving compared to Scenario A. A substantial portion of the cost reduction was due to the costs associated with DAA therapy which resulted in USD 40 thousand (year 1) to USD 443 thousand (year 5) savings annually, with cumulative savings of USD 1.1 million after 5 years. Cost reductions for disease stage monitoring were seen in year three onwards which resulted in cumulative savings of USD 1.1 thousand. Scenario analysis estimated cumulative savings of USD 1.24 to USD 1.35 million when the acquisition cost of SOF/VEL was reduced. Conclusion: A stratified treatment cascade with SOF/VEL was expected to be cost-saving and can results in a budget impact reduction in overall healthcare expenditure in Malaysia compared to treatment with SOF/DAC. The better clinical efficacy with SOF/VEL is expected to halt patients’ HCV disease progression and may reduce downstream costs of treating advanced disease stages. The findings of this analysis may be useful to inform healthcare policies for HCV treatment in Malaysia.

Keywords: Malaysia, direct acting antiviral, compulsory licensing, voluntary licensing

Procedia PDF Downloads 168
155 A Distributed Smart Battery Management System – sBMS, for Stationary Energy Storage Applications

Authors: António J. Gano, Carmen Rangel

Abstract:

Currently, electric energy storage systems for stationary applications have known an increasing interest, namely with the integration of local renewable energy power sources into energy communities. Li-ion batteries are considered the leading electric storage devices to achieve this integration, and Battery Management Systems (BMS) are decisive for their control and optimum performance. In this work, the advancement of a smart BMS (sBMS) prototype with a modular distributed topology is described. The system, still under development, has a distributed architecture with modular characteristics to operate with different battery pack topologies and charge capacities, integrating adaptive algorithms for functional state real-time monitoring and management of multicellular Li-ion batteries, and is intended for application in the context of a local energy community fed by renewable energy sources. This sBMS system includes different developed hardware units: (1) Cell monitoring units (CMUs) for interfacing with each individual cell or module monitoring within the battery pack; (2) Battery monitoring and switching unit (BMU) for global battery pack monitoring, thermal control and functional operating state switching; (3) Main management and local control unit (MCU) for local sBMS’s management and control, also serving as a communications gateway to external systems and devices. This architecture is fully expandable to battery packs with a large number of cells, or modules, interconnected in series, as the several units have local data acquisition and processing capabilities, communicating over a standard CAN bus and will be able to operate almost autonomously. The CMU units are intended to be used with Li-ion cells but can be used with other cell chemistries, with output voltages within the 2.5 to 5 V range. The different unit’s characteristics and specifications are described, including the different implemented hardware solutions. The developed hardware supports both passive and active methods for charge equalization, considered fundamental functionalities for optimizing the performance and the useful lifetime of a Li-ion battery package. The functional characteristics of the different units of this sBMS system, including different process variables data acquisition using a flexible set of sensors, can support the development of custom algorithms for estimating the parameters defining the functional states of the battery pack (State-of-Charge, State-of-Health, etc.) as well as different charge equalizing strategies and algorithms. This sBMS system is intended to interface with other systems and devices using standard communication protocols, like those used by the Internet of Things. In the future, this sBMS architecture can evolve to a fully decentralized topology, with all the units using Wi-Fi protocols and integrating a mesh network, making unnecessary the MCU unit. The status of the work in progress is reported, leading to conclusions on the system already executed, considering the implemented hardware solution, not only as fully functional advanced and configurable battery management system but also as a platform for developing custom algorithms and optimizing strategies to achieve better performance of electric energy stationary storage devices.

Keywords: Li-ion battery, smart BMS, stationary electric storage, distributed BMS

Procedia PDF Downloads 111